高一数学必修1_指数函数及其性质_ppt
合集下载
高一上学期数学人教A版必修第一册4.2指数函数(指数函数的概念+指数函数的图像和性质)课件
第4章 指数函数与对数函数
4.2 指数函数
导问:创设情境,引入主题
给我一个支点,我能够撬动地球。
----阿基米德
给我一张足够大的纸,
我能够上月球,你信吗?
给你一张纸,你能折几次呢?
导问:创设情境,引入主题
如果你有一张面积无限、强度无
限,厚度为0.01毫米的纸,如果
折叠能力无限,那么多次对折,
纸张的厚度会变成多少呢?
导问:创设情境,引入主题
导问:创设情境,引入主题
问题1:一张薄薄的纸,却折叠出了惊天的气势,蕴含着神秘的数学知识。
若把纸张的初始厚度设为1,经过x次对折后, 纸张厚度y与对折次数x之间
的关系是什么?
对折次数
纸张厚度
每折叠一次,得到的纸张的厚度都约
0
1
1
为前一次的2倍.也就是每次的厚度相
比于折叠之前都增长了100%,我们称
这节课我们都学了什么?
R
对称性
定义域
定义
值域
指
数
函
数
奇偶性
图
性
象
质
非奇非偶函数
单调性
过定点(0,1)
在第一象限内“底大图高”
感谢凝听!
2
3
···
这个100%为增长率。
···
增长率为常数的变化方式,我们称为指数增长。
导问:创设情境,引入主题
问题2:《庄子·天下篇》 中写道: “一尺之棰,日取其半,万世不竭。“
设原长度为1,设
取x天之后,剩
1
长度都变为前一天的
2
一半.也就是每天的长
3
度相比于前一天都衰
下y,请完成表格:
···
4.2 指数函数
导问:创设情境,引入主题
给我一个支点,我能够撬动地球。
----阿基米德
给我一张足够大的纸,
我能够上月球,你信吗?
给你一张纸,你能折几次呢?
导问:创设情境,引入主题
如果你有一张面积无限、强度无
限,厚度为0.01毫米的纸,如果
折叠能力无限,那么多次对折,
纸张的厚度会变成多少呢?
导问:创设情境,引入主题
导问:创设情境,引入主题
问题1:一张薄薄的纸,却折叠出了惊天的气势,蕴含着神秘的数学知识。
若把纸张的初始厚度设为1,经过x次对折后, 纸张厚度y与对折次数x之间
的关系是什么?
对折次数
纸张厚度
每折叠一次,得到的纸张的厚度都约
0
1
1
为前一次的2倍.也就是每次的厚度相
比于折叠之前都增长了100%,我们称
这节课我们都学了什么?
R
对称性
定义域
定义
值域
指
数
函
数
奇偶性
图
性
象
质
非奇非偶函数
单调性
过定点(0,1)
在第一象限内“底大图高”
感谢凝听!
2
3
···
这个100%为增长率。
···
增长率为常数的变化方式,我们称为指数增长。
导问:创设情境,引入主题
问题2:《庄子·天下篇》 中写道: “一尺之棰,日取其半,万世不竭。“
设原长度为1,设
取x天之后,剩
1
长度都变为前一天的
2
一半.也就是每天的长
3
度相比于前一天都衰
下y,请完成表格:
···
人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
高一数学指数函数ppt课件
与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
高一数学必修1_指数函数及其性质_ppt
1 0.8 0.6 0.4 0.2
-0.5 -0.2 -0.4
fx = 0.9x
0.5
1
1.5
2
2.5
3
3.5
4
例.函数 y=ax-2+2(a>0 且 a≠1)的图像必经过点( )
A.(0,1)
B.(1,1)
C.(2,2)
D.(2,3)
例、截止到1999年底,我国人口约13亿。如果今后 能将人口年平均增长率控制在1%,那么经过20年后, 我国人口数最多为多少(精确到亿)?
