曲柄连杆机构受力分析

合集下载

04 曲柄连杆机构的 受力分析

04  曲柄连杆机构的      受力分析

图4-1 活塞组合 1—活塞 2—活塞销 3—挡圈 4—气环 5—油环 4 曲柄连杆机构的受力分析4.1 曲柄连杆机构的组成摩托车发动机的曲柄连杆机构由活塞、活塞环、活塞销、连杆、大小头轴承、曲轴等组成。

4.1.1 活塞组合活塞组合由活塞、活塞环、活塞销、活塞销挡圈等组成,见图4-1。

它的功能是:1)承受气缸中可燃混合气燃烧产生的压力,并将作用力通过活塞销传给连杆,带动曲轴旋转。

2)活塞顶部与气缸盖组成燃烧室。

3)通过安装在其上的活塞环,保证气缸的密封性。

4.1.1.1 四行程发动机活塞四行程发动机活塞的顶面呈平面形,且对应于进、排气门之处加工有凹坑,以避免在运动中与进、排气门相干涉,在顶面有“IN ”标记表示进气侧,保证活塞安装时的方向。

在活塞槽部通常设有两道气环、一道油环。

在油环槽周围,设置有许多回油小孔,安装油环后,能刮去缸壁上多余的润滑油(见图4-2)。

有些活塞在油环槽下再加工一个较浅的环形槽,其上也加工回油小孔。

四行程发动机活塞所有环槽上都无需有定位销孔,原因是四行程发动机的气缸上无气口,活塞环运动时不会产生干涉现象。

为适应活塞在高温、高压、高速条件下工作,活塞通常多采用质量轻、导热性好的高铝合金来制造。

有些活塞表面还进行镀锡处理,以提高其磨合性。

4.1.1.2 活塞环 四行程活塞裙部较短,并无需做有缺口,因四行程发动机的进、排气道没有气缸盖上。

但有时为避免与曲轴相撞,并为增加裙部弹性及减小活塞质量,在受力不图4-2 四行程汽油机的活塞1—气门坑 2—回油孔 3—裙部缺口大的沿销孔方向两侧,从底部各开一个浅而长的圆弧形缺口。

活塞环的功能是:1)密封气缸与活塞间的间隙,防止漏气。

2)刮去气缸壁上多余的机油。

3)把活塞的热量传递给气缸体散发。

活塞环应具有良好的密封性,在高温、高压、和高速的工况下,具有良好的弹度、弹性和耐磨性;此外,并应有良好的磨合性与加工性。

为适应这些要求,活塞环的材料多选用合金铸铁。

曲柄连杆机构的运动与受力分析讲解学习

曲柄连杆机构的运动与受力分析讲解学习

定义“曲拐当量质量”为:
则: Prqmqdr2
mqdmqx2mqbrb
如果曲拐的某一曲柄臂上设有平衡重,其质量为 m p ,而其质心
距曲轴轴线的距离为 p ,则平衡重的旋转惯性力为:
Prpmpp2r2mprp
定义“平衡重当量质量”为:
mpd
mp
p
r
(1-32)
则: Prpmpdr2 (1-33)
(2)活塞速度:在0 ºCA~90 ºCA之间和 270 ºCA~360 ºCA之间,活塞速度各出现 一个正极值和负极值。 (3)活塞加速度:在上止点前后活塞加 速度是正值,方向是活塞下行的方向,往 复惯性力朝上;在下止点前后活塞加速度 是负值,方向是活塞上行的方向,往复惯 性力朝下。根据极值方法求解,可得:
1.2.2.2 单个曲拐的旋转惯性力
曲轴上曲柄不平衡部 分的质量分为两部分:
(1)曲柄销部分:
图1-10 单曲拐的旋转惯性力
Prxmqxr2 (1-28)
(r为曲柄半径)
(2)曲柄臂部分: Prbmqbb2 (1-29)
( b 为曲柄臂质心至曲轴轴线的垂直距离)
整个曲拐的旋转惯性力就是:
P rq P rx 2 P rb r2 m q x2 m qbrb
由式(1-3)知:
arc s i(n1-12)
极值: e arcsin角速度: l Nhomakorabead
dt
cos cos
cos 1 2 sin 2
1 (1-13)
2
角速度极值:le
角加速度:l d d l t c s i o n d d s tc o c s s2 o i n s d d t
1.2.2.3 连杆的惯性力

