东南大学路基路面课程设计报告
路基路面工程课程设计
路基路面工程课程设计计算书班级:张三姓名:李四学号:王五一、原始资料某高速公路地处公路自然区划Ⅱ区,土基干湿类型为中湿。
由交通调查某公路竣工初年的交通组成如下表,预测交通增长率为8%。
二、沥青混凝土路面设计1、轴载分析根据设计规范,公路等级为高速公路,设计年限取为15年,按双向四车道设计,车道系数是0.40-0.50,取0.45。
将交通组成数据输入东南大学HPDS2011软件,获得累计当量轴次及交通等级:当以设计弯沉值和沥青层层底拉应力为指标时,设计年限内一个车道上的累计当量轴次为321万次,属中等交通等级。
当以半刚性材料结构层层底拉应力为指标时,设计年限内一个车道上的累计当量轴次为277万次,属轻交通等级。
一个车道上大客车以及中型以上各种货车的日平均车数为418辆,属轻交通等级。
依据我国沥青路面交通等级划分规定,该高速公路为中等交通等级。
2、初拟路面结构组合设计根据本地区的路用材料,结合已有工程经验与典型结构,拟定了两个结构组合方案。
根据结构层的最小施工厚度、材料、水文、交通量一集施工机具的功能等因素,初步确定路面结构组合与各层厚度如下:方案一:柔性基层沥青路面细粒式沥青混凝土AC-13(4cm)+中粒式沥青混凝土AC-20(6cm)+密级配沥青碎石ATB-30(14cm)+贯入式沥青碎石(厚度待定)+级配碎石(20cm),以贯入式沥青碎石为设计层。
方案二:半刚性基层沥青路面细粒式沥青混凝土AC-13(4cm)+中粒式沥青混凝土AC-20(6cm)+粗粒式沥青混凝土AC-25(8cm)+水泥稳定碎石(厚度待定)+水泥石灰砂砾土(20cm),以水泥稳定碎石为设计层。
3、各层材料抗压模量与劈裂强度确定高等级公路规范规定材料设计参数需试验确定,本课程设计由于条件限制,材料设计参数直接取用沥青路面设计规范中建议数值,得到各层材料抗压模量与劈裂强度。
资料汇总4、土基回弹模量确定区,粉质土,路基处于中湿状态,稠度取为 1.0,查《二级该路段处于Ⅱ2自然区划各土组土基回弹模量参考值表》得土基回弹模量为29MPa,根据《公路沥青路面设计规范》规定,土基回弹模量应大于30MPa,取31MPa。
2015路基路面工程课程设计
1)根据设计资料选定面板和筋带; 2)选择填料,确定筋带结点的水平和垂直间距; 3)计算各层拉筋的土压力系数及所受拉力大小; 4)计算筋带设计断面及每束筋带根数; 5)计算筋带长度; 6)确定墙体断面、筋带长度及数量; 7)验算面板厚度; 8)基底应力、滑动稳定性、倾覆稳定性验算; 9)绘制该挡墙的纵断面布置图、平面图及横断面布置图。
(一)重力式挡土墙设计
1、设计目的
通过设计掌握重力式挡土墙的设计方法和设计内容。
2、设计题目
南京郊区某二级公路,路基宽 8.5m,双车道路面,其中 K0+007~K0+027 需拟设计路肩式挡土墙,分段长度 10m,端部设锥形护坡。要求设置普通重力式 挡墙,墙身及基础采用浆砌片石(250#片石,50#砂浆),γ砌体=22kN/m3,浆砌片 石扩大基础下采用砂砾石材料(基础埋深为地面以下 1m),μ=0.6。墙后填筑普 通粘性土,γ填土=18kN/m3,计算内摩擦角φ=30°,填土与墙背间的摩擦角δ=φ/2 =15°。地基承载应力标准值为 fk=450kPa,圬工砌体的极限抗压强度为 700kPa、 极限抗弯拉强度为 110kPa、极限抗剪切强度为 80kPa。
型的技术参数分别如表 1、表 2 所示,交通量年平均增长率 8%。该路沿线可开
采砂砾、碎石,并有石灰、水泥、粉煤灰、沥青供应。请设计合适的半刚性沥青
路面结构。
表 1 某路段混合交通组成
车型分类 一类车
二类车
三类车
四类车
五类车
六类车
代表车型 比重(%)
桑塔纳 24.57
五十铃 42.30
解放 CA10B 黄河 JN150 黄河 JN162 交通 SH361
4.0E6,4.0E6
《路基路面工程》课件 东南大学交通学院
路基路面工程东南大学交通学院1. 简介路基和路面工程是交通工程领域的一个重要分支,是保证道路安全、舒适和耐久性的关键。
东南大学交通学院对路基路面工程的研究和教育有着丰富的经验和深厚的专业知识。
本课件将介绍东南大学交通学院关于路基路面工程课程的内容和教学方法。
2. 课程目标路基路面工程课程旨在培养学生对道路基础和路面结构的设计、施工和维护能力。
通过本课程的学习,学生将能够:•理解路基路面工程的基本概念和原理;•掌握常用的路基路面工程设计方法和施工技术;•熟悉道路维护和养护的重要性,并学会相应的操作技能;•分析和评估不同类型路基路面的质量和性能,并提出改进措施。
3. 课程内容本课程包括以下几个主要内容:3.1 路基工程•路基工程的定义和作用;•路基施工的基本原理;•重要的路基材料和承载能力分析;•路基设计和施工的关键要点。
3.2 路面工程•路面工程的概念和分类;•不同类型路面结构的特点和适用条件;•路面材料的选择和性质分析;•路面施工的关键技术和方法。
3.3 道路维护与养护•道路维护的意义和目标;•常见道路病害的识别和评估;•道路养护的关键技术和措施;•长期养护计划的制定和实施。
4. 教学方法本课程采用多种教学方法,包括课堂讲授、案例分析、实地考察和实验室实践等。
学生将通过这些教学方法进行理论学习、实践操作和综合应用能力的培养。
5. 评价方式学生的评价方式主要包括考试、作业和实验报告等。
通过这些评价方式,可以全面了解学生对路基路面工程知识的掌握程度和实际应用能力。
6. 参考资料本课程的参考资料包括教材、学术期刊和相关标准等。
学生可以通过阅读这些参考资料进一步加深对路基路面工程的理解和应用。
结论经过东南大学交通学院的路基路面工程课程的学习,学生将掌握相关理论和实践技能,为日后从事相关工作打下坚实的基础。
该课程将综合运用理论知识、实践操作和综合应用能力培养学生,使他们成为具有较高水平的路基路面工程专业人才。
东南大学路基路面工程教科书第03章路基设计.doc资料
第三章路基设计学习目的:本章主要介绍路基的构成及横断面设计方法,在路基边坡高度较大或存在软弱岩层等情况下可能存在稳定性问题,因此要分析其稳定性,在软土地基上修筑的路基变形量较大,需进行变形分析和监测。