C.0<d<c<1<b<a
D.0<c<d<1<a<b
应用
比较下列各题中两个值的大小:
73; 21 01.87220..55.1,,10.7.833;0.22; 0.800..11, 0.800..22 ; 31.6 43 1.87110...663,,20.39113...661; 4 1.700..33 , 0.933..11; 1.3方 ((012.))7当当法,底底5数数: 相不231同同,,.5指指13数数00不相..22同同,时时1, ,.利利3用用00指指..77数数,函函数数的图23单像调的性变1133来化判规断律.来判断.
x … -3 -2 -1.5 -1 -0.5
y (1 )x … 8 4 2.8 2 1.4 2
0 0.5 1 1.5 2
3…
1 0.71 0.5 0.35 0.25 0.13 …
88 77 66 55 44 33 22 1
--66
--44
--22
22
44
66
8
7
6
y
-0.5 -0.2 -0.4
fx = 0.9x
0.5
1
1.5
2
2.5
3
3.5
4
例.函数 y=ax-2+2(a>0 且 a≠1)的图像必经过点( )
A.(0,1)
B.(1,1)
C.(2,2)
D.(2,3)
例、截止到1999年底,我国人口约13亿。如果今后 能将人口年平均增长率控制在1%,那么经过20年后, 我国人口数最多为多少(精确到亿)?
C.0<d<c<1<b<a
D.0<c<d<1<a<b
应用
比较下列各题中两个值的大小:
73; 21 01.87220..55.1,,10.7.833;0.22; 0.800..11, 0.800..22 ; 31.6 43 1.87110...663,,20.39113...661; 4 1.700..33 , 0.933..11; 1.3方 ((012.))7当当法,底底5数数: 相不231同同,,.5指指13数数00不相..22同同,时时1, ,.利利3用用00指指..77数数,函函数数的图23单像调的性变1133来化判规断律.来判断.
x … -3 -2 -1.5 -1 -0.5
y (1 )x … 8 4 2.8 2 1.4 2
0 0.5 1 1.5 2
3…
1 0.71 0.5 0.35 0.25 0.13 …
88 77 66 55 44 33 22 1
--66
--44
--22
22
44
66
8
7
6
y
课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版
②利用指数函数y=au的单调性求得此函数的值域.
2.求形如y=A·a2x+B·ax+C类函数的值域一般用换元法,设ax=t(t>0)再转
化为二次函数求值域.
反思与感悟
解析答案
跟踪训练 4 (1)函数 f(x)= 1-2x+ x1+3的定义域为( A )
A.(-3,0]
B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
(2)对称变换:函数y=a-x的图象与函数y=ax的图象关于y轴对称;
函数y=-a-x的图象与函数y=ax的图象关于原点对称;
当x<0时,_________
反思与感悟
解析答案
跟踪训练3 (1)函数y=|2x-2|的图象是( B )
解析 y=2x-2的图象是由y=2x的图象向下平移2个单位长度得到的, 故y=|2x-2|的图象是由y=2x-2的图象在x轴上方的部分不变,下方部分 对折到x轴的上方得到的.
过点_(_0_,__1_)_,即x=_0_时,y=_1_ 若下向列下 各平函移数φ中(φ,>是0)个指单数位函,数则的得是到( y=)ax-φ的图象. 性质 跟一踪般训 地练,3函数(1y)=函a数x y=|2x-2|的图叫象做是指(数函数) ,其中x是自变量,函数的定义域是R.
当x>0时,y>1; 纠(3)错ax心的得系数凡是换1. 元时应立刻写出新元范围,这样才能避免失误.
解析 ∵x2-1≥-1,
解 ∵y=2-x与y=2x的图象关于y轴对称,
④中,y=x3的底为自变量,指数为常数,故④不是指数函数.
其中,指数函数第的个二数章是( 2.1) .2 指数函数及其性质
(3)ax的系数是1.
例2 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是( )
高中数学必修一《指数函数及其性质》PPT课件
由题可得m2—m+1=1,解得m=0或1满足题意。
②若函数f(x)=(2a-1)x是指数函数,则实数a 的取值范围是什么?
