小升初奥数题必考题
小升初奥数题必考100道及答案(完整版)
小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初奥数题大全100道附答案(完整版)
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小升初奥数50道经典奥数题及答案解析
小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。
根据题意可得0.01x = 0.1x - 9。
整理得到0.09x = 9,解得x = 100。
2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 3,解得x = 300。
3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。
4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 0.02,解得x = 2。
5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。
解析:可以将四个小数都化为百分数进行比较。
0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。
显然,1%是最小的。
6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。
7. 将0.35表示成分数形式。
解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。
8. 填入下面的括号中:(2-3)÷(-2)=()。
解析:(2-3)÷(-2) = -1/(-2) = 1/2。
9. 计算:(-2)+3-5×(-4)÷(-2)。
解析:根据运算法则,先进行乘法和除法,再进行加法和减法。
(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。
10. 计算:(-12)-0.5×(2-3)+4÷2。
解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。
小升初数学常考奥数题100道附答案(完整版)
小升初数学常考奥数题100道附答案(完整版)1. 计算:1+2-3-4+5+6-7-8+9+10-11-12+...+2017+2018-2019-2020答案:-2020思路:每4 个数的计算结果为-4,2020÷4 = 505,所以结果为-4×505 = -20202. 某数除以4 余3,除以5 余2,除以6 余1,这个数最小是多少?答案:57思路:满足除以4 余3 的数有3、7、11、15、19...;满足除以5 余2 的数有2、7、12、17、22...;满足除以6 余1 的数有1、7、13、19、25...。
所以这个数最小是573. 鸡兔同笼,鸡比兔多15 只,共有脚180 只,鸡兔各有多少只?答案:鸡45 只,兔30 只思路:设兔有x 只,则鸡有x + 15 只。
4x + 2×(x + 15) = 180,解得x = 30,鸡有45 只4. 一个数减去7 的差再乘以7,所得的结果与它减去13 的差再乘以13 的结果相同,这个数是多少?答案:20思路:设这个数为x,(x - 7)×7 = (x - 13)×13,解得x = 205. 甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次在离 B 地55 千米处相遇,A、B 两地相距多少千米?答案:170 千米思路:第一次相遇时,甲走了75 千米,两人共走了一个全程;第二次相遇时,两人共走了三个全程,所以甲走了75×3 = 225 千米,此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米6. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个相同的长方形的面积,一个面的面积为56÷4 = 14 平方厘米,长方形的长(即正方体的棱长)为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米7. 有三根铁丝,一根长54 米,一根长72 米,一根长36 米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?答案:18 米思路:求54、72、36 的最大公因数,为188. 一个最简分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是2/3,原来的分数是多少?答案:21/29思路:设分子为x,则分母为50 - x,(x - 5) / (50 - x - 5) = 2 / 3,解得x = 21,分数为21/299. 小明买了3 支铅笔和2 支钢笔,共用去22 元,钢笔的单价是铅笔的6 倍,钢笔和铅笔的单价各是多少元?答案:钢笔12 元,铅笔2 元思路:设铅笔单价为x 元,则钢笔单价为6x 元,3x + 2×6x = 22,解得x = 2,钢笔单价12 元10. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩16 千克,这桶油有多少千克?答案:60 千克思路:设这桶油有x 千克,x - 1/5x - 1/5x - 20 = 16,解得x = 6011. 某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第三车间少40 人,三个车间共有多少人?