第九章-曲柄连杆机构动力学分析

第九章-曲柄连杆机构动力学分析
max
Pj m j a m j R 2 cos m j R 2 cos2 PjI PjII
(2)、旋转惯性力Fr=mrRω2 2、沿气缸中心线的总作用力F 总作用力F是缸内气体作用力Fg与往复惯性力的代数和 F=Fg+Fj 气体作用力 D 2 Fg p g - p? g 4
1、活塞位移x:
x ( L R) ( L cos R cos )
2 2
R(1 cos ) L(1 1 sin )
(精确式)
R x R(1 cos ) (1 cos 2 ) x I x II (近似式) 4
近似式与精确式相比误差很小,如当λ =1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。


பைடு நூலகம்

(精确式)
1 2 L sin 1 1 3 cos2 (近似式) 2
2


在α =90º 或270º 时达到极值:
Le
2 (1 2 )1 / 2
(精确式)
1 (近似式) 2 摆动角速度和角加速度精确式中分母均近似等于 1 ,因此两者均 随α 近似按简谐规律变化。
L L 1 m j m p m 1 m p m l L 作旋转运动的不平衡质量mr,包括曲柄换算质量mk和连杆换算
L1 mr mk m 2 mk1 2mk 2 mL R L
到大头中心的质量m2,集中作用于曲柄销中心,即

三、曲柄连杆机构作用力和力矩 1、惯性力 、 (1)旋转惯性力 (1)、 往复惯性力
2、活塞速度:
sin( ) v R cos

曲柄连杆机构受力分析

曲柄连杆机构受力分析
.
五、曲轴轴颈和轴承的负荷 1,曲柄销负荷矢量固
.
.
2.连杆轴承负荷矢量固
.
.Leabharlann ....
第二节 曲柄连杆机构上的作用力 一、气体压力
.
二、惯性力
.
1.往复惯性力 2.旋转惯性力
.
.
.
三、作用在曲柄连杆机构上的力
.
.
.
四、发动机的扭矩 1.单缸扭矩
发动机的翻倒力矩M’
.
2.多缸机扭矩、各主轴颈和曲柄销扭矩 知道了单缸扭短在一个循环的变化规律,考虑
各缸的着火间隔角将各缸扭矩作移相叠加就得多缸 扭矩。
.
影响扭矩不均匀度的因素: 1、对于同一台发动机,μ值随工况而变化,标定工况 下的μ值最小,往复惯性力仅影响上式分子,而平均 扭矩与示功图有关。 2、对于不同的发动机,μ值的大小取决于发动机的行 程数,气缸数,转速,气体压力,往复运动质量,曲 柄排列载型式,气缸夹角和发火顺序。 一般转速,功率相同时,二行程发动机较四行程发动 机μ值为小,相同类型的发动机气缸数越多μ值越小。
多缸发动机曲轴的输出扭矩最大值mmax一般发生在位于曲轴中间的各个主轴颈而不是靠近功率输出端的主轴颈上26扭矩不均匀度扭矩不均匀度用来评价发动机曲轴输出扭矩变化的均匀程度
第二章 曲柄连杆机构受力分析
.
第二章 曲柄连杆机构受力分析
本章分析曲柄连杆机构的运动规律和作用在主要 零件上的力,作为分析计算强度、刚度、振动和磨损 问题的依据。
.
多缸发动机曲轴的输出扭矩。
多缸发动机各个缸的工作情况稍有不同,但可
近似地用其中一个气缸的扭矩曲线来求多发动机的 合成扭矩曲线。
先在一个循环周期内绘制第一缸的扭矩曲线, 再按发火相位差绘制第2、3、......缸的扭 矩曲线,并放在第一缸的扭矩曲线与之相应的曲轴 转角的位置,然后求出同一曲轴转角的各个气缸的 扭矩曲线纵坐标的代数和,即得到多缸发动机的合 成扭矩。