1
由题可得2a-1>0且2a-1≠1, 解得a> 2 且a≠1满足题意。
③已知指数函数f(x)的图象经过点(2,9), 则f(0)、 f(1)、 f(-2)的值分别为多少?
设这f种(x)求=a解x(析a式>0方且法a≠叫1)做,由待f(定2)=系9得数a法2=。9,解得a=3
例2.在同一直角坐标系中,观察函数 y 2 x , y 3x ,
y
(1)x 2
,
y
(1)x 3
y
的图象。
y
1
x
yy
3
3x
y
1 2
x
4
3
y 2x
2
1
-3 -2 -1
01
23
x
-1
指数函数图象的性质
y=ax 图象
a >1
y
0<a<1
y
定义域 值域 定点
o
x
ox
(--∞,+∞) (左右无限延伸)
-1 2 2、若函数 y (k 2)a x 2 b(a 0,且a 1) 是指数函数,则 k
,b
。
3、若指数函数的图象经过点 (4, 1 ), 则 f (3)
8
16
(3,4) 4、函数 y a x3 3(a 0,且a 1) 的图象恒经过定点
。
课堂小结
1.说说指数函数的概念。 2.记住指数函数图象和性质。
特别提醒:
(1) 有些函数貌似指数函数,实际上却不是, 如 y 3x 1
②若函数f(x)=(2a-1)x是指数函数,则实数a 的取值范围是什么?
1
由题可得2a-1>0且2a-1≠1, 解得a> 2 且a≠1满足题意。
③已知指数函数f(x)的图象经过点(2,9), 则f(0)、 f(1)、 f(-2)的值分别为多少?
设这f种(x)求=a解x(析a式>0方且法a≠叫1)做,由待f(定2)=系9得数a法2=。9,解得a=3
例2.在同一直角坐标系中,观察函数 y 2 x , y 3x ,
y
(1)x 2
,
y
(1)x 3
y
的图象。
y
1
x
yy
3
3x
y
1 2
x
4
3
y 2x
2
1
-3 -2 -1
01
23
x
-1
指数函数图象的性质
y=ax 图象
a >1
y
0<a<1
y
定义域 值域 定点
o
x
ox
(--∞,+∞) (左右无限延伸)
-1 2 2、若函数 y (k 2)a x 2 b(a 0,且a 1) 是指数函数,则 k
,b
。
3、若指数函数的图象经过点 (4, 1 ), 则 f (3)
8
16
(3,4) 4、函数 y a x3 3(a 0,且a 1) 的图象恒经过定点
。
课堂小结
1.说说指数函数的概念。 2.记住指数函数图象和性质。
特别提醒:
(1) 有些函数貌似指数函数,实际上却不是, 如 y 3x 1
《指数函数》PPT课件
商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。
。
工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随
人教版高中数学必修1(A版) 2.1.2指数函数及其性质 PPT课件
本题评述:(1)指数函数图象的应用; (2)数形结合思想的体现。
例2:说明函数 y 2 x1 与 y 2 x 的图象的关系,并画出它们 的示意图。 分析:做此题之前,请大家一起回顾初中接触的二次函数平移 问题。 评述:此题目在于让大家了解图象的平移交换,并能逐步掌握 平移规律。
课堂小结
指 数 函 数 及 其 性 质
创设情境,形成概念
故事:
有人要走完一段路,第一次走这段路 的一半,每次走余下路程的一半,请问最 后能达到终点吗?
终点
创设情境,形成概念
《庄子.天下篇》中 写道:“一尺之锤,日取一半,万世不竭”。 请写出取x次后,木锤的剩留量y与x的函数关系式。
引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个…… 1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式 是: x
y 10
x
y 2x
x
y 3
1 x y 1 2 y
x
y 10x y 2 x
3
y 3x
(0,1)
相同点
1)图象都在x轴的上方; 2)图象都经过(0,1)点。
相异点
当底数大于1时,图象是上升的;底 数小于1时,图象是下降的。
指数函数的性质
x
ax
例1下列函数中,哪些是指数函数:
y 3x2y42xy 3 1
x
y2
2 x
x
y2
x
y 2
例2 在同一坐标系中作出下列函数的图象, 并观察其异同:
1)y= 2
x
1 2)y= 2
x
画出 y = 2
x
y=2
x
x,
1 y=( 2
人教高中数学必修一2.1.2指数函数及其性质(课件)
思考:这两个例子的式子有什么共同特征?