水对路基的耐久性影响非常显著,本章还介绍了路基排水设计的一般方法以及在特殊地区修筑路基的一般原则。
通过学习,可以掌握一般路基的设计方法。
教学要求:通过路基基本概念及主要病害的讲解,要求掌握路基的基本构造要求和路基产生病害的基本原因。
详细讲解路基设计三要素的基本内涵。
详细讲解路基稳定性分析的几种方法,直线滑动面、折线形滑动面的不平衡推力法和传递系数法、圆弧滑动面的瑞典法和简化的Bishop法。
了解熟悉软土地基稳定性分析、浸水路基稳定性分析及路基抗震稳定性分析的特点;明确路基排水设计方法、特殊路基设计、路基填料的选择与压实、路基变形分析等内容。
第一节路基概念及构造一、路基基本概念公路路基是按照路线位置和一定技术要求修筑的带状构造物,是路面的基础,承受由路面传来的行车荷载并将其扩散至地基,是公路的承重主体。
高于原地面高程的填方路基称为路堤(Embankment),低于原地面的挖方路基称为路堑(Cutting)。
需要指出的是,原地面高程指的是清除天然地面表土、整平并碾压后的高程。
路基承受行车荷载作用,主要是在应力作用区,其深度一般在路基顶面以下0.8m范围以内,即路面结构的路床部分,其强度与稳定性要求,应根据路基路面综合设计的原则确定。
坚固的路基,不仅是路面强度与稳定性的重要保证,而且能为延长路面使用寿命创造有利条件,所以路基路面的综合设计至为重要。
为了确保路基的强度与稳定性,使路基在外界因素作用下,不致产生过量的变形,在路基的整体结构中还必须包括各项附属设施,其中有路基排水,路基防护与加固,以及与路基工程直接相关的设施,如弃土堆、取土坑、护坡道、碎落台、堆料坪及错车道等。
由于路基高程与原地面高程有差异,且各路段岩土性质的变化,各处附属设施的布置不尽相同,因此各路段的路基横断面形状差别很大。
《路基路面工程》课程设计-路面工程部分
课程注重实用性,帮助学生在实际工作中应用所学知识。
路面工程的基本概念
路面定义
路面构造
路面是指用于车辆通行的道路表层。 路面由不同层次的材料组成,包括 基层、底层和表层。
路面施工
路面施工过程包括平整、压实和铺 装。
路面工程的发展历程
1
古代路面
古代路面以石块或木板铺设,用于行车和行人通行。
2
现代路面
现代路面更加坚固、平整,使用沥青混凝土等材料。
3
未来路面
未来路面将更加智能化,能够自动修复和调节。
路面材料及其选择
沥青
沥青是一种常用的路面材料,具有良好的黏附性和 抗水性。
草坪
在一些景观区域,草坪可以作为路面材料,美观又 环保。
混凝土
混凝土路面耐久性强,适合承受重载交通和恶劣环 境。
砂石
《路基路面工程》课程设 计-路面工程部分
这个课程设计将带你深入了解路面工程的概念、发展历程、材料选择、施工 工艺与技术以及质量检测与评估,通过实例分析与案例讨论帮助你掌握相关 知识。
路基路面工程课程概述
1 全面介绍
课程将全面介绍路基路面工程的相关知识和技术。
2 理论与实践
结合理论与实践,帮助学生深入理解课程内容。
砂石路面适用于一些低交通量的道路。
路面施工工艺与技术
1 平整技术
路面施工过程中,采用不同的平整技术,使路面表层平整。
2 压实技术
通过压实设备对路面材料进行压实,提高路面的稳定性和耐久性。
3 铺装技术
采用不同的铺装技术,如机械铺装和手工铺装。
路面质量检测与评估
质量检测
通过检测路面的平整度、抗滑性等 指标,评估路面质量。
路基路面课程设计报告书
《路基路面工程》课程设计计算书1、重力式挡土墙设计2、边坡稳定性设计3、沥青混凝土路面设计4、水泥混凝土路面设计目录第1题重力式挡土墙设计 (1)1.1设计资料 (1)1.2设计任务 (1)1.3设计参数 (1)1.4车辆荷载换算 (2)1.5主动土压力计算 (2)1.6挡土墙计算 (5)第2题边坡稳定性设计 (9)2.1设计资料 (9)2.2汽车荷载换算 (9)2.3圆弧条分法 (10)2.4结果分析 (15)第3题沥青混凝土路面设计 (17)3.1设计资料 (17)3.2设计轴载与路面等级 (17)3.3确定土基回弹模量 (19)3.4路面结构组合设计 (20)3.5路面厚度计算 (21)3.6竣工验收弯沉值和层底拉应力计算 (22)第4题水泥混凝土路面设计 (24)4.1设计资料 (24)4.2交通分析 (24)4.3初拟路面结构 (24)4.4路面材料参数确定 (24)4.5荷载疲劳应力 (25)4.6温度疲劳应力 (26)1重力式挡土墙设计1.1设计资料(1)浆砌片石重力式仰斜路堤墙,墙顶填土边坡1:1.5,墙身纵向分段长度为m 10,路基宽度m 26,路肩宽度m 0.3.(2)基底倾斜角190.0tan :00=αα,取汽车荷载边缘距路肩边缘m d 5.0=.(3)设计车辆荷载标准值按公路-I 级汽车荷载采用,即相当于汽车—超20级、挂车120(验算荷载)。
(4)3/18m kN =γ填料与墙背的外摩擦角φδ5.0=;粘性土地基与浆砌片石基底的摩擦系数30.0=μ,地基容许承载力kPa 250][0=σ.(5)墙身采用2.5号砂浆砌25号片石,圬工容重3/22m kN k =γ,a a kP 600][=σa j kP 100][][==στa L kP 60][=σ.1.2设计任务(1)车辆荷载换算。
(2)计算墙后主动土压力a E 及其作用点位置。
(3)设计挡土墙截面,墙顶宽度和基础埋置深度应符合规要求。
路基路面课程设计报告书
一、设计任务书1.基本要求东北某公路部分路段拟建一条4车道的一级公路,设计年限为15 年,拟采用沥青路面结构,需进行路面结构设计。
2.气象资料该公路所在地区为V2区,最低气温为-15℃。
3.地质资料与筑路材料沿线土质为紫色粉质粘性土,地下水位距地表为 1.2m ,路基填土高平均为0.7m.公路沿线有大量碎石集料,筑路材料丰富,并有水泥、石灰和粉煤灰等供应。
4.交通资料据预测该路竣工初年的交通组成如表1所示。
使用年限内交通量的年平均增长率为 10%。