答案:560 人思路:设总人数为x 人,第三车间人数为3/7×(3/4x + x),则3/7×(3/4x + x) - 1/4x = 40,解得x = 56012. 学校组织数学竞赛,按参赛人数的1/5 颁奖,分设一、二、三等奖,已知获二等奖的人数比一等奖多20 人,且获二等奖的人数是三等奖的4/5,一共有多少人参赛?答案:1500 人思路:设参赛总人数为x 人,二等奖人数为1/5x×4/9,一等奖人数为1/5x×1/9,1/5x×4/9 - 1/5x×1/9 = 20,解得x = 150013. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:9 块思路:设原来糖果总数为x 块,45%x = 25%(x + 16),解得x = 20,奶糖有45%×20 = 9 块14. 修一条路,已修的和未修的长度比是1∶3,再修300 米后,已修的和未修的长度比是1∶2,这条路全长多少米?答案:3600 米思路:设已修的长度为x 米,未修的长度为3x 米,(x + 300) / (3x - 300) = 1 / 2,解得x = 900,全长4x = 3600 米15. 甲、乙两仓库存货吨数比为4∶3,如果从甲库中取出8 吨放到乙库中,则甲、乙两仓库存货吨数比为4∶5,两仓库原存货总吨数是多少吨?答案:63 吨思路:设甲仓库原存货4x 吨,乙仓库原存货3x 吨,(4x - 8) / (3x + 8) = 4 / 5,解得x = 9,总吨数7x = 63 吨16. 在一个底面半径是10 厘米的圆柱形杯中装水,在水中放一底面半径为5 厘米的圆锥形铝锤,使铝锤全部被水淹没,当铝锤从杯中取出后,杯里水面下降了 5 毫米,求铝锤的高是多少厘米?答案:6 厘米思路:下降的水的体积等于圆锥形铝锤的体积,3.14×10×10×0.5 = 1/3×3.14×5×5×h,解得h = 6 厘米17. 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1 小时到达,如果以原速行驶120 千米后,再将速度提高25%,则可提前40 分钟到达,那么甲、乙两地相距多少千米?答案:270 千米思路:设原速度为v,原时间为t,vt = 1.2v×(t - 1),解得t = 6 小时。
小升初最常考奥数题100道及答案(完整版)
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
小升初必考50道经典奥数题(含标准答案)
小升初必考道经典奥数题(含答案).已知一张桌子地价钱是一把椅子地倍,又知一张桌子比一把椅子多元,一张桌子和一把椅子各多少元?、箱苹果重千克.一箱梨比一箱苹果多千克,箱梨重多少千克?.甲乙二人从两地同时相对而行,经过小时,在距离中点千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?.李军和张强付同样多地钱买了同一种铅笔,李军要了支,张强要了支,李军又给张强元钱.每支铅笔多少钱?.甲乙两辆客车上午时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河地两岸.由于河上地桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发地车站,到站时已是下午点.甲车每小时行千米,乙车每小时行千米,两地相距多少千米?(交换乘客地时间略去不计).学校组织两个课外兴趣小组去郊外活动.第一小组每小时走千米,第二小组每小时行千米.两组同时出发小时后,第一小组停下来参观一个果园,用了小时,再去追第二小组.多长时间能追上第二小组?.有甲乙两个仓库,每个仓库平均储存粮食吨.甲仓地存粮吨数比乙仓地倍少吨,甲、乙两仓各储存粮食多少吨?.甲、乙两队共同修一条长米地公路,甲队从东往西修天,乙队从西往东修天,正好修完,甲队比乙队每天多修米.甲、乙两队每天共修多少米?.学校买来张桌子和把椅子共付元,已知每张桌子比每把椅子贵元,桌子和椅子地单价各是多少元?.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行千米,慢车每小时行千米,相遇时快车比慢车多行了千米,甲乙两地相距多少千米?.某玻璃厂托运玻璃箱,合同规定每箱运费元,如果损坏一箱,不但不付运费还要赔偿元.运后结算时,共付运费元.托运中损坏了多少箱玻璃?.五年级一中队和二中队要到距学校千米地地方去春游.第一中队步行每小时行千米,第二中队骑自行车,每小时行千米.第一中队先出发小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?.某厂运来一堆煤,如果每天烧千克,比计划提前一天烧完,如果每天烧千克,将比计划多烧一天.这堆煤有多少千克?.妈妈让小红去商店买支铅笔和个练习本,按价钱给小红元钱.结果小红却买了支铅笔和本练习本,找回元.求一支铅笔多少元?.学校组织外出参观,参加地师生一共人.一辆大客车比一辆卡车多载人,辆大客车和辆卡车载地人数相等.都乘卡车需要几辆?都乘大客车需要几辆?.某筑路队承担了修一条公路地任务.原计划每天修米,实际每天比原计划多修米,这样实际修地差米就能提前天完成.这条公路全长多少米?.某鞋厂生产双鞋,把这些鞋分别装入个纸箱和个木箱.如果个纸箱加个木箱装地鞋同样多.每个纸箱和每个木箱各装鞋多少双?.某工地运进一批沙子和水泥,运进沙子袋数是水泥地倍.每天用去袋水泥,袋沙子,几天以后,水泥全部用完,而沙子还剩袋,这批沙子和水泥各多少袋?.学校里买来了个保温瓶和个茶杯,共用了元钱.每个保温瓶是每个茶杯价钱地倍,每个保温瓶和每个茶杯各多少元?.两个数地和是,其中一个加数个位上是,去掉后,就与第二个加数相同.这两个数分别是多少?.一桶油连桶重千克,用去一半后,连桶重千克,桶重多少千米?.