浅论行列式及其计算方法

合集下载

行列式的计算技巧和方法总结

行列式的计算技巧和方法总结

行列式的计算技巧和方法总结行列式是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。

正确计算行列式有助于解决线性方程组、特征值等问题。

下面将总结行列式的计算技巧和方法。

一、行列式的定义和性质:行列式是一个数,是由方阵中元素按照一定规律排列所组成的。

设A为n阶方阵,行列式记作det(A)或,A,定义如下:det(A) = ,A, = a11*a22*...*ann - a11*a23*...*a(n-1)n +a12*a23*...*ann-1*n + ... + (-1)^(n-1)*a1n*a2(n-1)*...*ann 其中,a_ij表示A的第i行第j列的元素。

行列式具有以下性质:1. 若A = (a_ij)为n阶方阵,若将A的第i行和第j行互换位置,则det(A)变为-det(A)。

2. 若A = (a_ij)为n阶方阵,若A的其中一行的元素全为0,则det(A) = 0。

3. 若A = (a_ij)为n阶三角形矩阵,则det(A) = a11*a22*...*ann。

4. 若A = (a_ij)和B = (b_ij)为n阶方阵,则det(AB) = det(A)* det(B)。

5. 若A = (a_ij)为n阶可逆方阵,则det(A^(-1)) = 1/det(A)。

二、行列式计算的基本方法:1.二阶行列式:对于2阶方阵A = (a_ij),有det(A) = a11*a22 - a12*a212.三阶行列式:对于3阶方阵A = (a_ij),有det(A) = a11*a22*a33 +a12*a23*a31 + a13*a21*a32 - a13*a22*a31 - a12*a21*a33 -a11*a23*a323.高阶行列式:对于n阶方阵A,可以利用行列式按行展开的性质来计算。

选择其中一行(列)展开,计算每个元素乘以其代数余子式的和,即:det(A) = a1j*C1j + a2j*C2j + ... + anj*Cnj其中,Cij为A的代数余子式,表示去掉第i行第j列后所得子矩阵的行列式。

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A •=0, nn nn nnnn nn B A B C A •=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa a a n ()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 21001cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ. 即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式.4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n a a a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()1221112211000010000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。

行列式的计算方法总结

行列式的计算方法总结

行列式的计算方法总结行列式的计算方法有哪些呢?可能大部分同学并不知道。

为了普及知识。

下面是由小编为大家整理的“行列式的计算方法总结”,仅供参考,欢迎大家阅读。

行列式的计算方法总结第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。

第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)第三、行列式的计算最重要的两个性质:(1)对换行列式中两行(列)位置,行列式反号(2)把行列式的某一行(列)的倍数加到另一行(列),行列式不变对于(1)主要注意:每一次交换都会出一个负号;换行(列)的主要目的就是调整0的位置,例如下题,只要调整一下第一行的位置,就能变成下三角。

拓展阅读:行列式的性质有哪些?行列式与它的转置行列式相等;互换行列式的两行(列),行列式变号;行列式的某一行(列)的所有的元素都乘以同一数k,等于用数k乘此行列式;行列式如果有两行(列)元素成比例,则此行列式等于零;若行列式的某一列(行)的元素都是两数之和,则这个行列式是对应两个行列式的和;把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

n阶行列式实质上是一个n^2元的函数,当把n^2个元素都代上常数时,自然得到一个数。

当我们写的时候,写成一个表是为了方便的反映函数的物性。

当然,决不是指任何n^2元函数都是行列式,具体的行列式函数定义你找书一看看。

为了让你自己觉得好理解一些,你可以试着照行列式的定义把行列式写成多项式和的常见形式,当然那个形式比较复杂,但本质上与行列式是一样的,只是写成行列式易于直观的做各种运算处理。

行列式的计算技巧和方法总结

行列式的计算技巧和方法总结

计算技巧及方法总结一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式2112221122211211a a a a a a a a -=2、三阶行列式333231232221131211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式601504321-解 =-601504321601⨯⨯)1(52-⨯+043⨯⨯+)1(03-⨯⨯-051⨯⨯-624⨯⨯-4810--=.58-=但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。