底数是常数,指数是变量
1. 指数函数的定义
系数为1
y=1 ·ax
自变量
常数
定义:一般地,函数 y ax (a 0, a 1, x R) 叫做指数函数
注意:
(1) 规定a 0, a 1
x 0 a x恒等于零
a 0x 0 无意义
a 0 无意义
…...
2 一种放射性物质不断衰变为其他物质,每经过一年 剩留的质量约是本来的84%.求出这种物质的剩留 量随时间(单位:年)变化的函数关系.
设最初的质量为1,时间变量用x表示,剩留量用y表示
则
经过1年, y 184% 0.841 经过2年, y 1 0.84 0.84 0.842
归纳出:经过x年, y 0.84 x
• (1)
1
y 3x
• (2) y 5 x1
• (3)函数 y a2x3 3 恒过点 ( 3 , 4)
2
小结归纳:
• 通过本节课的学习,你学到了哪些知识? • 你又掌握了哪些数学思想方法? • 你能将指数函数的学习与实际生活联系起
来吗?
布置作业:习题2-1A组第5、6、7、8题
A先生从今天开始每天给你10万元,而 你承担如下任务:第一天给A先生1元, 第二天给A先生2元,,第三天给A先生4 元,第四天给A先生8元,依次下去…那 么,A先生要和你签定15天的合同,你同 意吗?又A先生要和你签定30天的合同, 你能签这个合同吗?
(8) y (2a 1)x (a 1 , a 1) 2
答案:(1)(6)(8)是指数函数
2:函数y (a2 3a 3) ax是指数函数,则a 2
3:已知y=f(x)是指数函数,且f(2)=4,求函数
底数是常数,指数是变量
1. 指数函数的定义
系数为1
y=1 ·ax
自变量
常数
定义:一般地,函数 y ax (a 0, a 1, x R) 叫做指数函数
注意:
(1) 规定a 0, a 1
x 0 a x恒等于零
a 0x 0 无意义
a 0 无意义
…...
2 一种放射性物质不断衰变为其他物质,每经过一年 剩留的质量约是本来的84%.求出这种物质的剩留 量随时间(单位:年)变化的函数关系.
设最初的质量为1,时间变量用x表示,剩留量用y表示
则
经过1年, y 184% 0.841 经过2年, y 1 0.84 0.84 0.842
归纳出:经过x年, y 0.84 x
• (1)
1
y 3x
• (2) y 5 x1
• (3)函数 y a2x3 3 恒过点 ( 3 , 4)
2
小结归纳:
• 通过本节课的学习,你学到了哪些知识? • 你又掌握了哪些数学思想方法? • 你能将指数函数的学习与实际生活联系起
来吗?
布置作业:习题2-1A组第5、6、7、8题
A先生从今天开始每天给你10万元,而 你承担如下任务:第一天给A先生1元, 第二天给A先生2元,,第三天给A先生4 元,第四天给A先生8元,依次下去…那 么,A先生要和你签定15天的合同,你同 意吗?又A先生要和你签定30天的合同, 你能签这个合同吗?