表 1 交通量组成前轴重后轴重交通量车型后轴数后轴轮组数后轴距( kN )( kN )(次/日)东风24.667.812-460KM340江淮45.1101.5120400HF150东风20.172.6224170SP9135B五十铃60.0100.0324400EXR18L江淮18.941.8120150HF140A五十铃23.544.0120100 NPR595G5.参考资料和应用软件(1)主要以《公路沥青路面设计规范》(JTG D50-2006 )为主,或参考本课程使用的教材。
(2)应用的软件为 BISAR及CAD。
6.提交材料每个同学需提交的材料包括:设计计算书、拟设计路面结构的横断面示意图、拟设计路面结构的弯沉(径向)和应力分布图(竖向)。
二、设计计算书1.基本资料:(1)自然地理条件新建一级公路地处 V2区,为双向四车道,拟采用沥青路面结构进行施工图设计,沿线土质为紫色粉质粘性土,填方路基高 0.7m ,地下水位距地表为 1.2m ,属中湿状态,最低气温 -15 ℃。
(2)土基回弹模量的确定设计路段路基处于中湿状态,路基土为紫色粉质粘性土,根据查表法确定土基回弹模量设计值为 37 MPa(3)据预测该路竣工初年的交通组成如表 1所示。
使用年限内交通量的年平均增长率为 10%。
表 1 交通量组成前轴重后轴重交通量车型后轴数后轴轮组数后轴距( kN )(kN)(次/日)东风24.667.812-460 KM340江淮45.1101.5120400 HF150东风20.172.6224170 SP9135B五十铃60.0100.0324400 EXR18L江淮18.941.8120150 HF140A五十铃23.544.0120100 NPR595G(4)设计轴载根据设计人任务书的要求按设计回弹弯沉和容许弯拉应力两个设计指标,分别计算设计年限的标准轴载累计当量轴次,确定交通量等级,面层类型,并计算设计弯沉值l d和容许弯拉应力R 。
东南大学2019-2020-2路基路面工程课程设计任务书
东南大学成贤学院课程设计报告课程名称:路基路面工程课设专业年级:17土木(道桥)学号:姓名:组别:同组人员:评定成绩:审阅教师:年月日设计一:路基挡土墙设计挡土墙是公路工程中广泛采用的一种构造物,其结构形式多样,设计方法各异。
随着我国公路建设在全国各地的飞速发展、公路挡土墙设计理论的不断完善,挡土墙的应用也越来越多。
通过本次课程设计,可以了解重力式挡土墙、悬臂式挡土墙等的设计理论和方法,达到学以致用的目的。
(一)悬臂式挡土墙设计1、设计目的通过设计掌握悬臂式挡土墙的设计方法和设计内容。
2、设计题目某城市道路拓宽改造工程,采用轻型悬臂式路肩墙,其构造特点、荷载条件、道路状况初步见图1:图1其它资料:(1)行车荷载道路行车荷载为汽—20 级,换算为汽车等代土层厚H0=0.96m;(2)墙后填土墙后填土的容重γ1=15kN/m3,土内摩擦角φ=35º;(3)墙前填土墙前填土的容重γ2=18kN/m3;(4)墙底参数基底摩擦系数μ=0.4,基底抗滑稳定系数[K c]=1.3,基底容许应力[σ]=105kPa;(5)墙体参数墙体采用30号混凝土浇筑,容重为γ3=25kN/m3;3、设计的内容要求悬臂式挡土墙由立臂和墙底板组成,呈倒“T”字型。
其具有三个悬臂,即立臂、墙趾板和墙踵板,适用于墙高小于6 米的挡土墙,其形式如图2所示:图2悬臂式挡土墙的设计,包括墙身构造设计、墙身截面尺寸的拟定、结构稳定性和基底应力验算以及墙身配筋计算等。
墙身构造设计是指挡土墙的外形构造设计,一般悬臂式挡土墙的外形即如图3所示;墙身截面尺寸的拟定是指已知部分条件,根据对挡土墙的使用要求设计其它部位的尺寸;结构稳定性和基底应力验算是根据设计的一定尺寸的挡土墙,验算其在荷载、土压力等因素作用下是否满足规范的设计要求等。
1)根据以上提供资料,参照悬臂式挡土墙设计内容,设计挡土墙。
2)将挡墙的形式改为重力式挡墙,重新设计该挡土墙。
路基路面课程设计报告
一、设计目的路基路面的课程设计是对路基路面工程课堂教学的必要补充和深化,通过设计让学生可以更加切合实际地和灵活地掌握路基路面的基本理论,设计理论体系,加深对路基路面设计方法和设计内容的理解,进而提高和培养学生分析、解决工程实际问题的能力。
课程设计分路基设计和路面设计两部分内容。
以教师提供的设计资料为主,学生在查阅相关文献资料的基础上,结合当地的气候条件、地质条件、水文条件以及给定的交通条件,拟定路基和路面的设计方案,对路基的稳定性、路面结构厚度的计算和验算。
课程设计要求设计计算条理清晰,计算的方法和结果能符合我国现阶段路基路面设计规范的要求。
二、课程设计题目描述和要求三、课程设计报告内容方案一:(一)交通分析由表16-20,二级公路的设计基准期为20年,安全等级为三级。
由表13-3,临界荷位处的车辆轮迹横向分布系数取0.39.去交通年平均增长率为8%。
由已知交通量及交通组成和16-1换算为标准轴载作用次数为: 161()100ni s i i i P N N δ==∑ 16161616101.66069.31271600()11346()11273()85142()100100100100=⨯⨯+⨯⨯+⨯⨯++⨯⨯ 1650.221633.31601298() 1.0710160218()2788100100--+⨯⨯+⨯⨯⨯⨯=次 按式(16-4)计算得到设计基准期内设计车道标准荷载累计作用次数为 ()()20411365278810.0813650.391816.16100.08t s r e r N g N g η⎡⎤⎡⎤+-⨯+-⨯⎣⎦⎣⎦==⨯=⨯次 由表16-4可知属于重交通。
(二)初拟截面尺寸由表16-20可知,安全等级为三级的道路对应的变异水平等级为中级。
根据二级公路、重交通等级和中级变异水平等级,查表16-17,初拟普通混凝土面层厚度为0.24m 。
基层选用水泥稳定粒料,厚0.18m 。
《路基路面工程》课程设计路面工程部分
采用极限平衡法、有限元法等方法进行路基稳定性分析。同时,结合工程经验和实践,对分析结果进行综合评价和判 断。
注意事项
在分析过程中,需要考虑不同因素对路基稳定性的影响,如地质条件、水文条件、气候条件等。同时, 还需要注意分析方法的适用性和局限性,以及分析结果的可靠性和准确性。
04
路面施工工艺与质量控制