但在此之前需要记忆一些常见行列式形式。

以便计算。

计算上三角形行列式nn nnn n a a a a a a a a a 221122211211000=下三角形行列式 nnn n a a a a a a 21222111000.2211nn a a a =对角行列式nn nnn n a a a a a a a a a221121222111000=二、用行列式的性质计算1、记住性质,这是计算行列式的前提将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若,212222111211nnn n n n a a a a a a a a a D=则 nnn n n n T a a a a a a a a a D212221212111=. 性质1 行列式与它的转置行列式相等, 即.T D D = 注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有.性质2 交换行列式的两行(列),行列式变号.推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即.2121112112121112111kD a a a a a a a a a k a a a ka ka ka a a a D nnn n in i i n nnn n in i i n ===第i 行(列)乘以k ,记为k i ⨯γ(或k C i ⨯).推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如,nnn n in in i i i i n a a a c b c b c b a a a D21221111211+++=.则21212111211212111211D D a a a c c c a a a a a a b b b a a a D nnn n in i i n nn n n in i i n +=+=.性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变.注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +.2、利用“三角化”计算行列式 计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:如果第一列第一个元素为0, 先将第一行与其它行交换使得第一列第一个元素不为0; 然后把第一行分别乘以适当的数加到其它各行,使得第一列除第一个元素外其余元素全为0;再用同样的方法处理除去第一行和第一列后余下的低一阶行列式,如此继续下去,直至使它成为上三角形行列式,这时主对角线上元素的乘积就是所求行列式的值.例2若21101321-=D , 则.213102011D D T =-=例3(1)01212111001211121---=--(第一、二行互换).(2)1211021101211121---=--(第二、三列互换) (3)072501111=(第一、二两行相等) (4)0337224112=---(第二、三列相等)例4(1)02222510211=--因为第三行是第一行的2倍. (2)075414153820141=---因为第一列与第二列成比例,即第二列是第一列的4倍.例5若121013201--=D , 则D 2121013201)2(121013402-=---=----又 D 412101320141240112204=--=--.例6 设,1333231232221131211=a a a a a a a a a 求.53531026333231232221131211a a a a a a a a a ---- 解 利用行列式性质,有33323123222113121153531026a a a a a a a a a ----=3332312322211312115353522a a a a a a a a a ---5)3(2⋅-⋅-=333231232221131211a a a a a a a a a 15)3(2⋅⋅-⋅-=.30=例7(1).110111311103111132+=++=(2)()1)2(1272305)2(11121272305211--+--++=----+122720521112730511---+--=. 例8 因为,12310403212213==++--+而15)40()29(02213123=+++=-+-.因此221312303212213-+-≠++--+.注: 一般来说下式是不成立的22211211222112112222212112121111b b b b a a a a b a b a b a b a +≠++++.例9(1)13201013113214113112----r r ,上式表示第一行乘以-1后加第二行上去, 其值不变.(2)33204103113214113113c c +--,上式表示第一列乘以1后加到第三列上去, 其值不变.例10计算行列式2150321263-=D . 解 先将第一行的公因子3提出来:,21503242132150321263-=-再计算.162354100430201541104702215421087042127189087042132150324213=⨯====----=-=D例11 计算.3351110243152113------=D解 21c c D→3315112043512131-------14125r r r r +-72160112064802131------32r r ↔72160648011202131----- 242384r r r r -+ 1510001080011202131---- 3445r r +.4025001080011202131=--- 例12计算.3111131111311113=D 解 注意到行列式的各列4个数之和都是6.故把第2,3,4行同时加到第1行,可提出公因子6,再由各行减去第一行化为上三角形行列式.D4321r r r r +++311113111131111163111131111316666= 141312r r r r r r --- .4820000200002011116=注:仿照上述方法可得到更一般的结果:.)]()1([1---+=n b a b n a abbbb b a b b b b a例13 计算.1111000000332211a a a a a a --- 解 根据行列式的特点,可将第1列加至第2列,然后将第2列加至第3列,再将第3列加至第4列,目的是使4D 中的零元素增多.4D12c c +1121000000033221a a a a a --23c c +1321000000003321a a a a -34c c +.44321000000000321321a a a a a a = 例14 计算.3610363234232dc b a c b a b a a dc b a cb a b a a dc b a cb a ba a d c baD ++++++++++++++++++=解 从第4行开始,后一行减前一行:Drr r r r r ---33412 .363023200c b a b a a c b a b a a c b a b a a d c b a +++++++++ 3423r r r r -- .20200ba a ab a a a cb a b a a dc b a +++++34r r -..0020004a ab a a cb a b a a dc ba =++++三、 行列式按行(列)展开(降阶法)1、行列式按一行(列)展开定义1 在n 阶行列式D 中,去掉元素ij a 所在的第i 行和第j 列后,余下的1-n 阶行列式,称为D 中元素ij a 的余子式, 记为ij M , 再记ij j i ij M A +-=)1(称ij A 为元素ij a 的代数余子式.引理(常用) 一个n 阶行列式D , 若其中第i 行所有元素除ij a 外都为零,则该行列式等于ij a 与它的代数余子式的乘积,即 ij ij A a D =定理1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和, 即),,,2,1(2211n i A a A a A a D inin i i i i =+++= 或 ).,,2,1(2211n j A a A a A a D njnj j j j j =+++=推论 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零, 即,,02211j i A a A a A a jn in j i j i ≠=+++或 .,02211j i A a A a A a nj ni j i j i ≠=+++2、用降价法计算行列式(常用)直接应用按行(列)展开法则计算行列式, 运算量较大, 尤其是高阶行列式. 因此, 计算行列式时,一般可先用行列式的性质将行列式中某一行(列)化为仅含有一个非零元素, 再按此行(列)展开,化为低一阶的行列式, 如此继续下去直到化为三阶或二阶行列式.3、拉普拉斯定理(一般少用)定义2 在n 阶行列式D 中,任意选定k 行k 列)1(n k ≤≤, 位于这些行和列交叉处的2k 个元素,按原来顺序构成一个k 阶行列式M , 称为D 的一个k 阶子式,划去这k 行k 列, 余下的元素按原来的顺序构成k n -阶行列式,在其前面冠以符号kkj j i i +++++- 11)1(,称为M 的代数余子式,其中k i i ,,1 为k 阶子式M 在D 中的行标,k j j j ,,,21 为M 在D 中的列标.注:行列式D 的k 阶子式与其代数余子式之间有类似行列式按行(列)展开的性质. 定理2 (拉普拉斯定理) 在n 阶行列式D 中, 任意取定k 行(列))11(-≤≤n k ,由这k 行(列)组成的所有k 阶子式与它们的代数余子式的乘积之和等于行列式D .例15求下列行列式的值:(1)214121312-- (2)120250723解 (1) 213142131)1(21122214121312-⨯+-⨯--⨯=--.272856)61(4)32()14(2-=--=--+--+-=(2) .3)45(312253120250723=-=⨯=例16计算行列式 .5021011321014321---=D解 521011321014321---=D 313422r r r r ++520711321014107----109211206527211417)1()1(2123223-=---⨯-=-++r r r r.241861926)1(122-=--=--⨯=+例17计算行列式 .0532004140013202527102135----=D解 53204140132021352)1(053200414001320252710213552-----=----=+D 53241413252---⋅-=1213)2(r r r r -++6627013210---.1080)1242(206627)2(10-=--=--⋅-=例18求证 21)1(11213112211132114321-+-=---n n x x xxx x x n xxn x n n.证 D3221143r r r r r r r r nn ----- 1111111111000011000111001111011110xxxx x x x ---- 11011100111101111111111)1(1xx x xn -----=+3221143r r r r r r r r nn ----- .)1(110000000100001000010000)1(211-++-=-----n n n x xxx x x x xx例19设,3142313150111253------=D D 中元素ij a 的余子式和代数余子式依次记作ij M 和ij A ,求14131211A A A A +++及41312111M M M M +++.解 注意到14131211A A A A +++等于用1,1,1,1代替D 的第1行所得的行列式,即314231315011111114131211-----=+++A A A A 3413r r r r +- 0011202250111111---11222511---=12c c + .4205201202511=-=--又按定义知,31413131501112514131211141312111-------=-+-=+++A A A A M M M M 34r r + 311501121)1(0010313150111251---=---- 312r r - .0311501501=-----例20 用拉普拉斯定理求行列式2100321003210032 的值. 解 按第一行和第二行展开..;2132132132=2132)1(21322121+++-⨯231)1(3123121+++-⨯+23)1(3233221+++-⨯+121+-=.11-=。

行列式的计算方法总结

行列式的计算方法总结

行列式的计算方法总结行列式是线性代数中的一个重要概念,它在矩阵计算和向量空间的研究中起着关键作用。

本文将总结一些行列式的计算方法,帮助读者更好地掌握这一概念。

一、定义与性质行列式是一个与方阵相对应的数值。

对于一个n阶方阵A,它的行列式记作det(A)或|A|。

行列式有以下几个重要性质:1. 互换行列式的两行(两列)会改变行列式的符号;2. 行列式的任意两行(两列)互换,行列式的值不变;3. 行列式的某一行(某一列)元素乘以一个非零数,等于用这个非零数乘以行列式;4. 行列式有可加性,即若将某一行(某一列)的各元素分成两部分,则行列式等于这两部分行列式的和。

二、按行展开法按行展开法是计算行列式的一种常用方法。

对于一个n阶方阵A,按第i行展开,即将第i行元素与其代数余子式相乘再求和,可得行列式的值。

假设A是一个3阶方阵,可以按第1行展开计算:det(A) = a11A11 + a12A12 + a13A13其中,A11、A12、A13分别为元素a11、a12、a13对应的代数余子式,它们的计算方法是去掉对应元素所在的行列后,计算剩余矩阵的行列式。