(8) y (2a 1)x (a 1 , a 1) 2
答案:(1)(6)(8)是指数函数
2:函数y (a2 3a 3) ax是指数函数,则a 2
3:已知y=f(x)是指数函数,且f(2)=4,求函数
指数函数及其性质PPT课件
05 指数函数与其他函数的比 较
与线性函数的比较
线性函数
y=kx+b,表示的是一种 匀速变化,增加或减少的 趋势。
指数函数
y=a^x,表示的是一种爆 炸式增长或衰减的趋势。
比较
线性函数的变化速率是恒 定的,而指数函数的变化 速率会随着x的增大或减小 而快速增大或减小。
与幂函数的比较
01
幂函数
y=x^n,当n>0时,表示的是一种增长趋势;当n<0时,表示的是一种
包括单调性、奇偶性、周期性等。
指数函数的应用
在数学、物理、工程等领域都有广泛的应用。
练习与思考
练习题
根据指数函数的性质,判断下列哪些是指数函数,哪些不是,并说明理由。
思考题
指数函数在生活和生产中有哪些应用?请举例说明。
THANKS FOR WATCHING
感谢您的观看
指数函数的运算性质
01
基本运算性质
02
$a^m times a^n = a^{m+n}$
03
$(a^m)^n = a^{mn}$
04
$frac{a^m}{a^n} = a^{m-n}$
05
复合运算性质:如果 $u(x) = b^x$ 且 $b > 0$ 且 $b neq 1$,则 $y = a^{u(x)}$ 也是指数函数。
04
05
指数函数的值域为 $(0, +infty)$。
指数函数的图像
当 $a > 1$ 时,图像位于第一象限和第四象限 ;
绘制方法:选择一个 $a$ 值,例如 $y = 2^x$ 或 $y = frac{1}{2}^x$,然后使用计算器或数学软件绘制图
数学人教A版必修第一册4.2.2指数函数的图像与性质课件
轴且与轴无交点.
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
探
究
新
知
思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
探
究
新
知
思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,
高一数学必修一《指数函数及其性质》PPT课件
进行求解,也可以将对数方程转化为指数方程进行求解。
03
指数函数与对数函数在图像上的关系
指数函数的图像与对数函数的图像关于直线y=x对称。
02
指数函数运算规则
同底数指数运算法则
乘法法则
$a^m times a^n = a^{m+n}$,其中$a$是底数,$m$和$n$ 是指数。
除法法则
$a^m div a^n = a^{m-n}$,其中$a neq 0$。
分组让学生讨论指数函数的性质,如定义域、值域、 单调性、奇偶性等,并让他们尝试通过图像观察验证 这些性质。
问题导入
互动问答
通过具体案例,如“细菌繁殖”、“投资回报”等, 让学生应用指数函数的知识进行分析和计算,加深对
指数函数的理解。
案例分析
老师提出问题,学生抢答或点名回答,问题可以涉及 指数函数的计算、性质应用等,以检验学生的学习效 果。
放射性物质衰变模型
放射性物质衰变模型
01
N(t) = N0 * e^(-λt),其中N(t)表示t时刻的放射性物质数量,
N0表示初始放射性物质数量,λ表示衰变常数。
指数函数在放射性物质衰变模型中的应用
02
通过指数函数可以描述放射性物质数量随时间减少的规律。
放射性物质衰变模型的意义
03
对于核能利用、环境保护等领域具有重要的指导意义。
单调性
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函 数在R上是减函数。
指数函数与对数函数关系
01
指数函数与对数函数的互化关系
指数函数y=a^x(a>0且a≠1)与对数函数y=log_a x(a>0且a≠1)是
4.2 指数函数-(新教材人教版必修第一册)(70张PPT)
类型三:指数函数的图象及应用
典例示范
【例 5】在如图所示的图象中,二次函数 y=ax2+bx+c 与函数
y=bax 的图象可能是(
)
A 解析:根据图中二次函数的图象可知 c=0, ∴二次函数 y=ax2+bx.∵ba>0, ∴二次函数的对称轴 x=-2ba<0,排除 B,D. 对于 A,C,都有 0<ba<1,∴-21<-2ba<0,C 不符合.故选 A.
定向训练
1.不等式 a2x-7>a4x-1(0<a<1)的解集为_(_-__3_,__+__∞_)__.
2.比较下列各组数的大小.
(1)1.52.5 和 1.53.2;
(2)0.6-1.2 和 0.6-1.5;
(3)1.70.2 和 0.92.1;
(4)a1.1 与 a0.3(a>0,且 a≠1).
类题通法
1.利用指数型函数的单调性解不等式,需将不等式两边都凑成 底数相同的指数式.