第二章 曲柄连杆机构

第二章 曲柄连杆机构

6)桶间梯形环:现代高速柴油机广泛使用。 7)开槽环:开槽内储存对润滑油有较强吸附能力 的多孔性氧化铁。有利于润滑、磨合和密封。 8)顶岸环:有利于密封,有利于降低HC排放。
(二)油环 1、作用 1)刮掉缸壁上多余的机油,并且均匀分布缸壁 上的机油。 2)辅助密封。 2、分类(图2-33) 1)普通油环(整体式油环) 2)组合式钢片油环
一、机体
1、工作条件和材料 1)气缸工作条件: 气缸受到高温、高压的冲击;受到腐蚀; 活塞在气缸里作高速运动而受到磨损等。 2)要求:足够的强度、刚度,耐磨损、腐蚀, 结构紧凑,质量轻。 3)材料:高强度灰铸铁 或铝合金。 但是为了降低成本,通常是机体用灰铸铁, 气缸孔用优质合金铸铁,而采用气缸套。
( 3 )活塞销座 A、作用:支承活塞销,将活塞顶部气体作用 力经过活塞销传给连杆。 B、活塞销偏移布置(图2-25) 目的:为了减少活塞在上下往复运动时敲击 气缸的噪音与磨损。 (4)裙部的表面处理 汽油机:常用镀锡方法 柴油机:一般是磷化,还有的用涂石墨。
6、活塞在气缸内的安装注意事项 1)按照活塞顶部的指定标记安装(注意喷 油方向、气门方向) 2)同台发动机的活塞质量差不能超过10g, 并与相同尺寸公差的缸盖配合。 3)开纵向槽的活塞面尽量安装在不受侧压 力(主、次推力面)的一面,以免活塞 在运动时划伤气缸壁。
三、活塞销 (一)作用 1、连接活塞与连杆小头。 2、将活塞承受的气体力传给连杆。 (二)材料 多用低碳钢和低碳合金钢。 同时要求其芯部具有一定的韧性。为了减轻质量, 常将其做成空心圆柱形。 (三)内孔形状 1)圆柱形(加工容易,但质量较大) 2)组合形(介于前后两者之间) 3)两段截锥形(质量较小,但加工较难)
第二章 曲柄连杆机构
作用:将燃料燃烧的热能转换为机械能,将活塞 的往复运动转变为曲轴的旋转运动,并将能量 传输出去。 本章主要内容: 1、 曲柄连杆机构的受力及运动分析 2、 机体组 3、 活塞连杆组 4、 曲轴飞轮组

第二章曲柄连杆机构动力学分析

第二章曲柄连杆机构动力学分析
1、活塞位移:
x (L R) (L cos R cos)
R(1 cos) L(1 1 2 sin 2 )
(精确式)
x
R(1 cos)
R
4
(1
c os2 )
xI
xII
(近似式)
近似式与精确式相比误差很小,如当λ=1/3.5时,曲柄转角为 90度时误差为最大,在0.003R左右,此精度在工程上已足够。
mCA
mC
L lA L
mCB
mC
L lB L
mC
lA L
对于有的高速发动机还须满足一个条件:
③ 两个换算质量对连杆质心的转动惯量之和等于原来连杆的转动惯
量,即
mCA
l
2 A
mCB
l
2 B
IC
式中IC为原连杆的转动惯量。但采用二质量替代系统时,在连杆 摆动角加速度下的惯性力矩要偏大 ΔMC=[(mCAlA2+mCBlB2)-IC]ε 为此,可用三质量替代系统:
a
R
2
cos
cos
c os2 c os3
R 2 cos cos2 sin
连杆摆角: arcsinsin
连杆摆动角速度:L
cos
1 2 sin 2
1/ 2
连杆摆动角加速度: L
2
(1 2
2 2 ) sin
1 2 sin
2 (1 sin 2 )
2 3/ 2
单缸切力曲线及六缸合成图 各轴颈输出扭矩
各轴颈输出扭矩如图
M TII M T (1) M TIII M TII M T (2)
M TIV M TIII M T (3) M TV M TIV M T (4)

钻井泵曲柄连杆机构的受力分析研究

钻井泵曲柄连杆机构的受力分析研究
张 洪 生 迟 明 李 向荣 张 华 光
( .兰 州 理 工 大学 机 电 工 程 学 院 , 1 甘肃 兰 州 70 5 ;.中 国石 油 长 庆 油 田分 公 司 油 气 工 艺技 术 研 究 院 , 3 00 2 陕西 西 安 70 2 ) 10 1

要 : 井 泵 的 动 力 传 递 一般 都 由对 心 式 曲柄 连 杆 机 构 实现 , 钻 曲柄 连 杆 机 构 在 高 压 条 件 下做 变 速 运 动 , 力 受
1 2 3 4 5 6 7
分析 l 。曲柄 滑块传 动机 构示 意 图见 图 2 】 ] 。 曲柄 以恒 定 的角 速 度 旋 转 。令 z为 活 塞 质 心 的运 动位移 , 定活 塞 运 动 的后 死点 为 3 的初 始 规 2
位 置 , 轴 的指 向 为 运 动 的 正 方 向 , 轴 正 方 向 向 X y 下 。十 字 头 中 心 B 点 的 运 动 与 活 塞 质 心 C 点 运 动 相 同 , 以可 以 以 十 字 头 中 心 B 点 的 运 动 表 示 活 塞 所 的 运 动 。 由几 何 关 系 可 得 :