按行展开法适用于任意阶数的方阵,但随着方阵阶数的增加,计算工作量也呈指数级增长。

因此,在实际应用中,需要在节约计算资源和时间之间进行权衡。

三、性质运算法则根据行列式的性质,可以借助一些特殊的运算法则来简化计算过程。

1. 方阵的转置:对于一个n阶方阵A,有det(A) = det(A^T)。

即方阵的转置不影响行列式的值。

2. 方阵的上下三角形式:行列式的值等于对角线上元素的乘积。

如果一个方阵的上(下)三角元素都是零,那么它的行列式值为零。

3. 方阵的倍增法则:将方阵的某一行(某一列)的所有元素乘以一个常数k,它的行列式也乘以k。

这个法则可以用来简化计算,通过线性变换将某一行(某一列)的数值变为整数。

四、克莱姆法则克莱姆法则是一种计算方程组的的方法,它利用了方阵的行列式的性质。

论文 浅谈行列式的计算方法

论文   浅谈行列式的计算方法

浅析行列式的计算方法刘欣(数学科学学院,2007(4)班,07211448)[摘 要]行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要.本文先阐述行列式的基本性质,然后介绍几种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法. [关键词]行列式 加边法 递推公式法行列式是线性代数中的一个基本工具.无论是高等数学领域里的高深理论,还是现实生活里的实际问题,都或多或少的与行列式有直接或间接的联系,所以本文针对几种行列式的结构特点归纳了行列式计算的常用计算方法,并以实例加以说明.一、 按照行列式的性质将行列式化成上三角(下三角或反三角)法运用行列式的性质是计算行列式的一个重要途径,大多数行列式的计算都依赖于行列式的性质,将行列式化成上三角(下三角或反三角)的形式,再根据行列式的定义来计算行列式.行列式的性质告诉了我们该如何求行列式,而一切的行列式都可以根据以上性质来进行初等行变换(列变换),变成阶梯形(上三角)的行列式,再根据定义计算即可. 其计算步骤可归纳如下:(1)看行列式的行和(列和),如果行列和相等,则均加到某一列(行) (2)有公因子的提出公因子.(3)进行初等行变换(列变换)化成上三角(下三角或反三角)的行列式. (4)由行列式的定义进行计算.由以上四步,计算一般行列式都简洁多了.例1 计算行列式3214214314324321.解 显而易见,该行列式的行和相等,知32102140143043203214214314324321=1112220311*******321121411431432110-----==例2 计算n 阶行列式ab bb a b b b a D n=.解 ()[]a b bab b b n a D n1111-+=()[]ba b a b bb n a ---+=0011()[]1)(1---+=n b a b n a .二、 行列式的乘法原理法行列式的乘法原理:对任意两个同阶矩阵A ,B ,都有B A AB ⨯=,大家都知道,对于矩阵的乘法已是非常麻烦了.尤其是对高阶矩阵而言,其难度越明显.若按照常规办法,先计算AB 再计算AB ,显然过于烦琐.直接应用行列式的原理,就显得方便简洁.同样,如果D=AB ,其中A ,B 为同阶方阵,则B A AB ⨯=,从而达到优化计算的目的,应用行列式的乘法原理,主要是会将一个方阵拆成两个易计算行列式的同阶方阵,使矩阵的行列式计算简洁化.⋅=---=160444003110432110例3 设221;,2,1,0,-+=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅++=j i ij k n k k k S a k x x x S .),,3,2,1,(n j i ⋅⋅⋅⋅⋅⋅=求ij a .解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=---22121110)(n nn n n ij s s s s s s s s s a⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++++++++++=------222211111122111111n nn nn nn n n nn nnn n n n n x x x x x x x x x x x x x x x x n⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11221111121121111111n n nn n n n n n n x x x x x x x x x x x x,由行列式的乘法原理:ij a 11221111121121111111------⨯=n nnn n n nn n n x x x x x x x x x x x x∏∏<<--=j i i j ji i jx x x x)()(2)(∏<-=ji i j x x .三、 递推公式法无论是初等数学,还是高等数学,递推公式都有着非常广泛的运用.适用递推法计算行列式的行列式有以下规律:按照行列式的某一行(列)展开,会产生阶数比原行列式低但却与原行列式有着相同类型的新的行列式,运用递推法逐层降阶,最终将计算出原行列式的值.运用递推法求解行列式,一般会用到两个公式: (1)若1-=n n pD D 时,则11D p D n n -=(2)若2211--+=n n n D A D A D 时,则122111--+=n n n t A t A D (其中1A ,2A 为待定系数)由(1)的计算过程显然易见,而(2)中却出现了两个未知数,1t ,2t ,这两个未知数可以通过0212=--A x A x 的两根来确定.例4 计算n 阶行列式ba ab b a b a ab b a ab b a D n +++++=0000010001000.解 将n D 按第一行展开,得ba ab b a b a ab ab D b a D n n +++-+=-100000001)(1,于是得到一个递推关系21)(---+=n n n abD D b a D ,变形得)(111-----=n b n n b n D D a D D , 易知)()(4333221--------==n b n n b n n b n D D a D D a D D[]nn bn a b a b ab b a aD D a=+--+==---)()()(22122,所以1-+=n n n bD a D ,据此关系式在递推,有22121)(----++=++=n n nn n nn D b b aabD ab aDnn n nn n n nbab b aa D bb a b a a ++⋅⋅⋅++=++⋅⋅⋅++=-----1111221,如果我们将n D 的第一行元素看作b a +,1+0,…0+0,按第一行拆成两个行列式的和,那么可直接得到递推关系式如下:1-+=n nn bD aD ,同样可得nD 的值.例5 计算n 阶行列式accb ac b b aD n=,其中0,≠≠bc c b .解 将n D 的第一行视为c c c c a +++-0,,0,)( ,据行列式的性质,得accb ac b b c a cb a b bc a a ccb ac b b c c a D n+-=+++-=000因为11)()(---+-=n n n b a c D c a D (1)由b 与c 的对称性,不难得到11)()(---+-=n n n c a b D b a D (2) 所以联立(1),(2)解之,得[]n n n b a c c a b c b D )()()(1----=-用递推公式法计算行列式,逻辑性较强,其适用于计算那些有一定规律但却十分费解的行列式.四、 提取公因式法若行列式满足下列条件之一,则可以用此法: (1)有一行(列)元素相同,称为“a a a ,,, 型”.(2)有两行(列)的对应元素之和或差相等,称为“邻和型”. (3)各行(列)元素之和相等,称为“全和型”.满足条件(1)的行列式可直接提取公因式a 变为“1,1,…,1型”,于是应用按行(列)展开定理,使行列式降一阶.满足(2)和(3)的行列式都可以根据行列式的性质变为满足条件(1)的行列式,间接使用提取公因式法.例6 计算行列式nn n n a x a a a a x a a a a x D +++=212121.解 该行列式各行元素之和等于∑=+ni i a x 1,属于“全和型”,所以nn n ni i n a x a a a x a a a x D +++=∑= 2221111)(xx a a a x n ni i001)(21∑=+=)(11∑=-+=ni in a x xabb a abb a n ⨯=-1nb a )(22-=.五、 加边法计算行列式往往采用降阶的办法,但在一些特殊的行列式的计算上却要采用加边法。

行列式的计算方法及其应用

行列式的计算方法及其应用

行列式的计算方法及其应用行列式是线性代数中一种非常重要的概念,出现在许多领域中,如数学、物理、工程等。

它是一个方阵中各个元素的代数和,具有非常重要的几何和代数特征,因此也是线性代数学习的基础之一。

一、行列式的定义设有n阶行列式,写成如下形式:$$\Delta_n = \begin{vmatrix}a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\\vdots &\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & a_{n3} &\cdots & a_{nn}\\\end{vmatrix}$$其中,$a_{ij}$代表矩阵中第i行第j列的元素。

行列式的定义是这样的:设$A$为$n$阶方阵,$a_{i,j}$是$A$的元素,那么行列式$\Delta(A)$定义为:$$\Delta(A) =\sum_{\sigma}{(-1)^\sigma\cdot{a_{1,{\sigma(1)}}}\cdot{a_{2,{\sigma(2)}}}\cdots{a_ {n,{\sigma(n)}}}}$$其中,$\sum_{\sigma}$代表对所有$n$个元素的所有排列求和,$\sigma$是一个排列,并且$\sigma(k)$表示k在$\sigma$中的位置。

二、行列式的计算方法计算行列式有三种方法:直接定义法、代数余子式法和高斯消元法。

直接定义法随着矩阵维度的增加,计算量呈指数级增长,因此较少使用。

代数余子式法和高斯消元法可以将计算行列式的时间复杂度降低到$O(n^3)$,被广泛应用于实际问题中。

1. 直接定义法直接定义法是按照定义计算行列式的方法。

行列式的计算方法及应用

行列式的计算方法及应用

行列式计算方法解析1.化三角形法此种方法是利用行列式的性质把给定的行列式表示为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式。