2.解不等式 af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调 性,要养成判断底数取值范围的习惯.若底数不确定,就需进行分
类讨论,即 af(x)>ag(x)⇔ffxx> <ggxx, ,a0> <1a, <1.
数学(人教版)
必修第一册
第四章 指数函数与对数函数
4.2 指数函数
第一 阶段
课前自学质疑
必备知识 深化预习
1.指数函数的概念 一般地,函数_y_=__a_x_ (a>0,且 a≠1)叫做指数函数,其中__指__数__x_ 是自变量,定义域是 R.
2.指数函数 y=ax(a>0,且 a≠1)的图象和性质
【例 2】指数函数 f(x)=(2b-3)(1-a)x,若 f(2)=9,求 a,b 的 值.
高中数学人教A版必修1第一章指数函数及其性质公开课PPT全文课件
(1)有些看起来是指数函数,而实际上不是指 数函数;
如: y a x k(a 0 且 a 1 ,k N )
(2)有些看起来不是指数函数,而实际上是指 数函数.
如: yax(a0且 a1)
(1)x(a0且a1) a
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
问题2:已知函数的解析式,得到函数 的图象一般用什么方法?
列表 描点 连线成图
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
高中数学【人教A版必修】1第一章指 数函数 及其性 质公开 课PPT全 文课件 【完美 课件】
2.函数的图像
y = 2x x -1 0 1 2 y 0.5 1 2 4
指数函数及其性质
一、情景引入
引例1:某种细胞分裂时,由1个分裂成2个,2 个分裂成4个…… 1个这样的细胞分裂x次后, 得到的细胞个数与x的关系式是什么?
分裂
次数 1次 2次 3次 4次
x次
……
y 2x xN*
细胞
总数
21
22
23
24
2x
引例2: “一尺之锤,日取其半,万世不竭”出自《庄子》 长度为1的尺子第一次截去它的一半,第二次截 去剩余部分的一半,第三次截去第二次剩余部分 的一半,依次截下去,问截的次数与剩下的尺子 长度之间的关系.
随堂练习:下列函数中,哪些是指数函数?
(1) y 3x (2) y 3x
你答对了吗?
(3) y x 3 (4) y 3x1
我也不是
总结:指数函数严格限定 y a x (a 0, 且a1) 这一结构,稍微有点出入,就会导致非指数函数的出现。
指数函数的图像及性质 PPT
面积是多少?(用y 表示面积)
知新益能
1.指数函数定义 一般地,函数y=ax(a>0,且a≠1)叫做__指__数__函__数___,其
中__x_为自变量,函数的定义域为_R__.
注意:
1.底数为常数,指数为自变量 2.三个“1”
小试牛刀
下列哪些是指数函数?
(1)y= 2x (3)y=(-2)x (5)y= 2-x (7)y= 2x+1
(2)y= x2 (4)y=-2x (6)y= 22x (8)y= 2x+1
新知 2
一下指数函数的图象。
新知提炼
2.指数函数y=ax(a>0,且a≠1)的图象和性质
a>1
0<a<1
图 象
定义域为_R_;值域为__(0_,__+__∞__) __
性 质
根据指数函数的概念,求函数解析式. 例1 指数函数 f ( x) 的图象过点 (3 , 27),求 f (0) , f (1) , f (2) 的值
解:设 f ( x) a x (a 0且a 1)
因为函数 f (x) 过点( 3 , 27 ) 所以有 f (3) 27 ,即a3 27 解得 a 3, 于是 f (x) 3x
过定点__(0_,_1_) ,即_x_=__0_时,__y=__1_ 若x>0,则__y_>__1_; 若x>0,则_0_<__y_<__1_; 若x<0,则_0_<__y_<__1_ 若x<0,则_y_>__1__
在R上是__增__函_数___ 在R上是__减__函__数__
考点突破
指数函数的概念
所以 f (0) 30 1 , f (1) 3 ,
f (2) 32 1 9
知新益能
1.指数函数定义 一般地,函数y=ax(a>0,且a≠1)叫做__指__数__函__数___,其
中__x_为自变量,函数的定义域为_R__.