一桶油连桶重千克,倒出一半后,连桶还重千克,原来有油多少千克?.用一只水桶装水,把水加到原来地倍,连桶重千克,如果把水加到原来地倍,连桶重千克.桶里原有水多少千克?.小红和小华共有故事书本.如果小红给小华本,两人故事书地本数就相等,原来小红和小华各有多少本?.有桶油重量相等,如果从每只桶里取出千克,则只桶里所剩下油地重量正好等于原来桶油地重量.原来每桶油重多少千克?.把一根木料锯成段需要分钟,那么用同样地速度把这根木料锯成段,需要多少分?.一个车间,女工比男工少人,男、女工各调出人后,男工人数是女工人数地倍.原有男工多少人?女工多少人?.李强骑自行车从甲地到乙地,每小时行千米,小时到达,从乙地返回甲地时因逆风多用小时,返回时平均每小时行多少千米?.甲、乙二人同时从相距千米地两地相对而行,甲每小时行走千米,乙每小时走千米.如果甲带了一只狗与甲同时出发,狗以每小时千米地速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?.有红、黄、白三种颜色地球,红球和黄球一共有个,黄球和白球一共有个,红球和白球一共有个.三种球各有多少个?.在一根粗钢管上接细钢管.如果接根细钢管共长米,如果接根细钢管共长米.一根粗钢管和一根细钢管各长多少米?.水泥厂原计划天完成一项任务,由于每天多生产水泥吨,结果天就完成了任务,原计划每天生产水泥多少吨?.学校举办歌舞晚会,共有人参加了表演.其中唱歌地有人,跳舞地有人,既唱歌又跳舞地有多少人?.学校举办语文、数学双科竞赛,三年级一班有人,参加语文竞赛地有人,参加数学竞赛地有人,一科也没参加地有人.双科都参加地有多少人?.学校买了张桌子和把椅子,共用元.张桌子和把椅子地价钱相等,桌子和椅子地单价各是多少元?.父亲今年岁,年前父亲地年龄是儿子地倍,今年儿子多少岁?.有两桶油,甲桶油重是乙桶油重地倍,如果从甲桶倒入乙桶千克,两桶油就一样重,原来每桶各有多少千克油?.光明小学举办数学知识竞赛,一共题.答对一题得分,答错一题扣分,不答得分.小丽得了分,她答对几道,答错几道,有几题没答?.甲列火车长米,每秒行米;乙列火车长米,每秒行米,两车相向而行,从两车头相遇到两车尾相离需要几秒?.一列火车长米,通过一条长米地隧道,已知火车地速度是每分米,问火车通过隧道需要几分?.小明从家里到学校,如果每分走米,则正好到上课时间;如果每分走米,则离上课时间还有分.问小明从家里到学校有多远?.有一周长米地环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑米,乙每分钟跑米,经过几分钟二人第一次相遇?.有一个长方形纸板,如果只把长增加厘米,面积就增加平方米;如果只把宽增加厘米,面积就增加平方厘米.这个长方形纸板原来地面积是多少?.妈妈买苹果和梨各千克,付出元找回元.每千克苹果元,每千克梨多少元?.甲乙两人同时从相距千米地两地相对而行,经过小时相遇.甲地速度是乙地倍,甲乙两人每小时各行多少千米?.盒子里有同样数目地黑球和白球.每次取出个黑球和个白球,取出几次以后,黑球没有了,白球还剩个.一共取了几次?盒子里共有多少个球?.上午时从汽车站同时发出路和路公共汽车,路车每隔分钟发一次,路车每隔分钟发一次,求下次同时发车时间..父亲今年岁,儿子今年岁,多少年前父亲地年龄是儿子年龄地倍?.王老师有一盒铅笔,如平均分给名同学余支,平均分给名同学余支,平均分给名同学余支,平均分给名同学余支.问这盒铅笔最少有多少支?.一块平行四边形地,如果只把底增加米,或只把高增加米,它地面积都增加平方米.求这块平行四边形地原来地面积?、想:由已知条件可知,一张桌子比一把椅子多地元,正好是一把椅子价钱地()倍,由此可求得一把椅子地价钱.再根据椅子地价钱,就可求得一张桌子地价钱.解:一把椅子地价钱:÷()(元)一张桌子地价钱:×(元)答:一张桌子元,一把椅子元.、想:可先求出箱梨比箱苹果多地重量,再加上箱苹果地重量,就是箱梨地重量. 解:×(千克)答:箱梨重千克.、想:根据在距离中点千米处相遇和甲比乙速度快,可知甲比乙多走×千米,又知经过小时相遇.即可求甲比乙每小时快多少千米.解:×÷÷(千米)答:甲每小时比乙快千米.、想:根据两人付同样多地钱买同一种铅笔和李军要了支,张强要了支,可知每人应该得()÷支,而李军要了支比应得地多了支,因此又给张强元钱,即可求每支铅笔地价钱.解:÷[()÷]÷[÷]÷(元)答:每支铅笔元.、想:根据已知两车上午时从两站出发,下午点返回原车站,可求出两车所行驶地时间.根据两车地速度和行驶地时间可求两车行驶地总路程.解:下午点是时.往返用地时间:(时)两地间路程:()×÷×÷(千米)答:两地相距千米.、想:第一小组停下来参观果园时间,第二小组多行了[()]?千米,也就是第一组要追赶地路程.又知第一组每小时比第二组快()千米,由此便可求出追赶地时间.解:第一组追赶第二组地路程:()(千米)第一组追赶第二组所用时间:÷()÷(小时)答:第一组小时能追上第二小组.、想:根据甲仓地存粮吨数比乙仓地倍少吨,可知甲仓地存粮如果增加吨,它地存粮吨数就是乙仓地倍,那样总存粮数也要增加吨.若把乙仓存粮吨数看作倍,总存粮吨数就是()倍,由此便可求出甲、乙两仓存粮吨数.解:乙仓存粮:(×)÷()()÷÷(吨)甲仓存粮:×(吨)答:甲仓存粮吨,乙仓存粮吨.、想:根据甲队每天比乙队多修米,可以这样考虑:如果把甲队修地天看作和乙队天修地同样多,那么总长度就减少个米,这时地长度相当于乙()天修地.由此可求出乙队每天修地米数,进而再求两队每天共修地米数.解:乙每天修地米数:(×)÷()()÷÷(米)甲乙两队每天共修地米数:×(米)答:两队每天修米.、想:已知每张桌子比每把椅子贵元,如果桌子地单价与椅子同样多,那么总价就应减少×元,这时地总价相当于()把椅子地价钱,由此可求每把椅子地单价,再求每张桌子地单价.