三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的N 阶三角形行列式等于次对角线上元素之积且带符号。

例1计算N 阶行列式ab bb a b b b aD n=解()[]abb a bb b n a Dn1111-+=()[]ba b a b b b n a ---+=0011()()11n a n b a b -=+-⎡⎤⎣⎦-2.利用递推关系法所谓利用递推关系法,就是先建立同类型n 阶与n-1阶(或更低阶)行列式之间的关系——递推关系式,再利用递推关系求出原行列式的值。

例2 计算n 阶行列式n ab b ca b ccaD =,其中0,≠≠bc c b解 将n D 的第一列视为(a-c )+c,0+c,……,0+c,据行列式的性质,得0000n a c c b b a c b b c b b c a b a b c a b cca ca ccaD -+-+==++()()11n n n a c c a bD D --∴=-+- (1)由b 与c 的对称性,不难得到()()11n n n a b b a c D D --=-+- (2)联立(1),(2)解之,得()()()1n nn b c b c a c a b D -⎡⎤=-⎢⎥⎣⎦---例3 计算n 阶行列式00010001000000n a b ab a b ab a b a b ab a bD +++=++解 将n D 按第一行展开,得()11000000001n n ab a b a b ab a bab a bD D -+=+-++于是得到一个递推关系式 ()12n n n a b ab D D D --=+-,变形得()112n n n n b a b D D D D ----=- ,易知()()2312334n n n n n n b b b D D D D DD aa------=-=-()()()22212n n n b ab b a b a b D D aaa --⎡⎤==-==⎢⎥⎣⎦--++所以 1nn n b D D a -=+,据此关系式再递推,有()11222nn n n n n n bb b ba aa a D D D ----=++=++1122111n n n n n n n n b b a a a a b b a a b b D -----==++++=++++如果我们将 n D 的第一列元素看作a+b,1+0,……0+0,按第一列拆成两个行列式的和,那么可直接得到递推关系式1nn n b D D a -=+,同样可n D 的值。

浅谈行列式的计算方法

浅谈行列式的计算方法

浅谈行列式的计算方法行列式的计算是一个重要的问题,也是一个复杂的问题,对于低阶行列式,我们可以直接利用定义、公式、性质等方法进行计算.但对于一般的n 阶行列式计算就比较困难,所以研究n 阶行列式的计算方法是十分必要的.本文通过例子介绍了行列式的计算方法.一、 特殊行列式法1.定义法当行列式中含零较多时,定义法可行. 例1 计算n 级行列式αββαβαβα000000000000 =D .解:按定义,易见121,2,,,n j j j n ===或1212,3,,,1n n j j j n j -====. 得1(1)n n n D αβ-=+-2.三角形行列式法利用行列式性质,把行列式化成三角形行列式.nna a a a a a 000n222n 11211=nn n n a a a a a a21221211000112233nn a a a a =例2 计算n 级行列式1231131211231n n x n D x n x +=++解: 将n D 的第(2,3,,)i i n =行减去第一行化为三角形行列式,则12301000020001(1)(2)(1)n n x D x x n x x x n -=--+=---+3.爪形行列式法例3 计算行列式 01211220000n nna b b b c a D c a c a = ()0,1,2,i n ia ≠=解: 将D 的第i +1列乘以(iia c -)都加到第1列()n i ,2,1=,得 101212000000ni i ni inbc a b b b a a D a a -=∑==011()nni i i i i ib c a a a ==-∑∏4. 范德蒙行列式法123222212311111231111nn n n n n na a a a D a a a a a a a a ----= 1()i j j i na a ≤<≤=-∏例4 计算n 阶行列式222212333331231231111n nnn n n nx x x x D x x x x x x x x =解:利用D 构造一个1n +阶范德蒙行列式12222212121111()n nnn n nnx x x x g x x x x x x x x x =多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,展开后x 的系数为1)1(--n ][12132-++n n x x x x x x ∏≤<≤-ni j j ix x1)(,两者应相等,故]23121n n D x x x x x x -⎡=++⎣∏≤<≤-ni j j ix x1)(当021≠n x x x 时,还可写成12n D x x x =)11(1nx x ++ ∏≤<≤-ni j j ix x1)(二、 连加法若行列式中某列(行)加上其余各列(行),使该列(行)元素均相等或出现较多零,从而简化行列式计算的方法称为连加法.例5 计算n 阶行列式xa a a x a D aax=解:它的特点是各列元素之和为x a n +-)1(,因此把各行都加到第一行,然后第一行再提出x a n +-)1(,得[(1)]D n a x =-+xa aaxa111将第一行乘a -分别加到其余各行,化为三角形行列式,则[(1)]D n a x =-+a x a x --111 =[(1)]n a x -+1)(--n a x三、 加边法为了计算行列式,有时需要将它的阶数放大,使升阶后的行列式易于计算,从而求出原行列式.这种方法叫加边法,也叫升阶法.例6 计算n 阶行列式123na x x x xa x x D xx a x xxxa = 解:加边得1210nx x x a x x D x a x xxa = 第一行乘以(-1)分别加到其余各行,化为爪形行列式1211001001n x x xa x D a xax--=----=xa x a x a xx x x a x n ni i ----+∑= 0000000001211=)11(1∑=-+ni i xa x ∏=-ni ix a1)(=)1(1∑=-+ni i x a x∏=-n i i x a 1)(四、递推法这是解决具有对称关系的行列式的计算方法.例7 计算n 阶行列式 n D =βαβααββααββα++++1000010001000解:按第一行展开,得n D =21)(---+n n D D αββα即 n D )(211----=-n n n D D D αβα由此递推 ,即得 n D nn D βα=--1 ①由于n D 中α与β对称,则有 n D nn D αβ=--1 ②当αβ≠时,由①,②得 n D =βαβα--++11n n当βα=时,n D =1-+n nD ββ=)(21--++n n nD ββββ=222-+n nD ββ==11)1(D n n n -+-ββ=nn β)1(+五、 数学归纳法利用数学归纳法进行行列式计算,主要利用不完全归纳法寻找行列式的猜想值,再进行证明.例8 计算2n 阶行列式 n D 2=nnnnd c d c b a b a1111解:当1n =时, 2D 1111a b c d ==1111c b d a - 当2n =时, 4D 22111122a b a b c d c d ==))((22221111c b d a c b d a --于是猜想 n D 2=∏=-ni i i iic b da 1)(下面用数学归纳法证明 (1) 当1n =时,显然成立(2) 假设当n k =时成立,即k D 2=∏=-ki i i iic b da 1)(当1n k =+时,将)1(2+k D 按第一列展开,易得)1(2+k D =)(1111++++-k k k k c b d a k D 2 由归纳假设k D 2=∏=-ki i i i i c b d a 1)( , 故得)1(2+k D =∏+=-11)(k i i i i i c b d a所以猜想成立.即n D 2=∏=-ni i i iic b da 1)(例9 计算n 级行列式αααααcos 211cos 200000cos 210001cos 210001cos=n D解: 易见 αα2cos ,cos 21==D D ,于是猜想 αn D n cos =. 下面对阶数n 用第二数学归纳法证明.1=n 时,结论成立.假设对阶数小于n 时,结论成立. 将n D 按第n 行展开,有ααααααααααααααααααn n n n n n n D D D D n n n n n n n n cos ])1cos[(sin )1sin(cos )1cos()1cos(cos 2)2cos()1()1cos(cos 2)1(cos 2110000cos 200000cos 210001cos 210001cos )1(cos 21221211121=+-=-----⋅=--+-⋅=-+⋅=⋅-+⋅=------- 所以猜想成立.六、拆行(列)法(难)一般地,当行列式的一行(列)的元素能有规律地表示成两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例10 计算n 阶行列式xy y y zx y y D zzx y zzzx= 解:①当z y =时,易用加边法求得D =1)(--n y x ][y n x )1(-+ ②当z y ≠时,将D 的第n 列每个元写成两数之和 0+=y y ,)(y x y x -+=则xy y z x y D zzy=+y x zz zy x z y y x -0 =1()n M x y D -+-其中xy y z x y M zzy=, 将M 最后一行乘以(-1)分别加到其余各行.再按第n 列展开得 1()n M y x z -=- , 于是有n D =1)(--n D y x +1)(--n z x y ①由于D 中,y z 的地位对称,于是有n D =1)(--n D z x +1)(--n y x z ②由①,②得n D =z y y x z z x y nn ----)()(七、因式分解法如果行列式D 是某个变数x 的多项式)(x f ,可对行列式施行某些变换,求出)(x f 的互不相同的一次因式,设这些一次因式的乘积为)(x g ,则)()(x cg x f D ==,再比较)(x f 与)(x g 的某一项的系数,求出c 值.例11 计算行列式1231131211231n n x n D x n x +=++解: 注意1=x 时,,0=n D 所以,(1)|n x D -. 同理)1(,,2---n x x 均为n D 的因式 又i x -与)(j i j x ≠-各不相同,所以n D n x x x |)1()2)(1(+---但n D 的展开式中最高次项1-n x的系数为1,所以 )1()2)(1(+---=n x x x D n行列式的计算方法除上述外还有许多种,如辅助行列式法,析因子法等,只不过上述方法常见常用而已.。