排水顺畅。
质量检查与验收标准
施工过程质量检查
在施工过程中进行定期或不定期的质量检查,包 括材料质量、施工工艺、压实度等方面的检查。
完工后质量验收
施工完成后进行全面的质量验收,包括路面平整 度、厚度、压实度、弯沉值等方面的检测。
验收标准
根据设计文件和相关规范制定验收标准,确保路 面工程质量符合设计要求和相关标准。
延长道路使用寿命
合理的路面工程设计和施工能够延长道路使用寿命,减少维修和养 护成本,提高经济效益。
促进区域经济发展
良好的路面工程能够改善交通条件,提高运输效率,降低物流成本, 从而促进区域经济发展。
02
路面工程基础知识
路面结构组成及功能
垫层
设置在路基和基层之间,起排水、 隔水、防冻、防污等作用。
通需求,导致交通拥堵现象严重。
道路状况不佳
02
原有道路设计标准低,使用年限长,路面破损、坑洼不平等问
题频发,影响行车安全。
城市规划调整
03
为配合城市整体规划和未来发展需要,对道路进行改造升级成
为必要措施。
改造方案制定过程
现场调研与数据分析
对原有道路进行详细勘察和数据收集,包括交通量、路面状况、排 水系统等方面,为后续改造提供依据。
鼓励学生积极参与实际工程项目,积累实践经验,提高解决实际问 题的能力。
路基路面工程课程设计报告书
成绩评定等级:《路基路面工程》课程设计计算书1、重力式挡土墙设计2、边坡稳定性设计3、沥青混凝土路面设计4、水泥混凝土路面设计学 生 姓 名:学 号:指 导 教 师:日 期:大学土木与建筑学院2018、01题目一: 重力式挡土墙设计设计资料: 1.浆砌片石重力式仰斜路堤墙、墙顶填土边坡1:1、5;取汽车荷载边缘距路肩边缘d =0、5m;道路车行道为双向四车道;2.墙后填料砂性土容重γ=193/m kN ,内摩擦角ϕ、粘聚力为0=c ;3、填料与挡土墙墙背的摩擦角ϕδ32=;4、粘性土地基与浆砌片石基底的摩擦系数μ=0、30、地基容许承载力设计值f =300a kP ;5.墙身采用2、5号砂浆砌25号片石、圬工容重k γ=213/m kN 、抗压强度kPa f cd 710=、抗剪强度kPa f vd 120=;墙后砂性土填料内摩擦角ϕ:①32°墙面与墙背平行、墙背仰斜坡度: ②1:0、25墙高H: ③5m墙顶填土高a : ④3、0m要求完成的主要任务:1. 计算墙后主动土压力及其作用点位置;由10.25=1402'=14.03α。
由墙背仰斜坡度:,可得,22=3221.3333δϕ=⨯︒≈︒ 由墙顶填土边坡1:1、5、b=4、5m墙高五米、按照线性插入法可得附加荷载强度q=16、25kN/㎡假设破裂面交于荷载中部、则有:00000016.250.861911(2)()(3520.86)238.882211()(22)tan 2211(3) 4.5(4.50.5)0.865(5+2320.86)tan(14.03)42.8522qh m A a H h a H B ab b d h H H a h γα==≈=+++=⨯++⨯⨯==++-++=⨯⨯++⨯-⨯⨯⨯+⨯⨯-︒= =++=-14.03+21.33+32=39.3ψαδϕ︒︒︒︒tan tan tan 39.3 1.34,53.27θψθ=-=-︒==︒ (1)4 1.8(41)1.30.511.650.2517.35()tan 10.7250.25 4.50.5 6.2510.7217.35L Nb N m d mL b mH a mm m m θ=+-+=⨯+-+=+⨯+=+⨯=⨯++=<<所以符合规范要求。
路基路面工程课程设计报告
路基路面工程课程设计任务书2014年 3 月12 日至2014 年 4 月20 日课程名称:路基路面工程实训专业班级:姓名:学号:指导教师:2014年3月18日XX公路A标段路基路面构造设计一、路基稳定性设计该路段某段路基填土为粘土,填土高度为8米,边坡为直线型,土的重度γ=18.6KN/m3,土的摩擦角φ=12°,粘聚力系数C=16.7MPa,设计荷载为公路I 级。
二、路基挡土墙设计该标段某路基需设计重力式挡土墙,填料为砂性土,土的重度γ=15KN/m3,摩擦角φ=36°,粘聚力c=10Kpa;最大密实度16.8KN/m3;挡土墙设计参数为:基底摩阻系数:f=0.4;基底承载力:[σ0]=360Kpa;墙身材料:25#浆砌片石,2.5#砂浆,重度γ=24KN/m3,容许压应力[σ]= 580KPa,容许剪应力[τ]= 90Kpa,容许拉应力。
[σw1]=40Kpa;墙身与填料摩擦角:δ=1/2φ;挡土墙最大填土高度为6米。
三、路面工程设计1、路段初始年交通量,见表1〔辆/天〕。
表1 汽车交通量的组合2、交通量增长率取5%,柔性路面设计年寿命15年,刚性路面设计寿命25年,路面材料参数取规中的数值,自然区划为Ⅲ区,进展柔性和刚性路面设计。
设计一路基稳定性设计一、设计资料:该路段某段路基填土为粘土,填土高度为8米,边坡为直线型,土的重度γ=18.6KN/m3,土的摩擦角φ=12°,粘聚力系数C=16.7MPa,设计荷载为公路I 级。
二、课程设计目标通过课程设计,让学生初步了解该专业所涉及规,培养学生独立思考独立进展该课程有关课程创作设计的能力;从而使学生熟练掌握路基路面工程的重要理论知识,为从事该行业打下良好的专业根底。
三、设计依据1、?公路路基设计规?〔JTG D30-2004〕;人民交通;2、?公路沥青路面设计规?〔JTG D50—2006〕;人民交通;3、?公路路基设计规?〔JTG D30-2004〕;人民交通;4、?公路沥青路面设计规?〔JTG D50—2006〕;人民交通;5、?城市道路工程设计规?〔CJJ37-2012);人民交通;6、?路基路面工程?以及高等教育教科书〔伟〕四、设计要求道路等级为公路一级,双向四车道,设计荷载为公路Ⅰ级五、路基边坡坡度在地质条件良好,边坡高度不大于20m时,其边坡坡度不易陡于表4.1的规定值。
路基路面工程课程设计报告
路基路面工程——课程设计报告公路路基稳定性设计路基填土标准、规范路基填土标准、规范项目分类路面底面以下深度(m)填料最小强度(CBR值)压实度(%)高速、一级公路高速、一级公路填方路基0-0.3 8 ≥960.3-0.8 5 ≥96上路堤0.8-1.5 4 ≥94下路堤 1.5以下 3 ≥93(1) 填方路基应优先选用级配较好的砾类土、砂类土等粗粒土为填料,填料最大粒径应小于150mm。
