九年级上册数学知识要点

合集下载

九年级上册数学总结知识点

九年级上册数学总结知识点

九年级上册数学总结知识点一、集合的概念与运算1. 集合的定义和表示方法2. 集合间的包含关系3. 集合的运算:并集、交集、差集、补集4. 集合的性质:全集、空集、互斥集、互不相交集二、函数与方程1. 函数的定义和性质2. 函数图像的基本性质3. 一次函数与二次函数4. 方程的基本概念:根、解、方程的种类5. 方程的解法:代入法、消元法、配方法、因式分解法三、三角形与相似1. 三角形的分类与性质:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形2. 直角三角形的勾股定理和斜边定理3. 相似三角形的判定条件4. 相似三角形的性质:比例关系、类比比例、全等定理四、函数的图像与性质1. 函数图像的基本变换:平移、伸缩、翻转2. 二次函数的图像特征:顶点、对称轴、开口方向3. 绝对值函数和分段函数的图像特征4. 函数的单调性与极值点的求解五、平面坐标系与图形1. 平面直角坐标系的建立与使用2. 线段的长度计算3. 点和直线的位置关系:同一直线、垂直、平行、相交等4. 常见图形的性质与计算:矩形、正方形、三角形、圆六、数据的处理与统计1. 数据的收集和整理2. 统计量的计算:平均数、中位数、众数、极差3. 数据的图表展示:条形图、折线图、散点图4. 概率的基本概念与计算七、圆的性质与计算1. 圆的基本概念与性质:圆心、半径、直径、弧长、扇形面积2. 圆的相关角和切线的性质3. 弧度制与度数制的换算4. 圆的计算问题:弧长问题、扇形面积问题八、空间图形与几何体1. 空间图形的投影与视图2. 空间中的点、线、面的性质与判定3. 空间中的几何体:正方体、长方体、圆柱体、圆锥体、球体4. 空间几何体的计算:体积、表面积等以上是九年级上册数学的主要知识点总结,通过掌握这些知识,可以帮助学生更好地理解和应用数学知识,提升数学解题能力。

通过反复练习和思考,相信学生们能够更加熟练地掌握这些知识,取得更好的成绩。

九年级数学上册知识点总结

九年级数学上册知识点总结
九年级数学上册知识 点总结
2021/11/14
1
第21章 一元二次方程
1.一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知 数的最高次数是2(二次).
一般形式:ax2+bx+c=0 (a≠0)
• 二次项:ax2
• 二次项系数:a
• 一次项:bx
• 一次项系数:b
• 常数项:c
2.根:一元二次方程的解
个图形重合,那么就说这两个图形关于这个点对称或中心对称
• 对称中心:O 对称点:旋转后能够重合的对应点 •4
2021/11/14
12
23章 旋转
• 5.中心对称图形:把一个图形绕着某一点O旋转180°,旋转后的图形
能够与原来的图形重合,那么这个图形就是中心对称图形
• 6.关于原点对称的点的坐标
• P(x,y)
减小
增大
<0
向下
y轴
原点
y随x增大而 y随x增大而
增大
减小
2021/11/14
7
22章 二次函数
• 3.y=a(x-h)2+k的图象和性质(与y=ax2具有相同的形状)
a
ห้องสมุดไป่ตู้
开口 h>0
h<0
k>0
k<0
顶点 对称轴 对称轴 对称轴
左侧 右侧
>0
向上 右移 左移 上移 下移 (h,k) x=k
y随x增 y随x增
2021/11/14
20
24章 圆