行列式的计算方法和技巧大总结

行列式的计算方法和技巧大总结

行列式的计算方法和技巧大总结行列式是线性代数中的一个重要概念,用于表示线性方程组的性质和解的情况。

在计算行列式时,有许多方法和技巧可以帮助我们简化计算过程。

以下是行列式计算方法和技巧的大总结。

1. 二阶矩阵行列式:对于一个2x2的矩阵A,行列式的计算方法是ad-bc,其中a、b、c和d分别为矩阵A的元素。

2. 三阶矩阵行列式:对于一个3x3的矩阵A,行列式的计算方法是a(ei-fh) - b(di-fg) + c(dh-eg),其中a、b、c、d、e、f、g和h分别为矩阵A的元素。

3.行变换法:行变换是一种常用的简化计算行列式的方法。

行变换可以通过交换行、倍乘行和行加减法三种操作来实现。

当进行行变换时,行列式的值保持不变。

4.行列式的性质:行列式有以下性质:a)交换行,行列式的值相反;b)两行交换位置,行列式的值相反;c)同行相等,行列式的值为0;d)其中一行乘以一个数k,行列式的值变为原来的k倍;e)两行相加(减),行列式的值保持不变。

5.定义展开法:行列式的定义展开法可以通过选取任意一行或一列对行列式进行展开。

展开定理是一种递归的方法,它将一个复杂的行列式分解成若干个简单的行列式,从而简化计算过程。

6.三角矩阵行列式:对于一个上(下)三角矩阵,它的行列式等于对角线上的元素相乘。

这是因为在上(下)三角矩阵中,除了对角线上的元素外,其他元素都为0,因此它们的乘积为0。

7.克拉默法则:克拉默法则适用于解线性方程组时的行列式计算。

克拉默法则使用行列式来计算方程组的解。

具体来说,对于n个方程n个未知数的线性方程组,如果系数矩阵的行列式不为零,那么该方程组有唯一解,可以通过求解该方程组的克拉默行列式来得到方程组的解。

8.外积法则:在向量代数中,我们可以使用外积法则计算向量的叉乘。

对于两个三维向量a和b,它们的叉乘可以表示为a×b,它的模就是行列式的值。

具体计算方法是:ijka1a2a3b1b2b3其中,i、j和k是单位向量,a1、a2、a3和b1、b2、b3分别为向量a和向量b的坐标。

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结行列式是线性代数中的重要概念,广泛应用于各个领域,如线性方程组的求解、线性变换的判断等。

在实际应用中,计算行列式是一个必不可少的环节。

本文将对行列式的计算技巧和方法进行总结,以便读者能够更加轻松地解决行列式相关问题。

一、行列式的定义行列式是一个数。

行列式的定义通常有多种不同的形式,其中最常见的是按照矩阵的形式定义的。

对于一个n阶方阵A=(a_ij),其行列式记作det(A),可以通过以下方式计算:det(A) = a_11 * C_11 + a_12 * C_12 + ... + (-1)^(n+1) * a_1n * C_1n其中,C_ij是指元素a_ij的代数余子式。

二、行列式的计算方法1.二阶行列式的计算对于2阶方阵A=(a_11,a_12;a_21,a_22),其行列式可以直接通过以下公式计算:det(A) = a_11 * a_22 - a_12 * a_212.三阶行列式的计算对于3阶方阵A=(a_11,a_12,a_13;a_21,a_22,a_23;a_31,a_32,a_33),可以通过Sarrus法则来计算行列式:det(A) = a_11*a_22*a_33 + a_12*a_23*a_31 + a_13*a_21*a_32 -a_13*a_22*a_31 - a_12*a_21*a_33 - a_11*a_23*a_323.高阶行列式的计算对于n(n>3)阶方阵A,一般采用高斯消元法将矩阵转化为上三角矩阵,然后再计算行列式的值。

具体操作如下:a)对第一列进行第二行、第三行、..、第n行的倍加,使得第一列除了第一个元素外的其他元素都为0。

b)接着在第二列中对第三行、第四行、..、第n行的倍加,使得第二列除了第二个元素外的其他元素都为0。

c)重复以上步骤,直到将矩阵转化为上三角矩阵。

d)上三角矩阵的行列式等于主对角线上的元素相乘。

4.行列式的性质行列式具有以下性质,可以在计算中灵活运用:a)行互换或列互换,行列式的值不变,其符号变为相反数。

浅谈行列式的计算

浅谈行列式的计算

浅谈行列式的计算作者:彭丽娟来源:《时代经贸》2013年第11期【摘要】行列式是整个线性代数的基础,是求解线性方程组,求逆矩阵以及矩阵特征值的基础,但行列式的计算方法很多、综合性强、通常都是用性质、展开式等方法进行计算的,在进行四阶以上的行列式的计算时,这些方法过于繁琐。

本文通过研究了几种特殊的计算方法,以此简化行列式的计算。

【关键词】行列式;计算方法;行列式的性质;范德蒙行列式;三角形行列式法行列式的计算是线性代数的一个基本内容,它在求解线性方程组,逆矩阵,矩阵的特征值中占有很重要的地位,由于计算的技巧性较强,学生很难掌握,这一直是学生头疼的地方。

本文就结合自己在线性代数教学实践的基础上对行列式的计算方法进行概括和提炼。

下面首先从行列式的定义和性质入手,然后针对每个行列式的特点,给出相对应的具体的解题方法。

一、相关定义及其行列式的性质:定义:1.二阶行列式2.三阶行列式3.n阶行列式行列式性质:性质1 将行列式转置,行列式的值不变,即。

性质2 交换两行或者两列,行列式的值变号。

性质3 用数k乘某行或者某列,等于以数k乘此行列式。

推论1 如果行列式某行或者某列所有元素有公因子,则公因子可以提到行列式外面。

推论2 如果行列式有两行或有两列的对应元素成比例,则此行列式的值等于0。

性质4 若将行列式的某一行或者列的每一个元素都可以写成两个数的和,则此行列式就可以写成两个行列式的和,这两个行列式分别以这两个数为所在行或者列对应位置的元素,其它位置的元素与行列式相同。