2 ( +R) 0 ] R L 一 B
R( 1一 C S a O )± L( 一 C S臼) 1 O () 1

I曲轴 ; 2传 动 轴 总 成 ; . 杆 ; 3连 4动 力 端 搁 糟 系 统 ; 5十 字 头 ; 6介 杆 ; 7机 壳
收 稿 日期 :  ̄ 9 0 一 7 2) 5 】 ;改 回 日期 : 0 9 】 一 0 0 2 0一 0 】 基 金 项 目 : 肃 省 自然科 学 基 金 项 目“ 井 泵 曲轴 有 限元 强 度 计 甘 钻
塞 便 分 别 往 复 运 动 一 次 , 个 钻 井 泵 完 成 一 次 吸 整

第二章_曲柄连杆机构受力分析(冲突_WIN20160317ZJK_20130513224638)

第二章_曲柄连杆机构受力分析(冲突_WIN20160317ZJK_20130513224638)

11
曲柄连杆机构受力分析
2019/1/9
内燃机设计
12
曲柄连杆机构受力分析
2019/1/9
内燃机设计
13
一、气体作用力
• 作用在活塞顶上的气体力就是内燃机的示功 图,示功图可通过工作过程模拟计算(对新 设计内燃机)或试验方法(对现有内燃机) 确定。
Fg D ( pg p' ) / 4
* /(r ) sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2
a* a /(r 2 ) cos [cos2 (1 2 sin 2 ) (2 / 4) sin 2 2 ](1 2 sin 2 ) 3/ 2
sin sin
2019/1/9
内燃机设计
7
活塞运动规律
• 整理以上两式后得 x r[(1 1 / ) cos (1 2 sin 2 )1/ 2 / ]
r[sin ( / 2) sin 2 (1 2 sin 2 ) 1/ 2 ]
2019/1/9
内燃机设计
10
第二节 曲柄连杆机构受力分析
• 作用在内燃机曲柄连杆机构中的力有缸内气
体作用力、运动质量惯性力、摩擦力、支承
反力和有效负荷等。一般受力分析时忽略摩
擦力使受力分析偏于安全。所以,在内燃机
曲柄连杆机构中,气体作用力、惯性力与支
承反力、有效负荷相平衡。
2019/1/9
内燃机设计
2019/1/9
内燃机设计
8
2、活塞运动规律简化表达式
• 对于一般内燃机 1 / 3 ,可把上列各式简化 成
x* 1 cos ( / 4)(1 cos2 )

第2章曲柄连杆机构

第2章曲柄连杆机构
上一页 返回
2.3机体组
2.3.1汽缸体
1.汽缸体的结构形式 水冷发动机的汽缸体和曲轴箱通常铸成一体,可称为汽缸体
一曲轴箱,也可简称为汽缸体。汽缸体上半部有一个或若十个为 活塞在其中运动导向的圆柱形空腔,称为汽缸;下半部为支承曲轴 的曲轴箱,其内腔为曲轴运动的空间。作为发动机各个机构和系 统的装配基体,汽缸体本身应具有足够的刚度和强度。其具体结 构形式分为三种,如图2-4所示。
汽缸套有干式和湿式两种,如图2-10所示。
上一页 下一页 返回
2.3机体组
2.3.2汽缸盖与汽缸衬垫
1.汽缸盖 汽缸盖的主要功用是密封汽缸上部,并与活塞顶部和汽缸一
起形成燃烧室。同时,汽缸盖也为其他零部件提供安装位置。汽 缸盖的燃烧室一侧直接受到高温、高压燃气的作用。在承受热负 荷时,由于形状复杂,冷却不均匀,各部分温差大,特别是在进、 排气门口之间以及进、排气门口与汽油机的火花塞之间(或进、排 气门)与柴油机的喷油器之间的所谓“鼻梁区”,热应力很高,是 容易出现裂纹损坏的部位;而汽缸盖在机械负荷和热负荷作用下产 生的变形会导致进、排气门密封被破坏和汽缸盖密封(气封、水封、 油封)被破坏,影响发动机的动力性、经济性和工作可靠性。因此, 要求汽缸盖应具有足够的强度和刚度。
下一页 返回
2.5曲轴飞轮组
按照曲轴的主轴颈数,可以把曲轴分为全支承曲轴和非全支 承曲轴两种。在相邻的两个曲拐之间,都设置一个主轴颈的曲轴, 称为全支承曲轴;否则称为非全支承曲轴。
因此,直列发动机的全支承曲轴,其主轴颈的总数(包括曲轴 前端和后端的主轴颈)比汽缸数多一个;V形发动机的全支承曲轴, 其主轴颈的总数比汽缸数的一半多一个。全支承曲轴的优点是可 以提高曲轴的刚度和恋曲强度,并目可减轻主轴承的载荷。其缺 点是曲轴的加工表面增多,主轴承增多,使机体加长。这两种形 式的曲轴均可用于汽油机,但柴油机多采用全支承曲轴,这是因 为其载荷较大的缘故。