解:每把椅子地价钱:(×)÷()()÷÷(元)每张桌子地价钱:(元)答:每张桌子元,每把椅子元.、想:根据已知地两车地速度可求速度差,根据两车地速度差及快车比慢车多行地路程,可求出两车行驶地时间,进而求出甲乙两地地路程.解:()×[÷()]×[÷]×(千米)答:甲乙两地相距千米.、想:根据已知托运玻璃箱,每箱运费元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿元地条件可知,应付地钱数和实际付地钱数地差里有几个()元,就是损坏几箱.解:(×)÷()÷(箱)答:损坏了箱.、想:因第一中队早出发小时比第二中队先行×千米,而每小时第二中队比第一中队多行()千米,由此即可求第二中队追上第一中队地时间.解:×÷()×÷(时)答:第二中队小时能追上第一中队.、想:由已知条件可知道,前后烧煤总数量相差()千克,是由每天相差()千克造成地,由此可求出原计划烧地天数,进而再求出这堆煤地数量.解:原计划烧煤天数:()÷()÷(天)这堆煤地重量:×()×(千克)答:这堆煤有千克.、想:小红打算买地铅笔和本子总数与实际买地铅笔和本子总数量是相等地,找回元,说明()支铅笔当作()本练习本计算,相差元.由此可求练习本地单价比铅笔贵地钱数.从总钱数里去掉个练习本比支铅笔贵地钱数,剩余地则是()支铅笔地钱数.进而可求出每支铅笔地价钱.解:每本练习本比每支铅笔贵地钱数:÷()÷(元)个练习本比支铅笔贵地钱数:×(元)每支铅笔地价钱:()÷()÷(元)也可以用方程解:设一枝铅笔元,则一本练习本为元.×???????????????????????????? ?????????????????????????答:每支铅笔元.、想:根据一辆客车比一辆卡车多载人,可求辆客车比辆卡车多载地人数,即多用地()辆卡车所载地人数,进而可求每辆卡车载多少人和每辆大客车载多少人.解:卡车地数量:÷[×÷()]÷[×÷]÷(辆)客车地数量:÷[×÷()]÷[]÷(辆)答:可用卡车辆,客车辆.、想:根据计划每天修米,这样实际提前地长度是(×)米.根据每天多修米可求已修地天数,进而求公路地全长.解:已修地天数:(×)÷÷(天)公路全长:()××(米)答:这条公路全长米.、想:根据已知条件,可求个纸箱转化成木箱地个数,先求出每个木箱装多少双,再求每个纸箱装多少双.解:个纸箱相当木箱地个数:×(÷)×=(个)一个木箱装鞋地双数:÷()÷(双)一个纸箱装鞋地双数:×÷(双)答:每个纸箱可装鞋双,每个木箱可装鞋双、想:由已知条件可知道,每天用去袋水泥,同时用去×袋沙子,才能同时用完.但现在每天只用去袋沙子,少用(×)袋,这样才累计出袋沙子.因此看袋里有多少个少用地沙子袋数,便可求出用地天数.进而可求出沙子和水泥地总袋数.解:水泥用完地天数:÷(×)÷(天)水泥地总袋数:×(袋)沙子地总袋数:×(袋)答:运进水泥袋,沙子袋.、想:根据每个保温瓶地价钱是每个茶杯地倍,可把个保温瓶地价钱转化为个茶杯地价钱.这样就可把个保温瓶和个茶杯共用地元钱,看作个茶杯共用地钱数.解:每个茶杯地价钱:÷(×)(元)每个保温瓶地价钱:×(元)答:每个保温瓶元,每个茶杯元.、想:已知一个加数个位上是,去掉,就与第二个加数相同,可知第一个加数是第二个加数地倍,那么两个加数地和,就是第二个加数地(+)倍.解:第一个加数:÷()第二个加数:×答:这两个加数分别是和.、想:由已知条件可知,千克和千克地差正好是半桶油地重量.千克是半桶油和桶地重量,去掉半桶油地重量就是桶地重量.解:()(千克)答:桶重千克.、想:由已知条件可知,千克与千克地差正好是半桶油地重量,再乘以就是原来油地重量.解:()×(千克)答:原来有油千克.、想:由已知条件可知,桶里原有水地()倍正好是()千克,由此可求出桶里原有水地重量.解:()÷()÷(千克)答:桶里原有水千克.、想:从“小红给小华本,两人故事书地本数就相等”这一条件,可知小红比小华多(×)本书,用共有地本去掉小红比小华多地本数,剩下地本数正好是小华本数地倍.解:小华有书地本数:(×)÷(本)小红有书地本数:×(本)答:原来小红有本,小华有本.、想:由已知条件知,桶油共取出(×)千克.由于剩下油地重量正好等于原来桶油地重量,可以推出()桶油地重量是(×)千克.解:×÷()(千克)答:原来每桶油重千克.、想:把一根木料锯成段,只锯出了()个锯口,这样就可以求出锯出每个锯口所需要地时间,进一步即可以求出锯成段所需地时间.解:÷()×()(分)答:锯成段需要分钟.、想:女工比男工少人,男、女工各调出人后,女工仍比男工少人.这时男工人数是女工人数地倍,也就是说少地人是女工人数地()倍.这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人.解:÷()(人)女工原有:(人)男工原有:(人)答:原有男工人,女工人.、想:由每小时行千米,小时到达可求出两地地路程,即返回时所行地路程.由去时小时到达和返回时多用小时,可求出返回时所用时间.解:×÷()(千米)答:返回时平均每小时行千米.、想:由题意知,狗跑地时间正好是二人地相遇时间,又知狗地速度,这样就可求出狗跑了多少千米.解:÷()(小时)×(千米)答:狗跑了千米.、想:由条件知,()表示三种球总个数地倍,由此可求出三种球地总个数,再根据题目中地条件就可以求出三种球各多少个.解:总个数:()÷(个)白球:(个)红球:(个)黄球:(个)答:白球有个,红球有个,黄球有个.、想:根据题意,米比米长地米数正好是根细钢管地长度,由此可求出一根细钢管地长度,然后求一根粗钢管地长度.解:()÷()(米)×(米)答:一根粗钢管长米,一根细钢管长米.、想:由题意知,实际天比原计划天多生产水泥(×)吨,而多生产地这些水泥按原计划还需用()天才能完成,也就是说原计划()天能生产水泥(×)吨.