性质5 将行列式的某一行或者列得所有元素同乘以数k后加于另一行或者列对应位置的元素上,行列式的值不变。

二、行列式计算方法举例关于行列式计算的问题,本文用特殊行列式法(定义法,化三角行列式,爪形行列式,范德蒙行列式),降阶法,升阶(加边)法,分项(拆开),递推公式法,计算行列式的值的五种方法来计算行列式。

下面一一介绍行列式计算的一些技巧:1.特殊行列式法(1)定义法(2)三角形行列式法利用行列式性质,把行列式化成三角形行列式,化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法,这是计算行列式的基本方法重要方法之一。

谈谈行列式的计算方法

谈谈行列式的计算方法

谈谈行列式的计算方法行列式是线性代数中的一个重要概念,常用于解线性方程组、计算逆矩阵以及求多项式的根等问题。

本文将详细介绍行列式的计算方法。

一、行列式的定义与性质:行列式是一个数,可以用于判断矩阵是否可逆、求解线性方程组的唯一解以及计算矩阵的逆等问题。

设A为一个n阶方阵,其行列式记作,A,或det(A)。

1.一阶行列式:对于一个1×1的矩阵[a],其行列式定义为,a,=a。

2.二阶行列式:对于一个2×2的矩阵[a b; c d],其行列式定义为,A,=ad-bc。

3.三阶行列式:对于一个3×3的矩阵[a₁b₁c₁;a₂b₂c₂;a₃b₃c₃],其行列式定义为,A,=a₁b₂c₃+b₁c₂a₃+c₁a₂b₃-c₁b₂a₃-a₁c₂b₃-b₁a₂c₃。

性质:-行列式与其转置矩阵行列式相同:,A,=,A^T。

-交换矩阵的两行(列)行列式改变符号,交换三行(列)行列式不变。

-一行(列)中有等于零的元素,行列式等于零。

二、行列式的计算方法:1.根据定义计算:根据行列式的定义,可以直接按照计算规则进行计算,但随着阶数的增加,计算量会呈指数级增长,因此不适用于高阶行列式的计算。

2.代数余子式法(拉普拉斯展开):利用代数余子式法可以将计算一个行列式的问题转化为计算多个较小行列式的和的问题。

对于一个n阶矩阵A,定义它的第i行第j列元素为aᵢⱼ,那么对于任意一个aᵢⱼ,可以定义它的代数余子式M(i,j)为将行i和列j从A中删去后的(n-1)阶行列式,即A的余子矩阵的行列式。

代数余子式M(i,j)用(-1)^(i+j)乘以A的代数余子式C(i,j)得到。

通过拉普拉斯展开定理,行列式等于它的任意一行(列)元素与其对应的代数余子式乘积的和,即:A,=a₁ⱼM(1,j)+a₂ⱼM(2,j)+...+aⱼⱼM(n,j)(其中j为任意列号)3.三角行列式法:对于三角矩阵(上三角或下三角),行列式等于对角线上元素的乘积,即a₁₁a₂₂...aⱼⱼ。

行列式的计算方法和解析论文

行列式的计算方法和解析论文

行列式的计算方法和解析论文行列式是线性代数中重要的概念,其在矩阵理论、向量空间等方面有广泛的应用。

行列式的计算方法包括拉普拉斯展开、按行(列)展开、递推法等。

行列式的计算方法在不同的场景下有不同的适用性,下面将详细介绍行列式的计算方法及其应用,并从一篇经典的解析论文中探讨行列式在数学研究中的作用。

一、行列式的计算方法1.拉普拉斯展开法:拉普拉斯展开法是求行列式的一种常用的计算方法。

假设A是一个n阶方阵,其中元素用a_ij表示,对于任意一个a_ij,可以通过展开该元素所在的行和列的其他元素来计算行列式的值。

拉普拉斯展开法的基本原理是递归地求解子行列式的值,直到得到一个1阶行列式。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过拉普拉斯展开法按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(a_22*a_33-a_23*a_32)-a_12*(a_21*a_33-a_23*a_31)+a_13*(a_21*a_32-a_22*a_31)其中,A_11,表示去掉第一行第一列元素的2阶子行列式,以此类推。

2.按行(列)展开法:按行(列)展开法是求行列式的另一种计算方法。

通过选择其中一行(列),将行列式扩展为若干个较小阶的子行列式,最终递归地计算行列式的值。

按行展开和按列展开所得到的计算表达式相同,只是展开的方式不同而已。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(-1)^(1+1)*(a_22*a_33-a_23*a_32)-a_12*(-1)^(1+2)*(a_21*a_33-a_23*a_31)+a_13*(-1)^(1+3)*(a_21*a_32-a_22*a_31)其中,(-1)^(i+j)是代数余子式。

关于行列式的计算方法

关于行列式的计算方法

关于行列式的计算方法行列式是线性代数中非常重要的一个概念,它在矩阵和线性方程组的求解中都有广泛的应用。

本文将介绍关于行列式的定义、计算方法及其性质,以及一些常用的行列式计算技巧。

一、行列式的定义行列式是一个方阵(只有行数和列数相等的矩阵才有行列式)所具有的一个确定的数值。

对于一个n阶的方阵,其行列式记作det(A),其中A 表示矩阵。

行列式的计算方法主要有三种:代数余子式法、按行(列)展开法和逆序数法。

二、代数余子式法对于一个n阶方阵A,它的第i行第j列元素的代数余子式表示为Mij,定义为:将A的第i行和第j列元素划去,然后找出剩余元素所形成的n-1阶方阵的行列式。

即:Mij = det(Aij)其中Aij表示由第i行和第j列元素删去后所得到的(n-1)阶方阵。

根据代数余子式的定义,行列式的计算可以通过以下公式进行求解:det(A) = a11M11 - a12M12 + a13M13 - ... + (-1)^(i+j)aijMij + ...其中a11,a12,a13,...是第一行元素,M11,M12,M13,...是它们对应的代数余子式。

三、按行(列)展开法按行(列)展开法是行列式计算中最常用的一种方法。

对于一个n阶方阵A,选择其中任意一行或者一列,然后按照一定规律展开计算。

以按第一行展开为例,按照以下规律进行展开:det(A) = a11C11 + a12C12 + a13C13 + ... + a1nC1n其中Cij表示第一行第j列元素aij的余子式,定义为:将A的第一行和第j列元素划去,然后找出剩余元素所形成的(n-1)阶方阵的行列式。

将Cij的计算公式中的行列式再按行(列)展开,可以得到更小阶的余子式,直到降阶为2阶方阵时,余子式的计算直接是两个元素之差。

四、逆序数法逆序数法是行列式计算中的另一种方法。

对于一个n阶方阵A,按照以下步骤进行计算:1.首先,将方阵A展开至最小的单位(1阶方阵)。

行列式的定义计算方法

行列式的定义计算方法

行列式的定义计算方法行列式是线性代数中的一个重要概念,它是一个数学工具,用来描述矩阵的性质和特征。

在实际应用中,行列式的计算方法是非常重要的,因此我们有必要深入了解行列式的定义和计算方法。

首先,让我们来了解一下行列式的定义。

行列式是一个数学对象,它是一个关于矩阵的函数,用来描述矩阵的性质和特征。

对于一个n阶方阵A,它的行列式记作det(A)或|A|,其中n表示方阵的阶数。

行列式的计算方法可以通过不同的方式来进行,接下来我们将逐步介绍行列式的计算方法。

首先,我们来介绍行列式的定义式。

对于一个2阶方阵A,它的行列式可以通过如下公式来计算:|A| = a11a22 a12a21。

其中a11、a12、a21、a22分别表示方阵A的元素。

这个公式非常简单,只需要将方阵A的元素代入公式中进行计算即可得到行列式的值。

对于一个3阶方阵A,它的行列式可以通过如下公式来计算:|A| = a11a22a33 + a12a23a31 + a13a21a32 a13a22a31a12a21a33 a11a23a32。