曲柄连杆机构受力分析

曲柄连杆机构受力分析

(1)沿气缸轴线作直线往复运动
(2)均匀转动的曲拐 (3)平面运动的连杆组
5
2. 连杆的质量换算
二质量系统
三质量系统
6
二质量系统
m1 ml (l l ) / l
m2 ml l / l
等效原则:
•质量相等 •质心重合 •转动惯量相等
7
3.往复质量和往复惯性力
(1)往复运动质量
mj mp m1
第二节 曲柄连杆机构受力分析
一、气体作用力
二、惯性力
三、零件的受力分析
1一、气体作Βιβλιοθήκη 力1、气体作用力pg
Fg
D
4
2
( pg p )
'
p′
2
一、气体作用力
2、缸内压力
3
二、惯性力
曲柄连杆机构的运动及质量换算 往复惯性力 旋转惯性力
4
1.曲柄连杆机构的运动
曲柄连杆机构的所有运动零件可分为三组:
10
2、连杆小头受力分析
FC Ftg
F F1 cos
侧推力:
F1
F cos
连杆力:
11
3、曲柄销受力分析
切向力 :
F F1' sin( ) F sin( ) cos
F1
F cos
法向力:
Fn F1' cos( ) F cos( ) cos
12
4、发动机的转矩
Fr sin( ) T F r cos
13
5、倾覆力矩
Tk Fc h T
r sin( ) sin h

第一章 曲柄连杆机构的运动与受力分析ppt课件

第一章 曲柄连杆机构的运动与受力分析ppt课件


将式(1-8)对时间求导,得:
(1-11)(近似式) j r 2 cos cos 2

左图所示是近似式计算的活塞位 移、速度和加速度结果。 (1)活塞位移:上、下止点附近位移变 化缓慢。因此,实际确定上止点位置时, 一般先确定某一活塞位置(90º CA左右), 在上止点前后测量对应这一活塞位移的曲 轴转角范围除以二就是上止点位置。 (2)活塞速度:在0 º CA~90 º CA之间和 270 º CA~360 º CA之间,活塞速度各出现 一个正极值和负极值。 (3)活塞加速度:在上止点前后活塞加 速度是正值,方向是活塞下行的方向,往 复惯性力朝上;在下止点前后活塞加速度 是负值,方向是活塞上行的方向,往复惯 性力朝下。根据极值方法求解,可得:
1 2 sin
1 sin
(1-14)
角加速度极值:
2 le 12 2 1
• 第二节 作用于曲柄连杆机构中的力和力矩
1.2.1 气体作用力 作用于活塞顶上的气体作用力: P ( p p ) F g g 0 h (式中,Fh是活塞投影面积)
dv ds in d cos d j r cos s in 2 dt dt cos dt cos dt
将式(1-6)代入上式,得:
2 cos cos 2 j r 2 (1-10)(精确式) cos cos
1.2.2.1 活塞组各零件的往复惯性力 活塞组件包括活塞、活塞环、活塞销、卡环。 记活塞、活塞环和卡环三者的质量总和为 m h , m 则此三件的惯性力为: P (1-25) j h h j
此惯性力作用于活塞销上,并通过活塞销作用于连杆,进而 传递到曲轴、机体。 记活塞销的质量为 m hx ,其惯性力为: P m j (1-26) jhx hx

01曲柄连杆机构的运动和受力分析(1)

01曲柄连杆机构的运动和受力分析(1)
汽车发动机设计
(1)
赵雨东
清华大学汽车工程系
汽车工程系车辆工程专业课程设置
必修课
汽车概论 汽车构造I(汽车发动机) 汽车构造II(汽车底盘、
车身) 汽车发动机原理 汽车理论 汽车发动机设计 汽车底盘设计 汽车车身设计
选修课
汽车电子学 汽车电器 内燃机燃料供给 内燃机增压 … …
下止点
(1 − λ2 sin 2 ϕ ) −3/ 2 = 1 + 3λ2 sin 2 ϕ + 15λ4 sin 4 ϕ + 35λ6 sin 6 ϕ LL
2
8
16
β
l
φ