2021/11/14
21
概率初步

2021/11/14
22
2021/11/14

九年级上册数学知识点总结

九年级上册数学知识点总结

九年级上册数学知识点总结一、整数和有理数整数是由正整数、负整数和0组成,可以进行加、减、乘、除等运算。

有理数是整数和分数的集合,分数是整数和整数的比值。

整数和有理数的运算规律与整数运算相同,包括加法、减法、乘法和除法。

二、代数与方程1.代数表达式代数表达式是用字母和数字通过运算符号连接起来的数学式子,可以用来表示数值关系和算式运算。

2.方程与不等式方程是等号连接的两个代数表达式,表示两个量相等的关系。

不等式是不等号连接的两个代数表达式,表示两个量大小关系。

3.一元一次方程一元一次方程是只含有一个未知数,并且该未知数的最高次数为1的方程。

可以使用逆运算的原则,通过加减乘除等运算解得未知数的值。

4.二元一次方程组二元一次方程组是包含两个未知数、两个方程的方程组。

可以使用消元法或代入法解方程组。

三、平面图形与坐标系1.平面图形平面图形包括线段、角、三角形、四边形等。

通过计算边长、角度和面积等属性,可以解决与平面图形相关的问题。

2.坐标系与平面直角坐标系坐标系是由两个相互垂直的直线来确定的,用于描述点在平面上的位置。

平面直角坐标系是最常见的坐标系,包括横轴和纵轴,用数字来表示点的位置。

四、利率与利息利率指一定时期内利息与本金的比率,表示资金的增长速度。

利息是利率乘以本金得到的收益。

五、统计与概率1.抽样调查抽样调查是通过从总体中随机选择一部分样本进行调查,从而获得总体特征的方法。

2.频数与频率频数是指某个事件发生的次数或某个数据出现的次数。

频率是指某事件发生的概率或某数据出现的概率。

六、函数与图像1.函数与映射函数是两个集合之间的对应关系,每个自变量都有唯一的函数值与之对应。

2.函数图像函数图像是表达函数在坐标系中的图形,可以通过绘制函数的图像来研究函数的性质和变化规律。

七、几何变换几何变换包括平移、旋转、镜像和放缩等操作,通过改变图形的位置、角度和形状,可以研究图形的性质和变化规律。

八、三角函数三角函数是用来研究角的一种数学函数,包括正弦、余弦、正切等。

数学九年级上册每章知识点

数学九年级上册每章知识点

数学九年级上册每章知识点第一章:有理数1. 有理数的概念和分类- 有理数的定义- 正数、负数和零的分类- 有理数的大小比较2. 有理数的加法和减法- 有理数的加法原则- 有理数的减法原则3. 有理数的乘法和除法- 有理数的乘法原则和性质- 有理数的除法原则和性质4. 有理数的运算性质- 加法和减法的交换律、结合律和分配律- 乘法和除法的交换律、结合律和分配律第二章:线性方程和一次不等式1. 变量和代数式- 变量的概念- 代数式的概念和性质2. 一元一次方程- 一元一次方程的定义和基本形式- 解一元一次方程的方法3. 一元一次不等式- 一元一次不等式的定义和基本形式- 解一元一次不等式的方法4. 实际问题与一元一次方程或不等式- 将实际问题转化成一元一次方程或不等式- 解决实际问题的步骤和方法第三章:多项式与因式分解1. 代数式的加减法- 代数式的加法原则和性质- 代数式的减法原则和性质2. 一元多项式- 一元多项式的定义和基本形式- 一元多项式的加减法原则3. 一元多项式的乘法- 一元多项式的乘法原则和性质- 一元多项式的乘法公式4. 因式分解- 因式分解的定义和基本方法- 因式分解的应用第四章:平面直角坐标系与图形初步1. 平面直角坐标系- 平面直角坐标系的概念和构造- 坐标表示和坐标轴上的点2. 点、线和线段- 点的坐标和图形的位置关系- 直线和线段的定义和表示3. 直角和垂线- 直角的概念和判定条件- 垂线的概念和判定条件4. 三角形和四边形- 三角形的分类和性质- 四边形的分类和性质第五章:相似与全等1. 平行线与比例- 平行线的概念和判定条件- 比例的概念和性质2. 相似三角形- 相似三角形的定义和判定条件- 相似三角形的性质和应用3. 全等三角形- 全等三角形的定义和判定条件- 全等三角形的性质和应用4. 相似和全等图形的应用- 利用相似和全等图形求解实际问题- 利用相似和全等图形进行图形的设计以上是数学九年级上册每章的知识点概述。

九年级上册数学知识点

九年级上册数学知识点

九年级上册数学知识点一、有理数1. 整数2. 分数3. 小数二、代数表达式和简单方程1. 代数表达式的定义与运算2. 一元一次方程3. 方程的解4. 解一元一次方程的基本方法三、图形的性质和变换1. 空间几何图形- 三角形- 四边形- 多边形2. 平面镜像与旋转- 线对称与点对称- 图形的旋转四、概率和统计1. 概率的定义与计算- 随机事件- 事件发生的概率计算 2. 统计与表示- 数据的收集与整理- 平均数与中位数五、函数1. 函数的概念与表示2. 线性函数- 函数的增减性与最值 - 线性函数的图像与性质六、几何初步1. 直线、射线和线段2. 角及其性质3. 平行线和平行四边形七、相似与全等三角形1. 相似三角形- 相似三角形的判定与性质 - 相似三角形的应用2. 全等三角形- 全等三角形的判定与性质 - 全等三角形的应用八、立体几何初步1. 空间几何体的性质- 点、线、面的关系- 空间几何体的视图2. 投影与截面- 立体图形的投影- 立体图形的截面九、二次根式与实数1. 二次根式的性质与运算- 平方根与立方根- 二次根式的四则运算2. 实数的定义与运算- 有理数与无理数的概念- 实数的加减乘除运算十、解直角三角形1. 直角三角形的概念与性质2. 利用三角函数解直角三角形以上是九年级上册数学的主要知识点,通过对这些知识的系统学习,你将掌握数学中的基本概念、方法和技巧。