这个公式看起来比较复杂,但其实也是通过元素的排列组合来计算行列式的值。

对于更高阶的方阵,我们可以使用类似的方法来计算行列式,但是公式会更加复杂。

除了通过定义式来计算行列式,我们还可以使用其他方法来简化计算过程,比如利用行列式的性质和特点来进行计算。

例如,行列式具有性质,如果矩阵A的某一行(列)的元素都是0,那么这个行列式的值就是0。

我们可以利用这个性质来简化行列式的计算。

此外,我们还可以通过矩阵的初等变换来简化行列式的计算。

初等变换包括行交换、行倍加和行倍乘三种操作,通过这些操作我们可以将矩阵变换成简化形式,从而简化行列式的计算过程。

总的来说,行列式的计算方法是多样的,我们可以根据具体的情况选择合适的方法来进行计算。

在实际应用中,我们需要灵活运用这些方法,以便高效地计算行列式的值。

通过本文的介绍,相信大家对行列式的定义和计算方法有了更深入的了解。

浅论行列式及其计算方法

浅论行列式及其计算方法

浅论行列式及其计算方法摘要:本文主要介绍了行列式的概念——行列式是n 阶矩阵的一个特征量。

行列式的性质——行列式和它的转置行列式相等等一系列性质。

行列式的计算方法——化三角法,定义法等。

克莱姆法则。

以及和矩阵相关的一些问题。

关键词:行列式的概念 行列式的性质 行列式的计算 矩阵 克莱姆法则 正文1行列式的概念1.1 二阶、三阶行列式行列式是代数式的简要记号,如1112112212212122a a a a a a a a =- (1.1) 111213212223112233122331132132313233a a a a a a a a a a a a a a a a a a =++ 322311332112312213a a a a a a a a a --- (1.2)分别是二阶、三阶行列式,两式的左端表示行列式的记号,右端是行列式的全面展开式。

行列式的元素有两个下标,分别称为行标和列标。

如32a 表示该元素位于第3行、第2列。

二阶、三阶行列式的全面展开可以用对角线法。

【例】5152(1)31332-=⨯--⨯=;2222()a ba b a b b a=--=+-;250133416---2361(1)0(5)(3)4=⨯⨯+⨯-⨯+-⨯-⨯034-⨯⨯(1)(3)21(5)6--⨯-⨯-⨯-⨯(36)(0)(60)(0)(6)(30)120=++----=。

1.2 n 阶行列式的全面展开用2n 个元素可以构成n 阶行列式nnn n nna a a a a a a a a 212222111211。

行列式有时简记为j i a 。

一阶行列式a 就是a 。

高于4阶的行列式不能用对角线法展开。

参照二阶、三阶行列式的展开式(1.1)、(1.2),规定n 阶行列式的全面展开按如下方式进行:(1)展开式的每一项都是不同行、不同列的n 个元素的乘积。

(2)取自不同行、不同列的n 个元素要出现所有不同的搭配。

行列式的计算范文

行列式的计算范文

行列式的计算范文行列式是一个非常重要的线性代数概念,它在矩阵理论和线性方程组的求解中都有广泛应用。

在本文中,我将向您详细介绍行列式的定义、性质以及计算方法。

一、行列式的定义行列式是矩阵的一个标量值,它由矩阵的元素组成,并且是一个多项式形式。

假设有一个 n 阶矩阵 A,它的行列式记作,A,或 det(A)。

二、二阶行列式的计算方法二阶行列式可以直接计算,其定义为:A,=a11*a22-a12*a21其中a11、a12、a21、a22是矩阵A的元素。

三、三阶及以上行列式的计算方法对于三阶及以上的行列式,可以通过构造和化简进行计算。

以下是行列式计算的一般步骤:1.利用行列式的定义构造一个n阶行列式。

2.通过代数运算对行列式进行化简,使得行列式的一些元素为零。

3.对行列式进行展开,得到一个多项式。

4.对多项式进行进一步的化简,直到得到具体的数值。

例如,对于3阶行列式:A,=a11*a22*a33+a12*a23*a31+a13*a21*a32-a13*a22*a31-a11*a23*a32-a12*a21*a33四、行列式的性质行列式具有一些重要的性质,包括:1.互换行列式的两行(或两列)会改变行列式的符号。

2.将行列式的其中一行(或其中一列)乘以一个常数,等于将该常数乘以行列式。

3.两行(或两列)互换并不会改变行列式的值。

4.若行列式有两行(或两列)完全相同,则行列式等于零。

5.行列式中其中一行(或其中一列)的元素是两个多项式的和,则行列式等于这两个多项式的行列式之和。

以上是行列式的一些重要性质,根据这些性质,可以简化行列式的计算过程。

五、应用举例1.行列式在线性方程组的求解中起到重要作用。

对于一个n阶方阵A 和一个n维列向量B,如果,A,不等于零,则方程组有唯一解。

2.行列式可以用于计算矩阵的逆。

如果矩阵A的行列式,A,不等于零,则可以通过下式计算其逆矩阵:A^-1 = (1 / ,A,) * adj(A)其中 adj(A) 是 A 的伴随矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅论行列式及其计算方法摘要:本文主要介绍了行列式的概念——行列式是n 阶矩阵的一个特征量。

行列式的性质——行列式和它的转置行列式相等等一系列性质。

行列式的计算方法——化三角法,定义法等。

克莱姆法则。

以及和矩阵相关的一些问题。

关键词:行列式的概念 行列式的性质 行列式的计算 矩阵 克莱姆法则 正文1行列式的概念1.1 二阶、三阶行列式行列式是代数式的简要记号,如1112112212212122a a a a a a a a =- (1.1) 111213212223112233122331132132313233a a a a a a a a a a a a a a a a a a =++ 322311332112312213a a a a a a a a a --- (1.2)分别是二阶、三阶行列式,两式的左端表示行列式的记号,右端是行列式的全面展开式。

行列式的元素有两个下标,分别称为行标和列标。

如32a 表示该元素位于第3行、第2列。

二阶、三阶行列式的全面展开可以用对角线法。

【例】5152(1)31332-=⨯--⨯=;2222()a ba b a b b a=--=+-;250133416---2361(1)0(5)(3)4=⨯⨯+⨯-⨯+-⨯-⨯034-⨯⨯(1)(3)21(5)6--⨯-⨯-⨯-⨯(36)(0)(60)(0)(6)(30)120=++----=。