曲柄连杆机构运动学
-正置曲柄连杆机构的活塞运动规律(5)
将泰勒展开式代入活塞运动规律表达式,并略去 含λ三次幂以上的各项( λ最大0.33 ),得
Fj
用两个集中质量组成的非自由质点系近
似等效单元曲柄连杆机构(活塞、连杆
和曲拐)
mj
往复运动质量-受缸筒约束,沿气缸中 心线往复运动
质量 往复惯性力
m j = mhz + mlA Fj = −mj j
Frp = mp ρ pω 2 = mpd rω 2 mpd = mp ρp / r
mp:平衡重质量 ρρ :平衡重质心旋转半径 mpd :平衡重当量质量
ρp mp
Frp
曲柄连杆机构中的力和力矩
—连杆的惯性力(1) FjlA
实际连杆
随活塞平动+绕活塞销摆动 连续体 不便于分析惯性力和惯性力矩
-曲柄连杆机构类型(3)
活塞销负偏置
活塞在上止点前后,受气缸壁之力的推力面会发生变化。 采用活塞销负偏置,在活塞运动到上止点之前,连杆中心线与气缸中心线平行,活塞

第二章_曲柄连杆机构受力分析(冲突_WIN-20160317ZJK_2013-05-1322-46-38)

第二章_曲柄连杆机构受力分析(冲突_WIN-20160317ZJK_2013-05-1322-46-38)

19
3、旋转惯性力
旋转惯性力:
Fr mr r 2
单位活塞面积旋转惯性力:
fr mrr 2 /(D2 / 4)
2019/11/25
内燃机设计
20
三、单缸转矩
• 可以将 Fg和 Fj 合成为F ,单缸转矩可计算为:
T Ftr Fr sin( ) / cos
2019/11/25
第二章 曲柄连杆机构受力分析
• 第一节 曲柄连杆机构运动学 • 第二节 曲柄连杆机构受力分析 • 第三节 内燃机的转矩波动与飞轮设计
2019/11/25
内燃机设计
1
第一节 曲柄连杆机构运动学
2019/11/25
内燃机设计
2
曲柄连杆机构运动学
2019/11/25
内燃机设计
3
曲柄连杆机构运动学
– 内燃机曲柄连杆机构的分类和特性参数
e
l
r e
(1)中心曲柄连杆机构 (2)偏心曲柄连杆机构
(3)关节曲柄连杆机构
2019/11/25
内燃机设计
5
2、特性参数
• 曲柄半径:r • 连杆长度:l
• 曲柄连杆比: r / l
• 偏心距:e
• 偏心率: e / r

l
r
2019/11/25
内燃机设计
6
二、中心曲柄连杆机构运动学
E
2 1
(T
T
m)d

I0 2
(2 maxFra bibliotek
2 m
in
)
式中,E称为盈亏功。令:E E
E 1.2 105 Pe / n ,为一个工作循环的有效功。

第二章曲柄连杆机构机械原理

第二章曲柄连杆机构机械原理
由于侧隙、径向间隙 和端隙都很小,气体在通 道内的流动阻力很大,致 使气体压力p迅速下降, 最后漏入曲轴箱内的气体 就很少(0.2%~1%)。
发动机 构造与
原理
第二章 曲柄连杆机构 气环的泵油作用演示
发动机 构造与
原理
第二章 曲柄连杆机构
活塞环泵油作用的危害及措施
危害: ➢ 增加了润滑油的消耗; ➢ 火花塞沾油不跳火; ➢ 燃烧室积碳增多,燃烧性能变坏; ➢ 环槽内形成积碳,挤压活塞环而失去密封性; ➢ 加剧了气缸的磨损。
1、机体组 2、活塞连杆组 3、曲轴飞轮组
发动机 构造与
原理
第二章 曲柄连杆机构
§2.2曲柄连杆机构的受力及运动分析
一、运动分析 活塞组、连杆小头:上下往复运动; 连杆大头、杆身、连杆盖:主要做左右摆动,同时伴有上下
往复运动; 曲轴、飞轮:主要做旋转运动。 以上各零部件均是做变速运动、周期性的。
发动机 构造与
(2) 活塞自上而下膨胀量由大而小。因温度上高下低, 壁上厚下薄;
(3) 裙部周向近似椭圆形变化,长轴沿销座孔轴线方 向。因销座处金属量多而膨胀量大,以及侧压力作用 的结果。
发动机 构造与
原理
第二章 曲柄连杆机构 防止变形的措施
(1) 活塞纵断面制成上小下大的截锥形。
(2) 活塞横断面制成椭圆形,长轴垂直于销座孔轴线 方向,即侧压力方向。
其型式有 全裙式:裙部为一薄壁圆筒。 拖板式:将非承压面的裙部全部去掉。
发动机 构造与
原理
第二章 曲柄连杆机构
活塞裙部变形
发动机 构造与
原理
活塞的第变二形章及采取曲的柄相连应杆措机施构
变形原因:热膨胀、侧压力和气体压力。
变形规律:

曲柄连杆机构动力学分析与计算

曲柄连杆机构动力学分析与计算

第一章绪论1.1内燃机概述汽车自19世纪诞生至今,已经有100多年的历史了。

汽车工业从无到有,以惊人的速度在发展着,汽车工业给人类的近代文明带来翻天覆地的变化,在人类的文明进程中写下了宏伟的篇章。

汽车工业是衡量一个国家是否强大的重要标准之一,而内燃机在汽车工业中始终占据核心的地位。

内燃机是将燃料中的化学能转变为机械能的一种机器。

由于内燃机的热效率高(是当今热效率最高的热力发动机)、功率范围广、适应性好、结构简单、移动方便、比质量(单位输出功率质量)轻、可以满足不同要求等特点,已经广泛的应用于工程机械、农业机械、交通运输(陆地、内河、海上和航空)和国防建设事业当中。

因此,内燃机工业的发展对整个国民经济和国防建设都有着十分重要的作用。

1.1.1世界内燃机简史内燃机的出现和发明可以追溯到1860年,来诺伊尔(J.J.E.Lenoir1822~1900年)首先发明了一种叫做大气压力式的内燃机,这种内燃机的大致工作过程是:空气和煤气在活塞的上半个行程被吸入气缸内,然后混合气体被火花点燃;后半个行程是膨胀行程,燃烧的煤气推动着活塞下行,然后膨胀做功;活塞上行时开始排气。

这种内燃机和现代主流的四冲程内燃机相比,在燃烧前没有压缩行程,但基本思想已经有了雏形。

这种内燃机的热效率低于5%,最大功率只有4.5KW,1860~1865年间,共生产了约5000台。

1867年奥拓(Nicolaus A.Otto,1832~1891年)和浪琴(Eugen Langen,1833~1895年)发明了一种更为成功的大气压力式内燃机。