(2) 泥炭、淤泥、冻土、强膨胀土、有机质土及易溶盐超过容许含量的土等,不得直接用于填筑路基,冻溶地区的路床及浸水部分的路堤不应直接采用粉质土填筑。
(3) 当采用细粒土填筑时,路堤填料最小强度应满足上表要求。
(4) 液限大于50%、塑性指数大于26的细粒土,不得直接作为路堤填料。
(5) 浸水路堤应选用渗水性良好的材料填筑,当采用细砂、粉砂作填料时,应考虑震动液化的影响。
(6) 桥涵、台背和挡土墙墙背应优先渗水性良好的填料,在渗水材料缺乏的地区,采用细粒土填筑时,宜用石灰、水泥、粉煤灰等无机结合料进行处治。
4.5H法(1) 选取桩号为K1+900处的横断面,此处最大填土高度为10.7m,土质为粘性土,内摩擦角,土的粘聚力c=30kPa,土的天然容重kN/m3,地基容许承载力400kPa。
(2) 用CAD绘图(3) 车辆荷载引起的附加土侧压力按等代均布土层厚度计算4.5H 线法确定圆心位置图式(4) 按4.5H 法确定滑动圆心辅助线。
β1=27° β2=36°(5) 绘出五种不同位置的滑动曲线(6) 将圆弧范围土体分成8~10段,先由坡脚起每1.5m 一段,最后一段可略大(7) 算出滑动曲线每一分段中点与圆心竖线之间的偏角式中i x —分段中心距圆心竖线的水平距离,圆心竖线左侧为负,右侧为正 R —滑动曲线半径(8) 每一分段的滑动圆弧线可近似取直线,将各分图简化为梯形或三角形,计算其面积,其中包括荷载换算成土柱部分的面积在内(9) 以路堤纵向长度1m 计算出各分段的重力i G (10) 将每一段的重力i G 化为两个分力:滑动曲线法线方向分力:i i i G N αcos = 滑动曲线切线方向分力: i i i G T αsin =由此得两者之和i N ∑和i T ∑(11) 算出滑动曲线圆弧长L (12) 计算稳定系数∑∑+=ii T cLN f K分别计算各位置的稳定系数① 计算O 1处的稳定系数:距离角度弧度sin cos 面积重力N T0.50 6.00 0.10 0.10 0.99 5.39 97.11 96.58 10.153.21 5.00 0.09 0.09 1.00 14.81 266.56 265.55 23.236.97 19.00 0.33 0.33 0.95 21.32 383.69 362.78 124.9210.65 30.00 0.52 0.50 0.87 21.01 378.22 327.55 189.1114.38 51.00 0.89 0.78 0.63 8.14 146.50 92.19 113.85 弧长22.52 1144.65 461.26 半径15.64 K 2.18稳定性符合要求②计算O2处的稳定系数:距离角度弧度sin cos 面积重力N T0.53 2.00 0.03 0.03 1.00 5.39 97.11 97.05 3.394.06 8.00 0.14 0.14 0.99 14.81 266.56 263.97 37.107.58 21.00 0.37 0.36 0.93 21.32 383.69 358.20 137.5011.11 36.00 0.63 0.59 0.81 21.01 378.22 305.99 222.3114.61 51.00 0.89 0.78 0.63 8.14 146.50 92.19 113.85 弧长21.15 1117.40 514.15 半径16.1 K 1.94稳定性符合要求③计算O3处的稳定系数:距离角度弧度sin cos 面积重力N T3.37 9.00 0.16 0.16 0.994.27 76.90 75.95 12.036.36 17.00 0.30 0.29 0.96 11.69 210.47 201.27 61.539.95 27.00 0.47 0.45 0.89 16.66 299.97 267.27 136.1813.55 38.00 0.66 0.62 0.79 18.50 333.09 262.48 205.0716.58 50.00 0.87 0.77 0.64 11.04 198.66 127.69 152.18 弧长22.89 934.67 566.99 半径15.54K 1.75稳定性符合要求③计算O4处的稳定系数:距离角度弧度sin cos 面积重力N T1.67 5.00 0.09 0.09 1.00 6.13 110.38 109.96 9.625.06 14.00 0.24 0.24 0.97 16.72 300.93 291.99 72.809.13 26.00 0.45 0.44 0.90 23.65 425.68 382.60 186.6013.22 40.00 0.70 0.64 0.77 24.68 444.19 340.27 285.5217.54 59.00 1.03 0.86 0.52 8.35 150.31 77.41 128.84弧长24.06 1202.23 683.38 半径20.25 K 1.76稳定性符合要求⑤计算O5处的稳定系数:距离角度弧度sin cos 面积重力N T1.67 5.00 0.09 0.09 1.00 6.13 110.38 109.96 9.625.06 14.00 0.24 0.24 0.97 16.72 300.93 291.99 72.809.13 26.00 0.45 0.44 0.90 23.65 425.68 382.60 186.6013.22 40.00 0.70 0.64 0.77 24.68 444.19 340.27 285.5217.54 59.00 1.03 0.86 0.52 8.35 150.31 77.41 128.84 弧长24.06 1202.23 683.38 半径20.25 K 1.76K值汇总表由上可知K=1.76>1.25,路基稳定性满足要求。
路基路面课程设计总结