1.2 n 阶行列式的全面展开用2n 个元素可以构成n 阶行列式nnn n nna a a a a a a a a 212222111211。

行列式有时简记为j i a 。

一阶行列式a 就是a 。

高于4阶的行列式不能用对角线法展开。

参照二阶、三阶行列式的展开式(1.1)、(1.2),规定n 阶行列式的全面展开按如下方式进行:(1)展开式的每一项都是不同行、不同列的n 个元素的乘积。

(2)取自不同行、不同列的n 个元素要出现所有不同的搭配。

若将行标顺序安排,则每一项对应列标的一个排列。

如332112a a a 对应的排列是2 1 3。

所有不同的搭配,对应所有不同的列标排列,n 个自然数共有!n 种排列,因而全面展开式共有!n 项。

(3)各项的前置符号,偶排列取正,奇排列取负。

所谓偶(奇)排列是指该排列的逆序数为偶(奇)数。

比如排列4 3 1 2中,4后面有比它小的3、1、2(算作3个逆序),3后面有1、2,合计共有5个逆序,是奇排列。

全面展开式的!n 项中有半数的前置符号为正,另一半为负。

通过全面展开来计算行列式显然是很复杂的,应该考虑简便的方法。

2行列式的性质将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 。

即 =D nnn n n n a a a a a a a a a 212222111211 ,=T D nnn nn n a a a a a a a a a 212221212111实际书写时,“横着看,竖着写”,便可得到转置行列式。

性质1 行列式转置后,其值不变,即D D T=。

【例】 543692781567498321=证 在行列式D 中,每一行取一个元素,这n 个元素位于不同的列,它们的乘积添上前置符号构成了D 的展开式中的一项。

该项中的元素也可以理解为取自不同的列,并位于不同的行,而这正是TD 的展开式中的一项。

可见D 和TD 的展开式中各项都对应相同,因此它们相等。

这条性质告诉我们,行列式的行具有某一性质,它们的列也具有相同的性质。

性质2 交换行列式的两行(列),行列式的值变号。

【例】 498567321567498321-=证 交换行列式的两行,相当于在展开式每一项所对应的列标排列中,交换了两个数字的位置。

这两个数字之间的逆序发生了变化,而这两个数字和其它数字之间的逆序变化是成对发生的,因此整个排列的逆序数变化量为奇数,从而排列的奇偶性发生改变。

即行列式展开式中的每一项都改变了符号,于是行列式的值变号。

性质3 行列式的某一行(列)元素有公因子,可以提到行列式的外面。

【例】 567498321567498321k k k k= 证 行列式的某一行有公因子k 时,因为行列式展开式的每一项中都出现了该行的一个元素,所以每一项都有了公因子k ,当然可以提取出来。

这条性质也可以反向运用:行列式乘数k ,等于把k 乘到行列式的某一行(列)上去。

推论 以下三种行列式的值为零。

(1)行列式有某一行(列)的元素全为零。

(2)行列式有两行(列)完全相同。

(3)行列式有两行(列)的元素成比例。

证 其中第一种行列式有公因子0;第二种行列式交换两行(列)后,其值不变,同时又改变符号,即D D -=,故0=D ;第三种行列式提取公因子后,即第二种行列式。

性质4 一个行列式可以拆分成两个行列式的和,这两个行列式的某对应行(列)上相同位置的元素之和,正好等于原行列式的对应位置的元素,而其它行(列)的元素都与原行列式相同。

【例】=4321432143214321c c c c b b b b a a a a +-4321432143213102c c c c b b b b a a a a 4321432143211421c c c c b b b b a a a a - 证 因为在行列式展开式的各项中,可以把来自于某行(列)的元素拆分成两数之和,再利用分配律将每一项都拆成两项之和,由此组合成两个行列式,而且行列式中除被拆分的元素外,其它元素都未变。

这条性质给出了行列式的拆分规则。

若反向运用,则成了行列式的合并规则。

拆分与合并规则特别强调:除某一对应行(列)外,其余元素都相同。

性质5 把行列式的某一行(列)的各元素乘以同一数后加到另一行(列)的对应元素上去,行列式的值不变。

证 做了这种变换后的行列式可以拆分成两个行列式,一个是原行列式,另一个是推论中的第三种行列式(其值为零)。

3.1定义法n 级行列式111212122212n nn n nna a a a a a a a a ()1的值等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a ()2的代数和,这里12n j j j 是1,2,,n 的一个排列,每一项()2都是按下列规则带有符2n j 是偶排列时2n j 是奇排列时一定义可以写成()2121212221121n nnn j n j nj j j j n n nna a a a a a a a a =-∑,这里12nj j j ∑表示对所有n 级排列求和.例 1. 计算 2336的值.解:原式26333=⨯-⨯= 但是对于含有元素较多的高阶行列式可用定义法计算则较为复杂,一般仅对2级3级的行列式采用。

而对与高阶行列式中0元素较多的行列式则可以采用.因行列式的项1212n j j nj a a a 中有一因数为零时,该项的值为零,故只需求出全部为非零乘积的1212n j j nj a a a 项相加即可。

通常是从行列式的一般项行入手,将行标按自然数排列,讨论列标12n j j j 的所有可能的非零取值,并且要注意每一项1212n j j nj a a a 的符号。

例 2. 计算12345阶行列式12345A =1234500000000123440020001000解:有定义法知:只需求出A 中所有的非零项相加即可。

D 中的第一行的非零元素只有1,12344a ,因而112344j =,同理2123441234512343112345j j j ===于是12n j j j 在可能取的数值中,12n j j j 只能组成一个12345个元素的排列:1234412343 … 2 1 12345 .而此排列的逆序数为τ=123432123442)1(⨯=-n n 为偶数,故 ()2009,20091,20082007,22008,11A a a a a τ-=()1345123443211)12343212344(⨯⨯⨯⨯⨯-=⨯!12345=3.2化三角法运用行列式的8个性质将 化为上(下)三角形或者对焦三角形此时行列式值即比较明显求出.这是计算三阶及三阶以上行列式值的基本方法和主要方法.特别对于和型行列式可用主对角线元素化为上(下)三角形计算.对于和型行列式可用副对角元素化为上(下)三角形行列式计算. 例 3 .()251319137315528710251319137191372513:315531552871028710191371913701325170132517026342600168026332400171019137013251700168300023131613833123------------=------------==-------=-⎛⎫=--⋅⋅=⋅⋅= ⎪⎝⎭解例 4. 求解4阶行列式11111200D 10301004=111111110002341110010022:D=2342411010010*******00144---⋅⋅=解11124(1)234=2=⨯----3.3.降阶法利用行列式的性质对行列式中存在某行(列)0元素较多的行列式进行行(列)展开.容易留下少些非0部分将行列式降阶一般也只对非特殊阶数不高的行列式计算如下. 亦可利用降阶定理对高阶的行列式求值. 例5. 计算行列式1310310112104121-=D解:131310112101020-=D =131121102-=031023102-- =3123-- =-7降阶定理:设A B C D ⎛⎫⎪⎝⎭是方阵,且A 可逆,则1A B A D CA B C D -=- 证明:111211120000E A B A B CAE C D D CA B E A B A B CA E C D D CA B----⎛⎫⎛⎫⎛⎫⨯= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭∴=--例 6. 计算()1b b bc ddd c d d c ddλλλλ≠其中解: 原式= ()()111d d c d d c b b b b c d dc λλλ-⎛⎫⎛⎫⎪ ⎪⎪ ⎪⨯-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭=,cb d cb d cb d cb cbd cbd cb d cbcbλλλ---------然后从第2列起,后面的每一列依次减去第一列,可得: 原式=0000cb dd d dcb dd cb dd cbdλλλλλλλ----------=()()21000n d n cbd cb dd cbdλλλ+-------=()()()121n d n d n cb λλ--+---⎡⎤⎣⎦4克莱姆法则含有n 个未知量、n 个方程的线性方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1.7) 未知量的所有系数构成的行列式=D nnn n nna a a a a a a a a212222111211称为方程组(1.7)的系数行列式。

相关文档
最新文档