注意:
1.底数为常数,指数为自变量 2.三个“1”
小试牛刀
下列哪些是指数函数?
(1)y= 2x (3)y=(-2)x (5)y= 2-x (7)y= 2x+1
(2)y= x2 (4)y=-2x (6)y= 22x (8)y= 2x+1
新知 2
一下指数函数的图象。
新知提炼
2.指数函数y=ax(a>0,且a≠1)的图象和性质
a>1
0<a<1
图 象
定义域为_R_;值域为__(0_,__+__∞__) __
性 质
根据指数函数的概念,求函数解析式. 例1 指数函数 f ( x) 的图象过点 (3 , 27),求 f (0) , f (1) , f (2) 的值
解:设 f ( x) a x (a 0且a 1)
因为函数 f (x) 过点( 3 , 27 ) 所以有 f (3) 27 ,即a3 27 解得 a 3, 于是 f (x) 3x
过定点__(0_,_1_) ,即_x_=__0_时,__y=__1_ 若x>0,则__y_>__1_; 若x>0,则_0_<__y_<__1_; 若x<0,则_0_<__y_<__1_ 若x<0,则_y_>__1__
在R上是__增__函_数___ 在R上是__减__函__数__
考点突破
指数函数的概念
所以 f (0) 30 1 , f (1) 3 ,
f (2) 32 1 9
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
x
问题 引入
问题2、《庄子· 天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
研究
截取 次数
1次2次3次4次x次1 x y( ) 2
木棰 剩余
1 尺 2
1 尺 4
1 尺 8
1 尺 16
1 ( )x 尺 2
提炼
1 x y2 y ( ) 2 设问1:以上两个函数有何共同特征 ?
0.7
1 30.2 0.2
1 1 3 3
单调性,必须要明确所给的两个值是哪个指数 函数的两个函数值;对不同底数幂的大小的比 较可以与中间值进行比较.
练习
1.下列函数中一定是指数函数的是( )
A. y 2 x1
C. y 2
x
B. y x 3 x D. y 3 2
0.7 0.9 0.8 a 0 . 8 , b 0 . 8 , c 1 . 2 , 2.已知
3.1
解:根据指数函数的性质,得:
1.70.3 1.70 1 且 0.93.1 0.90 1
从而有
3.2
3.2
1.7
0.3
0.9
3.1
3
3
2.8
2.8
2.6
2.6
2.4
2.4
2.2
2.2
2
2
1.8
fx = 1.7x
1.8
fx = 0.9x
1.6
1.6
1.4
1.4
1.2
1.2
y
4 2 1
问:如果已知 的图像 x 1 能否直接画出 f ( x) 的图像
8
f ( x) a x
a
7
fx =
x 2
x
-2 -1 0 1
6
1
2
0.5
0.25
两个函数图像关于y轴对称
5 4 3
y
0.25 0.5 1 2 4
gx = 0.5x
P1点
2
P点
2
1
-6
-4
-2
2
则 a, b, c 的大小关系是____________________.
点滴收获: 1. 本节课学习了那些知识? 指数函数的定义 指数函数的图象及性质
2.如何记忆函数的性质?
数形结合的方法记忆 y
y 2x
2
3.记住两个基本图形:
1 x y( ) 2
1
y=1
2
-2
-1
o1
x
6
-0.5
应用
0.1 0.2 ( 2) 0.8 < 0.8
解: ∵函数 y 0.8x在R上是减函数, 而指数-0.1>-0.2 ∴
0.8
0.1
0.8
0.2
1.8
fx = 0.8x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-1.5
-1
-0.5
0.5
1
应用
(3)1.7 0.3
0.9
§2.1.2指数函数及其性质(1)
乌海市第十中学
王祥
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂 次数 1次 2次 3次 4次 x次
……
y2
x
细胞 总数
2个 21
4个 22
8个 23
16个 24
a 2 3a 3 1 a 1或a 2
又 a 0且a 1
a 2
三、深入探究,加深理解
y
引导学生 观察图像,发 现图像与底的 关系
1 y 2
x
1 y 3
x
在第一象 限沿箭头 方向底增 y 3x y 大 2x
底互为倒数的 两个函数图像 关于y轴对称
3
31.8 4 1.7
1.6 0.3 1.6
, , 2.3 0.9
1.6 3.1 1.6
4 1.7 ;
0.3 0.3
, 0.9
3.1 3.1
;
2 0.7 2 0.7 1.5 ,1.3 , 1.3 ,5 3 3( 1)(2)利用指数函数的单调性 分析: .