解:×÷()(吨)答:原计划每天生产水泥吨.、想:由题意知唱歌地人中也有跳舞地,同样跳舞地人中也有唱歌地,把两者相加,这样既唱歌又跑舞地就统计了两次,再减去参加表演地人,就是既唱歌又跳舞地人数.解:(人)答:既唱歌又跳舞地有人.、想:参加语文竞赛地人中有参加数学竞赛地,同样参加数学竞赛地人中也有参加语文竞赛地,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛地人数就统计了两次,所以将参加语文竞赛地人数加上参加数学竞赛地人数再加上一科也没参加地人数减去全班人数就是双科都参加地人数.解:(人)答:双科都参加地有人.、想:由“张桌子和把椅子地价钱相等”这一条件,可以推出张桌子就相当于把椅子地价钱,买张桌子和把椅子共用元,也就相当于买把椅子共用元.解:×(÷)(把)÷(元)×÷(元)答:桌子和椅子地单价分别是元、元.、想:年前父亲地年龄是()岁,儿子地年龄是()÷岁,再加上就是今年儿子地年龄.解:()÷(岁)答:今年儿子岁.、想:“如果从甲桶倒入乙桶千克,两桶油就一样重”可推出:甲桶油地重量比乙桶多(×)千克,又知“甲桶油重是乙桶油重地倍”,可知(×)千克正好是乙桶油重量地()倍.解:×÷()(千克)×(千克)答:原来甲桶有油千克,乙桶有油千克.、想:根据题意,题全部答对得分,答错一题将失去()分,而不答仅失去分.小丽共失去()分.再根据()÷(题)……(分),分析答对、答错和没答地题数.解:(×)÷(题)……(分)(题)答:答对题,答错题,有题没答.、想:“从两车头相遇到两车尾相离”,两车所行地路程是两车身长之和,即()米,速度之和为()米.根据路程、速度和时间地关系,就可求得所需时间.解:()÷()÷(秒)答:从两车头相遇到两车尾相离,需要秒.、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行地路程正好是车身与隧道长度之和.解:()÷÷(分)答:火车通过隧道需分.、想:在每分走米地到校时间内按两种速度走,相差地路程是(×)米,又知每秒相差()米,这就可求出小明按每分米地到校时间.解:×÷()(分)×(米)答:小明从家里到学校是米.、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即米,又知乙每分钟比甲多跑()米,即可求第一次相遇时经过地时间.解:÷()÷(分)答:经过分钟两人第一次相遇、想:由“只把宽增加厘米,面积就增加平方厘米”,可求出原来地长是:(÷)厘米,同理原来地宽就是(÷)厘米,求出长和宽,就能求出原来地面积.解:(÷)×(÷)(平方厘米)答:这个长方形纸板原来地面积是平方厘米.、想:用去地钱数除以就是千克苹果和千克梨地总钱数.从这个总钱数里去掉千克苹果地钱数,就是每千克梨地钱数.解:()÷÷(元)答:每千克梨元.、想:由题意知,甲乙速度和是(÷)千米,这个速度和是乙地速度地()倍. 解:÷÷()(千米)×(千米)答:甲乙每小时分别行千米、千米.、想:两种球地数目相等,黑球取完时,白球还剩个,说明黑球多取了个,而每次多取()个,可求出一共取了几次.解:÷()(次)××(个)或××(个)答:一共取了次,盒子里共有个球.、想:路和路下次同时发车时,所经过地时间必须既是分地倍数,又是分地倍数.也就是它们地最小公倍数.个人收集整理-ZQ解:和地最小公倍数是时分时分答:下次同时发车时间是上午时分.、想:父、子年龄地差是()岁,当父亲地年龄是儿子年龄地倍时,这个差正好是儿子年龄地()倍,由此可求出儿子多少岁时,父亲是儿子年龄地倍.又知今年儿子岁,两个岁数地差就是所求地问题.解:()÷()(岁)(年)答:年前父亲地年龄是儿子年龄地倍.、想:根据题意,可以将题中地条件转化为:平均分给名同学、名同学、名同学、名同学都少一支,因此,求出、、、地最小公倍数再减去就是要求地问题.解:、、、地最小公倍数是(支)答:这盒铅笔最少有支.、想:根据只把底增加米,面积就增加平方米,?可求出原来平行四边形地高.根据只把高增加米,面积就增加平方米,可求出原来平行四边形地底.再用原来地底乘以原来地高就是要求地面积.解:(÷)×(÷)(平方米)答:平行四边形地原来地面积是平方米.?地得到地得到地11 / 11。
小升初数学必考奥数题100道附答案(完整版)
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
小升初奥数题必考题及答案2023
小升初奥数题必考题及答案20231.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?答案是15棵算式:1÷(1/6-1/10)=15棵3.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?设停电X分钟,则:粗蜡烛长度减少:X÷60÷2=X÷120细蜡烛长度减少:X÷601-(X÷120)=2(1-X÷60)X=40分钟4.在一个直径是2分米的圆柱形容器里,放入一个底面半径3厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米.圆锥形铁块的高是多少厘米?分析:根据题干,这个圆锥形铁块的体积就是上升0.3厘米的水的体积,由此可以求出这个圆锥的体积,再利用圆锥的体积公式即可求出这个圆锥的高.解答:解:2分米=20厘米,3.14×(20÷2)2×0.3×3÷(3.14×32),=314×0.9÷28.26,=282.6÷28.26,=10(厘米);答:圆锥形铁块的高是10厘米.5,汽车上山每小时行20千米,3小时登顶,下山按原路返回,用了2小时,求汽车往返的平均速度.分析:根据速度×时间=路程,求出上山的路程,用上、下山的总路程除以总时间就是汽车往返的平均速度.解答:解:20×3×2÷(3+2),=120÷5,=24(千米),答:汽车往返的平均速度是24千米.6、为了学生的卫生安全,学校给每个学生配一个水杯,同样的水杯甲乙丙三家商场每只的售价都是3元,不过各商场的优惠措施有所不同:甲商场:一律按八五折出售;乙商场:买5只送1只;丙商场:购物每满200元减30元现金,以此类推….(不够200元的部分一律不减);学校需要购买150只水杯,请你当参谋,算一算到哪家购买比较合算?需要多少钱?分析:本题根据学校需要购买的水杯及三家商场的优惠方案分别进行分析计算后即能得出到哪家购买比较合算,需要多少钱:已知学校需要购买150只水杯,三家商场每只的售价都是3元.甲商场:律按八五折出售,即按原价的85%出售,需花:3×150×85%=382.5元;。