路基路面课程设计总结路基路面课程设计总结一、课程介绍路基路面课程是一门工程训练课程,其主要内容涵盖路基路面领域的各种基础知识,主要包括路基基础理论、路基结构及设计、路面构造与施工等。
本课程旨在培养学生对路基路面工程有基本的理解和实践能力,以及路基路面设计与施工技术。
二、教学内容1、路基基础理论:路基土的基本性能、路基结构及其相关设计要求、路基稳定分析。
2、路基结构及设计:路基结构的选择、桩基结构的设计、桩基工程的施工,湿路基设计与施工、半湿路基设计与施工,挖掘基础设计与施工等。
3、路面构造与施工:路面结构的选择、路面层结构的设计、路面层结构的施工、路面层结构的试验、路面层结构的维护等。
三、教学安排1、以讲授为主,主要内容为路基路面工程基础理论及其设计、施工等方面的相关知识;2、实验室实践,按课程安排设计并实施实验,完成实验报告及数据处理;3、实地考察,通过实际考察路基路面工程,了解施工工艺与技术;4、课程论文,根据实验室实践、考察、资料整理等内容,完成相关论文。
四、教学方法1、讲授法:基于授课的基本要求,认真讲授基础理论和基本技能,结合教学安排,做到讲授的主题清晰,知识点牢固;2、实验室实践法:结合实验室实践,帮助学生更深入理解各个知识点,并培养学生的实践能力;3、实地考察法:实地考察能够让学生更全面、更深入地了解路基路面工程,以及施工技术与过程;4、论文撰写法:完成论文撰写,能够让学生运用所学知识,提高学生的科学研究能力。
五、教学评价1、理论成绩考核:按照课程安排,考核学生理论知识掌握情况;2、实验报告考核:按照实验报告要求,考核学生实验室实践情况;3、论文考核:按照论文格式要求,考核学生论文写作技能;4、实地考察考核:考核学生实地考察报告内容以及数据处理能力。
六、总结本课程是一门工程训练课程,旨在培养学生对路基路面工程有基本的理解和实践能力,以及路基路面设计与施工技术。
路基路面工程实习报告
路基路面实习报告指导老师:张璠廖公云朱湘姓名:学号:学校:东南大学院系:交通学院实习目的:生产实习施工现场的感性认识,以提高学生的的目的在于使学生从课堂教学中得到的理论知识获得实践的验证。
将课本上对各种路基路面材料、结构及施工工艺的初步认识与工程实践联系起来,融会贯通,以巩固和加深对《路基路面工程》课程内容的消化理解,并通过对路基路面施工工艺、施工设备和质量控制等问题的实地认识与分析,培养学生认识和分析工程实际问题的能力,将所学路基路面设计的基本原则和方法与工程实际相联系。
了解、熟悉路基路面的主要施工工艺和质量控制手段,促进学生对路基路面综合素质和教学质量。
实习要求:实习前组织实习动员,由老师向学生介绍实习的目的和要求,主要实习内容及时间安排,实习中的注意事项。
实习中要求掌握的内容:(1)掌握路基施工工艺及质量控制方法;(2)掌握沥青路面基本施工工艺及质量控制方法;(3)掌握路基边坡防护及路基路面排水设施设计与使用条件;(4)掌握基层材料和沥青混合料的组成设计方法。
实习安排:集体到路基路面施工现场进行生产实习,共3天,第4天撰写实习报告。
具体安排如下:9月3号:南京紫金山上山公路,块料路面及山区公路设计参观。
9月4号:麒麟门122省道工程,水稳基层施工;南京市政道路工程施工,排水施工及路基施工。
9月5号:南京高淳快速通道工程施工参观,,沥青面层施工,基层施工、边坡与防护工程施工。
9月6号:实习回顾,总结要求,撰写实习报告。
工程实例本次路基路面实习总共参观了四个施工现场和工程实例。
涵盖了山区公路、省道、城市主干路、快速路等多种公路与城市道路。
1.紫金山上山公路块料路面的强度主要由基础的承载力和石块与石块的所构成。
一般铺砌在垫平层之上。
垫平层的作用是垫平基层表面及石块底面,保持石块顶面平整,并缓和车辆行驶时的冲击和振动作用。
石块之间须用填缝料嵌紧,使石块不致松动,以加强路面整体性,并保护石块边角,减少渗水。
道路勘测设计(东南大学)课程设计
纵 断 及面 注设 意计 事一 项般 原 则
在路堑地段应有0.5%的最小纵坡。有困 难时,亦不小于0.3%,以利排水。 通过稻田或低湿地带的路段,必须保持最 小填土高度。以保证路基稳定。 竖曲线与平曲线重合应注意保持均衡,应 尽量避免在竖曲线的顶部或底部插入平面急弯 或设反向曲线接头。 注意交叉口处的纵坡接线,公路与公路平 面并叉,一般宜设在水平坡段,其最小长度应 不小于《规范》规定,紧接水平坡段纵坡应不 大于3%。 拉坡时应受“控制点”或“经济点”制约, 导致纵坡设计起伏过大,纵坡不够理想,或者 土方工程量太大,经调整后仍难解决时,则可 用纸上移线的方法改善纵断面线形。
注 意 事 项
纵 断 面 设 计 要 点
纵断面设计是对平面设计 确定的路线所经地面的纵断面 上在高程上定出设计线,其主 要内容是正确地采用纵坡坡度, 合理地拟定纵坡线的位臵与坡 长,在设计线的变坡点处设臵 竖曲线及绘制纵断面图等。
纵 断 及面 注设 意计 事一 项般 原 则
应符合《规范》中对最大纵坡、最小纵 坡、坡长限制、纵坡最小长度、缓和坡段、 合成纵坡、平均纵坡及纵坡折减等规定。 纵坡应具有一定的平顺性,起伏不宜过 大及过于频繁,尽量避免采用极限纵坡值。 在连续采用极限长度的陡坡之间,不宜夹用 最短的缓和坡段。
需 要 事 项
三角板 1对; HB铅笔 1支; 绘图用方格纸 5 张; (35cmX50cm)
参 考 书 与 工 具 书
《道路勘测设计》
路基路面工程课程设计报告书
路基路面工程课程设计任务书2014年 3 月12 日至2014 年 4 月20 日课程名称:路基路面工程实训专业班级:姓名:学号:指导教师:2014年3月18日XX公路A标段路基路面结构设计一、路基稳定性设计该路段某段路基填土为粘土,填土高度为8米,边坡为直线型,土的重度γ=18.6KN/m3,土的内摩擦角φ=12°,粘聚力系数C=16.7MPa,设计荷载为公路I 级。
二、路基挡土墙设计该标段某路基需设计重力式挡土墙,填料为砂性土,土的重度γ=15KN/m3,内摩擦角φ=36°,粘聚力c=10Kpa;最大密实度16.8KN/m3;挡土墙设计参数为:基底摩阻系数:f=0.4;基底承载力:[σ0]=360Kpa;墙身材料:25#浆砌片石,2.5#砂浆,重度γ=24KN/m3,容许压应力[σ]= 580KPa,容许剪应力[τ]= 90Kpa,容许拉应力。