在实际应用中,这些知识将为你提供解决问题的工具和途径。

希望你能够认真学习,不断提高自己的数学能力。

九年级上册数学知识点归纳

九年级上册数学知识点归纳

九年级上册数学知识点归纳一、代数基础1.1 代数式与多项式•代数式的概念和基本性质•多项式的定义、次数、最高次项、最高次系数和降次1.2 整式运算•基本运算法则(加、减、乘、除)•多项式的因式分解1.3 方程与不等式•一元一次方程的定义、解法及应用一元二次方程的定义、解法及应用•一元一次不等式和一元二次不等式的定义、解法及应用二、平面几何2.1 点、直线、角、三角形•点、直线、射线、线段的定义•角的概念、性质和分类•三角形的定义、分类、性质(三角形角度定理、三角形边长关系定理)2.2 四边形和多边形•四边形的定义、性质(平行四边形、菱形、矩形、正方形、梯形)•多边形的定义和性质(对称性、全等性、相似性)2.3 圆的基本性质•圆的定义、圆心、半径、直径、弦、弧、圆周角•圆的切线和切点的概念和性质三、立体几何3.1 空间图形的概念和性质•空间图形的分类(点、线、面、体)•空间图形的基本性质(包括线段长度、角度大小、面积和体积)3.2 空间坐标系的建立和应用•空间坐标系的建立(右手法则)•空间坐标系中点、距离、中点公式、斜率公式3.3 空间几何体的计算•立体图形的表面积和体积的计算方法(包括长方体、正方体、棱锥、棱台、球)四、数与函数4.1 实数的概念和性质•实数的分类、基本性质(包括代数性质、有序性、完备性)4.2 一次函数的概念和性质•一次函数的定义、函数图像、图像特征、斜率、截距、变化规律和应用4.3 二次函数的概念和性质•二次函数的定义、函数图像、图像特征、参数的关系及其应用•二次函数解析式的确定方法五、统计与概率5.1 数据的收集和整理•数据的收集方法及其优缺点•数据的整理方法(频率分布表、直方图、折线图、饼图)5.2 概率的概念和基本性质•随机性和概率、概率的基本性质•事件及其概率的计算方法、频率和概率5.3 统计量•数值型数据的统计量(包括极差、平均数、中位数、众数、标准差)•统计推断的基本思想和应用(区间估计、假设检验)以上是九年级上学期数学知识点的归纳,希望对大家有所帮助。

九年级数学上册重要知识点总结

九年级数学上册重要知识点总结

九年级数学上册重要知识点总结九年级数学上册重要知识点总结「篇一」圆的面积s=π×r×r其中,π是周围率,约等于3.14r是圆的半径。

圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。

圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。

椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的`差。

椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

九年级数学上册重要知识点总结「篇二」1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab九年级数学上册重要知识点总结「篇三」1.直线与圆有唯一公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

数学九年级上册全知识点

数学九年级上册全知识点

数学九年级上册全知识点一、整数的概念和运算1. 整数的概念2. 整数的绝对值3. 整数的相反数4. 整数的加法和减法二、有理数的概念和运算1. 有理数的概念2. 有理数的相反数和绝对值3. 有理数的加法和减法4. 有理数的乘法和除法5. 有理数的混合运算三、平方根和立方根1. 平方根的概念和性质2. 平方根的求解3. 立方根的概念和性质4. 立方根的求解四、二次根式1. 二次根式的概念和性质2. 二次根式的化简和分解3. 二次根式的加法和减法4. 二次根式的乘法和除法五、比例与比例的性质1. 比例的概念和表示方法2. 比例的性质和判断3. 比例的四种特殊情况4. 比例的运算六、百分数1. 百分数的概念和表示方法2. 百分数的转化3. 百分数的运算七、利率和利息1. 利率的概念和计算2. 简单利息的计算3. 复利的计算八、容积和表面积1. 球的容积和表面积2. 圆柱体的容积和表面积3. 直角三角形的斜边长和面积九、统计与概率1. 统计的概念和方法2. 频率和频率分布3. 概率的基本概念和计算方法十、平面几何图形1. 平行线和垂直线2. 直角三角形和勾股定理3. 三角形的性质和分类4. 四边形的性质和分类5. 圆的性质和圆内外关系十一、函数的概念和表示1. 函数的概念和特征2. 函数的表示方法3. 函数的图像和性质以上是数学九年级上册的全知识点,涵盖了整数、有理数、平方根、立方根、二次根式、比例、百分数、利率和利息、容积和表面积、统计与概率、平面几何图形以及函数等多个重要内容。