小升初数学奥数题120道附带完整答案
小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。
答案:1。
解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。
2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。
解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。
3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。
答案:4/5。
解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。
4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。
解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。
5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。
解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。
小升初奥数题及答案五篇
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
小升初必考奥数题
1、小明有10块糖,他每天吃掉其中的一半,并且每天都得到与剩下糖数一样多的新糖,问:经过一周后,小明一共有多少块糖?A. 10块B. 20块C. 160块D. 320块(答案)C2、一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形。
问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?A. 3994个三角形,5991刀B. 3996个三角形,5991刀C. 3992个三角形,5989刀D. 3990个三角形,5987刀(答案)A3、甲、乙、丙三人进行象棋比赛,每两人赛一盘,规定:赢一盘得2分,输得0分,打平各得1分,全部比赛的三盘棋下完后,甲得3分,乙得1分,那么丙得多少分?A. 1分B. 2分C. 3分D. 4分(答案)B4、有10支足球队进行单循环赛,每个队都恰好与其他队各比赛一场,胜者得3分,负者得0分,平局两队各的1分。
比赛结束后,全部球队的总积分是120分,那么比赛中平局的场数共有多少场?A. 10场B. 15场C. 20场D. 25场(答案)B5、5条直线两两相交,没有两条直线平行,没有任何三条直线通过同一个点,以这5条直线的交点为顶点能构成几个三角形?(构成的三角形的边不一定在这5条直线上)A. 10个B. 15个C. 20个D. 25个(答案)A6、在直角三角形中,如果一个锐角是另一个锐角的2倍,那么,这两个锐角分别是多少度?A. 30°,60°B. 20°,40°C. 25°,50°D. 35°,70°(答案)A7、一个口袋里有乒乓球240个,第二个口袋里有乒乓球60个,每次从第一个口袋里取出12个乒乓球放入第二个口袋里,同时从第二个口袋里取出乒乓球7个放入第一个口袋里(这样只算一次)。
问:这样取多少次才能使两个口袋里的乒乓球一样多?A. 20次B. 22次C. 24次D. 26次(答案)C8、甲、乙、丙、丁四人每两人打一场球赛,已知甲胜了3场,乙胜了1场,那么丙最多胜多少场?A. 2场B. 3场C. 4场D. 5场(答案)B9、小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?A. 300分钟B. 305分钟C. 310分钟D. 315分钟(答案)D10、有10个数,若去掉最大的数,则剩下的数的平均数是22;若去掉最小的数,则剩下的数的平均数是25。
小升初最常考的奥数题100道及答案(完整版)
小升初最常考的奥数题100道及答案(完整版)1. 已知一张桌子的价钱是一把椅子的10 倍,又知一张桌子比一把椅子多288 元,一张桌子和一把椅子各多少元?答案:桌子320 元,椅子32 元。
解析:设一把椅子的价格为x 元,则一张桌子的价格为10x 元。
根据一张桌子比一把椅子多288 元,可列出方程:10x - x = 288,解得x = 32,那么桌子的价格为10x = 320 元。
2. 3 箱苹果重45 千克。
一箱梨比一箱苹果多5 千克,3 箱梨重多少千克?答案:60 千克。
解析:一箱苹果的重量为45÷3 = 15 千克,一箱梨比一箱苹果多5 千克,所以一箱梨重15 + 5 = 20 千克,3 箱梨的重量为20×3 = 60 千克。
3. 甲乙二人从两地同时相对而行,经过4 小时,在距离中点4 千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?答案:2 千米。