0.7
1 30.2 0.2
1 1 3 3
(3) 找中间量是关键.
应用
(1)1.7 2.5 <
1.7
3
解: ∵函数 y 1.7 x在R上是增函数, 而指数2.5<3. ∴
1.7 2.5< 1.7 3
5 4.5 4 3.5 3
fx = 1.7x
2.5 2 1.5 1
0.5
-2
-1
1
2
3
4
5
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
-2
-1.5
-1
-0.5 -0.2
0.5
1
1.5
2
2.5
-0.5 -0.2
0.5
1
1.5
2
2.5
3
3.5
4
-0.4
-0.4
应用
比较下列各题中两个值的大小:
3
2.5 30.2 0.1 0.1 0.2 0.2 0.1 2.5 3 1 1.7 ,1.7 ; 2 0.8 , 0.8 ; 0.8 , 0.8 ; 7 ; 2
1 0
1 y 3
x
1 y 2
x
x
课 堂 提 升
判断 a, b, c, d 大小 解:
c d 1 a b 0
应用
2、比较下列各题中两个值的大小:
3 1.6
2.5 30.2 0.1 0.1 0.2 0.2 0.1 2.5 3 1 1.7 ,1.7 ; 2 0.8 , 0.8 ; 0.8 , 0.8 ; 7 ; 2
(4)在R上是减函数
(4)在R上是增函数
例题
已知指数函数 f x a a 0, a 1 的图像经过点 2,9 , 求 f 0、f 1、f 3 的值.
x
分析:指数函数的图象经过点 3,9 , 有 f 2 9 , 2 即 a 9 ,解得 a 3 a 0且 a 1 x 于是有 f x 3
④
1 ( a 且 a 1 ) 2
⑦
y 5
2 x 2 1
y (4)
x
yx
x
x
⑧
y 10
设问2:得到函数的图象一般用什么方法?
列表、描点、连线作图 在同一直角坐标系画出 y 2 的图象, 并思考:两个函数的图象有什么关系?
x
1 y , 2
x
x
-2 -1 0
4
6
认识
归纳
指数函数在底数 0 a 1 及 情况下的图象和性质:
a 1 这两种 a 1
y y=ax
(a>1)
0 a 1
y
y=ax
(0<a<1)
图 象
0
(0,1)
y=1 y=1
(0,1)
x
0
x
(1)定义域:R 性 质 (2)值域:(0,+∞) (3)过点(0,1)即x=0时,y=1
x
(1)均为幂的形式; (2)底数是一个正的常数; (3) 自变量x在指数位置.
定义 :
一般地,函数y a x (a 0, a 1)叫做指数 函数,其中x是自变量,函数的定义域是 R。
例题
(口答)判断下列函数是不是指 数函数,为什么?
①
yx
2
√⑤
⑥
x
y
x
√②
y 8
x
√ ③ y (2a 1)
所以:
0 1
想一 想
思考:确定一个指数函数 需要什么条件?
3
1 f 0 3 1, f 1 3 3, f 3 3 . 27
2 x y ( a 3 a 3 ) a 变式练习:1、函数 是指数函
数,则有a的取值范围是? 解:
y (a 2 3a 3)a x 是指数函数
3
1.6
31.8 4 1.7
1.6 0.3 1.6
, , 2.3 0.9
1.6 3.1 1.6
4 1.7 ;
0.3 0.3
, 0.9
3.1 3.1
;
方法总结: 2 0.7 2 0.7 1.5 ,1.3 , 1.3 ,5 3 3 对同底数幂大小的比较用的是指数函数的