[σw1]=40Kpa;墙身与填料摩擦角:δ=1/2φ;挡土墙最大填土高度为6米。
三、路面工程设计1、路段初始年交通量,见表1(辆/天)。
2、年,路面材料参数取规范中的数值,自然区划为Ⅲ区,进行柔性和刚性路面设计。
设计一路基稳定性设计一、设计资料:该路段某段路基填土为粘土,填土高度为8米,边坡为直线型,土的重度γ=18.6KN/m3,土的内摩擦角φ=12°,粘聚力系数C=16.7MPa,设计荷载为公路I 级。
二、课程设计目标通过课程设计,让学生初步了解该专业所涉及规范,培养学生独立思考独立进行该课程有关课程创作设计的能力;从而使学生熟练掌握路基路面工程的重要理论知识,为从事该行业打下良好的专业基础。
三、设计依据1、《公路路基设计规范》(JTG D30-2004);人民交通出版社;2、《公路沥青路面设计规范》(JTG D50—2006);人民交通出版社;3、《公路路基设计规范》(JTG D30-2004);人民交通出版社;4、《公路沥青路面设计规范》(JTG D50—2006);人民交通出版社;5、《城市道路工程设计规范》(CJJ37-2012);人民交通出版社;6、《路基路面工程》以及高等教育教科书(李伟)四、设计要求道路等级为公路一级,双向四车道,设计荷载为公路Ⅰ级五、路基边坡坡度在地质条件良好,边坡高度不大于20m时,其边坡坡度不易陡于表4.1的规定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沥青路面厚度设计计算书学号:姓名:班级:成绩:日期:2014年9月沥青路面厚度设计A、基本情况某地拟新建一条二级公路省道,路线总长21km,双向四车道,路面宽度为16m,该地属公路自然区划IV区,路基为低液限粘土土质,填方路基最大高度2.1m,路床顶距地下水位平均高度1.4m,属中湿状态,根据室内试验法确定土基回弹模量50MPa,年降雨量1200mm,最高气温39℃,最低气温-10℃。
拟采用沥青混凝土路面,根据规范规定,查表得其设计使用期12年。
B、交通荷载情况根据区域交通分析预测近期交通组成和交通量如表1所示,交通量年平均增长率为4%。
表1 近期交通组成与交通量要求:试根据交通荷载等级,选择相应的基层(和底基层)材料进行组合设计,并根据进行沥青路面厚度设计计算,编制计算书(计算书格式及编目示例附后)。
一、基本设计条件与参数依题意得,基本设计条件如下:新建二级公路,双向四车道,路面宽度16m ,公路自然区划IV 区,低液限粘土土质,填方路基最大高度2.1m ,路床顶距地下水位平均高度1.4m ,中湿状态,年降雨量1200mm ,最高气温39℃,最低气温-10℃。
基本参数如下:土基回弹模量50MPa ,设计使用期12年,交通量年平均增长率为4%。
二、交通量分析本设计的累计当量轴次的计算以双轮组单轴载100kN 为标准轴载,以BZZ-100表示。
1. 当设计弯沉值为指标时,当量轴次计算公式及计算结果如下:4.35121ki i i P N C C n P =⎛⎫= ⎪⎝⎭∑注:轴载小于25kN 的轴载作用不计查《规范》得该公路车道系数为0.4,累计当量轴次计算如下:()[]()[](次)61210835.84.0418.402704.0365104.0136511⨯=⨯⨯⨯-+=⨯-+=ηN rr N te属于中等交通。
2. 以半刚性基层层底拉应力为指标计算当量轴次注:轴载小于50kN 的轴载作用不计查《规范》得车道系数为0.4,累计当量轴次计算如下:(次)71210585.14.0823.722504.0365]1)04.01[(365]1)1[(⨯=⨯⨯⨯-+=⨯-+=ηN r r N t e属于重交通。
由1、2计算可得,该设计道路的累积轴载情况属于重交通级别。
三、结构组合设计1.初拟结构组合和材料选取参照《规范》,本道路设计选用6层基本层位,路面结构面层采用沥青混凝土(18cm),其中表面层采用细粒式密级配沥青混凝土(厚度4cm),中面层采用中粒式密级配沥青混凝土(厚度6cm),下面层采用粗粒式密级配沥青混凝土(厚度8cm);基层采用水泥稳定碎石(厚度取20cm );底基层采用石灰土(厚度待定),初拟厚度40cm 。
2.各层材料的抗压模量与劈裂强度查表得到各层材料的抗压回弹模量和劈裂强度。
抗压回弹模量取20℃的模量,得到20℃的抗压回弹模量:细粒式密级配沥青混凝土为1400MPa ,中粒式密级配沥青混凝土为1200MPa ,粗粒式密级配沥青混凝土为1000MPa ,水泥碎石为1500MPa ,石灰土550MPa 。
弯拉回弹模量和弯拉强度沥青层取15℃的值,分别为2000MPa 、 1800MPa 、1200MPa 、3550MPa 、1480MPa 。
各层材料的劈裂强度:细粒式密级配沥青混凝土为1.4MPa ,中粒式密级配沥青混凝土为1.0MPa ,粗粒式密级配沥青混凝土为0.8MPa ,水泥碎石为0.5MPa ,石灰土0.225MPa 。
3.土基回弹模量的确定依题意得土基回弹模量为50MPa 。
四、弯沉计算本公路为二级公路,公路等级系数取1.1,面层是沥青混凝土,面层类型系数取1.0,半刚性基层,底基层总厚度大于20cm ,基层类型系数取1.0。
该路面结构属于弹性层状体系,计算较复杂,因此借助计算机软件完成计算任务,计算结果如下:路面设计弯沉 mm A A A N l b s c e d 269.06002.0==-五、层底拉应力计算通过电算程序计算得到,各层层底拉应力与容许拉应力计算结果如下:六、设计极限状态验证极限状态验证如下:格)(见层底拉应力计算表R m d s mml mm l σσ≤=≤=9.269.26路面厚度验证如下:cm cm H 45~40784020864≥=++++= 因此方案一符合设计要求。
七、设计成果优化由于设计道路等级仅为二级公路,出于节省沥青用料的目的,新的方案从减少沥青层厚度的角度考虑,同时加厚水泥稳定碎石基层厚度,在保证路面承载能力和满足最小防冻厚度的要求,底基层厚度也可得到一定的缩减。