这种内燃机是利用燃烧所产生的缸内压力,随着缸内压力的升高,在膨胀行程时加速一个自由活塞和齿条机构,他们的动量将使得缸内产生真空,然后大气压力推动活塞内行。

齿条则通过滚轮离合器和输出轴相啮合,然后输出功率。

这种发动机的热效率可以达到11%,共生产了近5000台。

由于煤气机必须使用气体燃料,而当时的气体燃料的来源非常困难,这从某种意义上讲就阻碍了煤气机的进一步发展。

第二章曲柄连杆机构

第二章曲柄连杆机构
第二章曲柄连杆机构
(二)往复惯性力和离心惯性力
曲柄连杆机构运动速度的大小方向不断变化,产生惯性力,分为: (1)往复惯性力:大小:Pj=m×a;方向:与a 相反
上止点 0
a Pj Vmax
下止点 0 a Pj
上止点 0
a Pj
Vmax
下止点 0
a Pj
(二)离心惯性力
定义:曲柄、连杆轴颈、连杆大头等围绕曲轴轴线作圆周运动的力
采取措施。
刚度、强度——采用不同的曲轴箱型式。 冷却——水套或散热器
耐磨损、耐高温、耐腐蚀——材料,气缸体采用优质灰铸体,为提高气 缸的耐磨性、加入少量合金元素:铬、磷
二、油底壳(曲轴箱) 功用:储存和冷却机油并封闭曲轴箱。 构造特点:1、设放油塞;2、设挡油板;3、薄钢板冲压而成,4、软木衬垫 。
(4)间隙
活塞安装时 留有端隙、 侧隙、背隙
Δ1—端隙(开口间隙) Δ2—侧隙(边隙) Δ3—背隙
(1)气环 作用:保证气缸与活塞间得密封性, 防止漏气,并把活塞顶部吸收得大 部分热量传给气缸壁,再由冷却水 将其带走。
气环
切口
(二)气环
气环漏气通道: a. 环面与气缸壁间;b. 环与 环槽侧面间 c. 开口端隙处。
(三)缸套得密封
涨封式: 1.密封槽开在缸套上 压封式: 2.密封槽开在缸体上
优缺点:
1. 平分式:便于机械加工,制造方便,但刚度小,多用于中小型发动机 2. 龙门式:结构刚度较大,但工艺性较差。多用中型发动机 3. 隧道式:结构刚度最大、主轴承同轴度易保证,多用于机械负荷大的大
型发动机
为满足气缸工作条件、要求,可以从结构、加工精度、材料等方面
环与环槽得侧面密封压紧力由气体 压力P1、活塞环惯性力Pj、和摩擦力F 三个沿气缸轴线方向力决定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
10
11
12
第二节 曲柄连杆机构上的作用力 一、气体压力
13
二、惯性力
14
1.往复惯性力
2.旋转惯性力
15
16
17
三、作用在曲柄连杆机构上的力
18
19
20
四、发动机的扭矩 1.单缸扭矩
发动机的翻倒力矩M’
21
2.多缸机扭矩、各主轴颈和曲柄销扭矩 知道了单缸扭短在一个循环的变化规律,考虑 各缸的着火间隔角将各缸扭矩作移相叠加就得多缸 7
二、偏心曲柄连杆机构
8
实用上的偏心曲柄连杆机构有图2—3所示三种。 图中a,活塞销中心向主推力边偏置是为了减轻活塞 对气缸壁的敲击,多用于汽油机。图中b,活塞销中 心向次推力边偏置,多用于柴油机。柴油机用中心曲 柄连杆机构可能发生这详的情况:次推力边顶环隙不 结碳,而主推力边严重结碳,导致活塞环粘着。若将 活塞销向次推力边偏置一个小距离,运行中可使主推 力边边活塞顶岸与缸壁问的间隙比燃烧开始时的值变 小,从而改善导热,减轻了主推力边的热负荷,使顶 环隙整个圆周上不结碳。图中c曲轴中心与气缸中心 线偏置的曲柄连杆偏置机构,上、下止点的曲柄转角 分别为:
第二章 曲柄连杆机构受力分析
1
第二章 曲柄连杆机构受力分析
本章分析曲柄连杆机构的运动规律和作用在主要 零件上的力,作为分析计算强度、刚度、振动和磨损 问题的依据。 第一节 曲柄连杆机构运动学
一、中心曲柄连杆机构
1.活塞位移
2
3
2.活塞速度、最大活塞速度和平均活塞速度
4
Vmax和Vm是影响活塞和气缸磨损的重要指标。 3.活塞加速度、最大加速度
3.发动机指示功率和平均指示压力
24
计算精度的判断: 根据发动机曲轴的输出扭矩曲线得到的平均扭 矩∑Mm应于公式∑Mm=9549.3Pi/n得到的平均扭矩 值之误差不得大于±2%。Ni为工作过程计算得到的 指标功率。
多缸发动机曲轴的输出扭矩最大值∑Mmax一般 发生在位于曲轴中间的各个主轴颈(而不是靠近功 率输出端的主轴颈上)
27
五、曲轴轴颈和轴承的负荷 1,曲柄销负荷矢量固
28
29
2.连杆轴承负荷矢量固
30
31
22
多缸发动机曲轴的输出扭矩。
多缸发动机各个缸的工作情况稍有不同,但可 近似地用其中一个气缸的扭矩曲线来求多发动机的 合成扭矩曲线。 先在一个循环周期内绘制第一缸的扭矩曲线, 再按发火相位差绘制第2、3、......缸的扭 矩曲线,并放在第一缸的扭矩曲线与之相应的曲轴 转角的位置,然后求出同一曲轴转角的各个气缸的 扭矩曲线纵坐标的代数和,即得到多缸发动机的合 成扭矩。 根椐各种曲轴转角时的每个主轴颈上的累计扭 矩值,即可确定受力情况最为严重的曲柄及其所位 23 于的曲轴转角。
25
扭矩不均匀度μ 扭矩不均匀度用来评价发动机曲轴输出扭矩变 化的均匀程度。通常按发动机的最大功率工况计算。 ∑Mmax-∑Mmin μ= ———————— ∑Mm ∑Mmax、∑Mmin 、∑Mm 为输出扭矩的最大、最小和 平均值。
26
影响扭矩不均匀度的因素: 1、对于同一台发动机,μ值随工况而变化,标定工况 下的μ值最小,往复惯性力仅影响上式分子,而平均 扭矩与示功图有关。 2、对于不同的发动机,μ值的大小取决于发动机的行 程数,气缸数,转速,气体压力,往复运动质量,曲 柄排列载型式,气缸夹角和发火顺序。 一般转速,功率相同时,二行程发动机较四行程发动 机μ值为小,相同类型的发动机气缸数越多μ值越小。
相关文档
最新文档