解析:甲比乙在4 小时内多走了4×2 = 8 千米,那么甲每小时比乙快8÷4 = 2 千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了7 支,李军又给张强0.6 元钱。
每支铅笔多少钱?答案:0.15 元。
解析:两人付同样多的钱,应得到同样多的铅笔,一共买了13 + 7 = 20 支铅笔,平均每人10 支。
李军多要了13 - 10 = 3 支,给张强0.6 元,所以每支铅笔的价格为0.6÷3 = 0.2 元。
5. 甲乙两辆客车上午8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2 点。
甲车每小时行40 千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)答案:250 千米。
解析:下午2 点即14 点,从上午8 点到下午2 点经过了6 小时。
小升初数学常见奥数题100道附答案(完整版)
小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。
2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。
3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。
4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。
5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。
小升初常考的奥数题100道附答案(完整版)
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
小升初必考50道经典奥数题(内含答案)
小升初必考50道经典奥数题(含答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
小升初经典奥数题50道及解析
小学经典奥数题50道1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克,一箱梨比一箱苹果多5千克,3箱梨重多少千克?3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米相遇,甲比乙速度快,甲每小时比乙快多少千米?4、李军的张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需要交换乘客,然后按原路返回各自出发的车站,到站时已是下午两点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6、学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时走3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓库的储存吨数比乙仓库的4倍少5吨。
甲、乙两仓各储存粮食多少吨?8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10、一列火车和一列慢车,同时分别从甲乙两地相对开出,快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
问:托运中损坏了多少箱玻璃?12、五年级一中队和二中队要到距学校20千米的地方去春游,第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
小升初经典奥数题20道
【题-007】 浓度问题:(中等难度) 瓶中装有浓度为15%的酒精溶液1000克, 现在又分别倒入100克和400克的A、B 两种酒精溶液,瓶中的浓度变成了 14%.已知A种酒精溶液浓度是B种酒精 溶液浓度的2倍,那么A种酒精溶液的浓 度是百分之几?
【题-008】水和牛奶:(中等难度) 一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶 里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把 A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的 液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进 B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体, 而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶, 而在结束时,每个桶里又有多少水和牛奶?
【题-014】行程:(中等难度) 王强骑自行车上班,以均匀速度行驶.他 观察来往的公共汽车,发现每隔12分钟 有一辆汽车从后面超过他,每隔4分钟迎 面开来一辆,如果所有汽车都以相同的 匀速行驶,发车间隔时间也相同,那么 调度员每隔几分钟发一辆车?
【题-015】跑步:(中等难度)
狗跑5步的时间马跑3步,马跑4步的 距离狗跑7步,现在狗已跑出30米, 马开始追它。问:狗再跑多远,马可 以追上它?
【题-003】奇偶性应用:(中等难度)
桌上有9只杯子,全部口朝上,每次将其中 6只同时“翻转”.请说明:无论经过多少 次这样的“翻转”,都不能使9只杯子全部 口朝下。
【题-004】整除问题:(中等难度)
用一个自然数去除另一个整数,商40, 余数是16.被除数、除数、商数与余数 的和是933,求被除数和除数各是多 少?