设计方案如下: 1.初拟结构组合和材料选取路面结构面层采用沥青混凝土(15cm),其中表面层采用细粒式密级配沥青混凝土(厚度4cm),中面层采用中粒式密级配沥青混凝土(厚度5cm),下面层采用粗粒式密级配沥青混凝土(厚度6cm);基层采用水泥稳定碎石(厚度取30cm );底基层采用石灰土(厚度待定),初拟厚度30cm 。
2.各层材料的抗压模量与劈裂强度与设计弯沉计算同方案一。
路面设计弯沉 mm A A A N l b s c ed 269.06002.0==-五、层底拉应力计算通过电算程序计算得到,各层层底拉应力与容许拉应力计算结果如下:六、设计极限状态验证极限状态验证如下:格)(见层底拉应力计算表R m d s mml mm l σσ≤=≤=9.269.26路面厚度验证如下:cm cm H 45~40753030654≥=++++= 因此方案二符合设计要求。
综上,方案二和方案一都能满足强度和弯沉指标的要求,但方案二中路面结构层总厚度和沥青面层厚度降低,造价更加低廉,因此,在道路要求不高的条件下,可选择方案二。
普通水泥混凝土路面板厚设计计算书学号:姓名:班级:成绩:日期:2014年9月普通水泥混凝土路面板厚设计A、基本情况某地拟新建一条二级公路省道,路线总长21km,双向四车道,路面宽度为16m,该地属公路自然区划IV区,路基为低液限粘土,路床顶距地下水位平均高度1.4m,本地石料以砂岩为主。
拟采用普通水泥混凝土路面,根据规范规定,查表得其设计基准期20年,目标可靠度85%。
综合以往工程情况,结合施工企业一般技术、设备和工艺水平,确定其变异水平等级为“中”。
B、交通荷载情况根据区域交通分析确定:设计车道初始年平均日标准轴载作用次数N s为3775,交通量年平均增长率为4%;设计荷载选定为单轴双轮100kN,单次极限荷载经调研选定为单轴双轮170kN。
C、其他已知情况选定平面尺寸:5m长,4m宽。
接缝:缩缝为设传力杆的假缝,纵缝为带拉杆的平头真缝。
路肩:基层材料与路面相同,面层采用与面层同厚度水泥混凝土,与路面板间设拉杆连接。
要求:试根据交通荷载等级,选择相应的基层(和底基层)材料进行组合设计,并根据初估板厚进行板厚设计计算,编制计算书(计算书格式及编目示例附后)。
一、基本设计条件与参数依题意得:设计道路为二级公路,路面宽度16m ,属公路自然区划IV 区,路基为低液限粘土,路床顶距地下水位平均高度1.4m ,设计基准期20年,目标可靠度85%,变异水平等级为“中”;设计车道初始年平均日标准轴载作用次数N s 为3775,交通量年平均增长率为4%;设计荷载选定为单轴双轮100kN ,单次极限荷载经调研选定为单轴双轮170kN 。
二、交通量分析由题意可知年交通量平均增长率为4%,由《规范》得临界荷位处的车辆轮迹横向分布系数为0.39。
计算设计基准期内设计车道标准轴载累计作用次数如下:()[]()[]次720106.139.004.0365104.01375536511⨯=⨯⨯-+⨯=⨯-+=ηr tr s e g g N N 查表得设计道路交通量等级属于重交通。
三、结构组合设计参照《规范》,根据二级公路、重交通和中级变异水平,查表得初拟定路面结构组合如下:面层选用普通混凝土,厚度为0.25m ;基层选用水泥稳定碎石,厚度为0.20m ,底基层选用水泥稳定碎石,厚度为0.20m 。
普通混凝土板的尺寸选定为长5m ,宽4m 。
四、路基参数计算 1.参数选择查表得取重交通荷载等级要求路基综合回弹模量该值为80MPa 。
查表得水泥混凝土弯拉强度标准值5.0MPa ,相应弯拉模量31GPa ,泊松比取0.15,线胀系数为1.0⨯10-5/℃。
查表得取水泥稳定碎石基层回弹模量为2500MPa ,水泥稳定碎石底基层为1500MPa ,7d 浸水抗压强度分别为5.5MPa 和2.5MPa ,上层的泊松比取为0.20。
2.综合回弹模量计算因双层水泥稳定碎石基层,故选择分离式双层板模型。
因除路基外只有单层基层,所以:,.x x E MPa h m ==1500020442.061.126.086.020.0ln 26.086.0=⨯-=+=αMPa E E E E x t 292.2580801500442.000=⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=α五、荷载应力计算1. 上层板在设计荷载作用下的荷载应力计算上层板弯曲刚度:..()(.)c cc c E h D MN m v ⨯===⋅--3322310000254129121121015 下层板弯曲刚度:m MN h E D b b b b ⋅=-⨯=-=74.1)20.01(1220.02500)1(122323ν 双层板总的刚度半径:m E D D r t b c g 639.025.29274.129.4121.121.13131=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=标准轴载在临界荷位处产生的的荷载应力按下式计算:MPaP h r D D s c g c bps262.110025.0639.029.4174.111045.111045.194.0265.0394.0265.03=⨯⨯⨯+⨯=+⨯=----σ下层板材料为水稳碎石,无需计算其荷载应力。
2. 计算荷载疲劳应力查《规范》得应力折减系数k r =0.87;二级公路k c =1.05;荷载疲劳应力系数k f :. 2.574f e k N λ===005716002000荷载疲劳应力:MPa k k k ps f c r pr 97.2262.1574.205.187.0=⨯⨯⨯==σσ3. 计算轴载在四边自由板的临界荷位处产生的荷载应力 设计轴载在四边自由板的临界荷位处产生的荷载应力:MPaP h r D D m c g c bps078.217025.0639.029.4174.111045.111045.194.0265.0394.0265.03=⨯⨯⨯+⨯=+⨯=----σ最重轴载在面层板临界荷位处产生的荷载应力计算公式与σps 相同,但要用最重轴载P m 代替式中的设计轴载P s 。