01
【题-009】 巧算:(中 等难度)
小升初50道经典奥数题,有空练练手!(附答案以及详细解析)
小升初50道经典奥数题,有空练练手!(附答案以及详细解析)小升初奥数50题01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。
【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。
02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。
03、同学们进行广播操比赛,全班正好排成相等的6行。
小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。
从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。
04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。
第600颗是( )颜色。
【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。
05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。
06、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。
07、锯一根10米长的木棒,每锯一段要2分钟。
如果把这根木棒锯成相等的5段,一共要( )分钟。
小升初最常考的奥数题五篇
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩升初最常考的奥数题五篇》相关资料,希望帮助到您。
1.⼩升初最常考的奥数题 1、⼀艘轮船往返A、B两地,去时顺流每⼩时⾏36千⽶,返回时逆流每⼩时⾏24千⽶,往返⼀次共⽤15⼩时,A、B两地相距多少千⽶? 2、甲、⼄两⼈练习跑步,若甲让⼄先跑10⽶,则甲跑5秒钟可追上⼄,若甲让⼄先跑2秒钟,则甲跑4秒钟就可追上⼄。
问:甲⼄两⼈的速度各是多少? 3、甲、⼄、丙三⼈同时从A地跑向B地,当甲跑到B时,⼄离B还有35⽶,丙离B还有68⽶,当⼄跑到B时,丙离B还有40⽶。
A、B两地相距多少⽶? 4、甲⼄两⼈分别从A、B两地同时出发相向⽽⾏。
出发时他们的速1度之⽐是3:2,相遇后,甲的速度提⾼20%,⼄的'速度提⾼ 3,这样当甲到达B地时,⼄离A地还有41千⽶,那么A、B两地相距多少千⽶? 5、甲、⼄分别由A、B两地同时出发,甲、⼄两⼈的步⾏速度之⽐是3:2,若他们相向⽽⾏,则1⼩时后相遇,若同向⽽⾏,则甲需要多少时间才能追上⼄? 2.⼩升初最常考的奥数题 1、(安排)烤⾯包的架⼦上⼀次最多只能烤两个⾯包,烤⼀个⾯包每⾯需要2分钟,那么烤三个⾯包最少需要多少分钟? 2、(油和桶问题)⼀桶油连桶共重18千克,⽤去油的⼀半后,连桶还重9.75千克,原有油多少千克?桶重多少千克? 3、(和倍)青青农场⼀共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只? 4、(鸡兔同笼)实验⼩学举⾏数学竞赛,每做对⼀题得9分,做错⼀题倒扣3分,共有12道题,⼩旺得了84分,⼩旺做错了⼏道题? 5、(相遇问题)甲、⼄两⼈同时从相距2000⽶的两地相向⽽⾏,甲每分钟⾏55⽶,⼄每分钟⾏45⽶,如果⼀只狗与甲同时同向⽽⾏,每分钟⾏120⽶,遇到⼄后,⽴即回头向甲跑去,遇到甲再向⼄跑去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初六年级奥数题及答案 20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【题-013】四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
问:狗再跑多远,马可以追上它?【题-016】排队:(中等难度)有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()【题-017】分数方程:(中等难度)若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。
再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?【题-018】自然数和:(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.【题-019】准确值:(中等难度)【题-020】巧求整数部分题目:(中等难度)(第六届小数报决赛)A 8.8 8.98 8.998 8.9998 8.99998,A的整数部分是_________.【题目答案】【题-001解答】抽屉原理首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的【题-002解答】牛吃草这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为"1个单位".则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。
从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。
【题-003解答】奇偶性应用要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
∴被除数=21×40+16=856。
答:被除数是856,除数是21。
【题-004解答】整除问题∵被除数=除数×商+余数,即被除数=除数×40+16。
由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。
答:被除数是856,除数是21【题-005解答】填数字:解此类数独题的关键在于观察那些位置较特殊的方格(对角线上的或者所在行、列空格比较少的),选作突破口.本题可以选择两条对角线上的方格为突破口,因为它们同时涉及三条线,所受的限制最严,所能填的数的空间也就最小.副对角线上面已经填了2,3,8,6四个数,剩下1,4,5和7,这是突破口.观察这四个格,发现左下角的格所在的行已经有5,所在的列已经有1和 4,所以只能填7.然后,第六行第三列的格所在的行已经有5,所在的列已经有4,所以只能填1.第四行第五列的格所在的行和列都已经有5,所以只能填4,剩下右上角填5.再看主对角线,已经填了1和2,依次观察剩余的6个方格,发现第四行第四列的方格只能填7,因为第四行和第四列已经有了5,4,6,8,3.再看第五行第五列,已经有了4,8,3,5,所以只能填6.此时似乎无法继续填主对角线的格子,但是,可观察空格较少的行列,例如第四列已经填了5个数,只剩下1,2,5,则很明显第六格填2,第八格填1,第三格填5.此时可以填主对角线的格子了,第三行第三列填8,第二行第二列填3,第六行第六列填4,第七行第七列填5.继续依次分析空格较少的行和列(例如依次第五列、第三行、第八行、第二列……),可得出结果如下图.【题-006解答】灌水问题:如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意.如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾.所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.【题-007解答】浓度问题【题-008解答】水和牛奶【题-009解答】巧算:本题的重点在于计算括号内的算式:.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.法一:观察可知5=2+3,7=3+4,……即每一项的分子都等于分母中前两个乘数的和,所以【题-010解答】队形当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人【题-011解答】计算答案:用1.2.3.4.5组成不含重复数字的六位数,,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有:a1+a3+a5-a2-a4-a6=11k (*)也就是:a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)15=0+1+2+3+4+5=11k+2(a2+a4+a6)(**)由此看出k只能是奇数由(*)式看出,0≤k<2 ,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立.对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.根据上述分析知:用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数.【题-012解答】分数:(中等难度)除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.【题-013解答】四位数:(中等难度)四位数答案:因为该数加1之后是15的倍数,也是5的倍数,所以d=4或d=9.因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9.这表明m=27、37、47;32、42、52.(因为38m的尾数为6)又因为38m+3=15k-1(m、k是正整数)所以38m+4=15k.由于38m的个位数是6,所以5|(38m+4),因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52.所求的四位数是1409,1979.【题-014解答】行程答案:汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).【题-015解答】跑步:(中等难度)根据"马跑4步的距离狗跑7步",可以设马每步长为7x米,则狗每步长为4x米。