通过系统学习这些知识点,同学们可以更好地理解和应用数学知识,提高数学解题的能力和思维水平。

希望同学们能够认真学习并善于运用这些知识点,取得优异的成绩。

九年级上册数学知识点归纳

九年级上册数学知识点归纳

九年级上册数学知识点归纳一、实数1. 有理数与无理数的定义- 有理数:可以表示为两个整数的比的数,如分数、整数。

- 无理数:不能表示为两个整数的比的数,如√2、π。

2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算3. 实数的性质- 相反数、倒数- 有理数和无理数的性质4. 科学记数法- 表示非常大或非常小的数5. 实数的比较- 大小比较的方法- 不等式的表示和性质二、代数表达式1. 单项式- 单项式的定义- 系数、次数2. 多项式- 多项式的定义- 项、次数、系数- 多项式的加减法3. 代数式的简化- 合并同类项- 分配律、结合律、交换律4. 因式分解- 提公因式法- 公式法(平方差、完全平方等) - 十字相乘法三、方程与不等式1. 一元一次方程- 方程的建立- 解方程的步骤2. 二元一次方程组- 代入法- 消元法(加减消元、代数消元)3. 不等式- 不等式的性质- 解一元一次不等式- 解一元一次不等式组4. 绝对值不等式- 绝对值的性质- 解绝对值不等式四、平面图形1. 平行线与线段- 平行线的性质- 线段的中点、平行线之间的距离2. 角- 角的分类- 角的度量- 角的和差3. 三角形- 三角形的基本性质- 等边三角形、等腰三角形的性质 - 三角形的内角和外角4. 四边形- 四边形的分类- 矩形、菱形、正方形的性质- 四边形的面积计算5. 圆- 圆的基本性质- 圆的面积和周长- 切线的性质五、立体图形1. 立体图形的基本概念- 点、线、面、体- 立体图形的分类2. 棱柱和棱锥- 棱柱和棱锥的性质- 棱柱和棱锥的体积计算3. 圆柱和圆锥- 圆柱和圆锥的性质- 圆柱和圆锥的体积和表面积计算4. 球- 球的性质- 球的体积和表面积计算六、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 条件概率和独立事件请注意,以上内容仅为九年级上册数学知识点的一个概括性归纳,具体的教学内容和深度可能会根据不同地区的教学大纲和教材有所差异。

九年级上册数学知识点总结(最新最全)

九年级上册数学知识点总结(最新最全)

九年级上册数学知识点总结(最新最全)单元1:整数- 整数的概念- 整数的比较和运算法则- 整数的加减乘除运算- 整数的乘方运算- 整数的分数和小数的关系单元2:有理数- 有理数的概念- 有理数的相反数和绝对值- 有理数的加减运算法则- 有理数的乘除运算法则- 有理数的幂运算- 有理数的分数和小数的关系单元3:代数式与整式- 代数式与整式的概念- 代数式的运算法则- 整式的合并同类项和提取公因式- 整式的加减运算- 整式的乘除运算单元4:一元一次方程与一次不等式- 一元一次方程的概念- 一元一次方程的解的性质- 列方程解问题- 一元一次不等式的概念- 一元一次不等式的解的性质单元5:图形的基本概念与性质- 平面直角坐标系- 点、线、面的基本概念- 图形的相似形与全等形- 图形的位置关系和判定- 图形的旋转、平移和翻折单元6:图形的表示与变换- 图形的平移和旋转表示- 图形的对称变换表示- 图形的全等判定和性质- 图形变换的综合应用单元7:函数的概念与表示- 函数的概念- 函数的自变量和函数值- 函数的表示方法- 函数的性质- 函数的实际应用单元8:一元一次函数- 一元一次函数的概念- 一元一次函数的函数图象- 一元一次函数的性质- 一元一次函数的应用以上是九年级上册数学的知识点总结,包括整数、有理数、代数式与整式、一元一次方程与一次不等式、图形的基本概念与性质、图形的表示与变换、函数的概念与表示以及一元一次函数。

希望对你的学习有所帮助!。

数学九年级上册知识点必看

数学九年级上册知识点必看

数学九年级上册知识点必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学九年级上册知识点的学习资料,希望对大家有所帮助。

九年级上册数学知识点总结第一章二次根式1 二次根式:形如 ( )的式子为二次根式;性质: ( )是一个非负数;2 二次根式的乘除:3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

4 海伦-秦九韶公式:,S是三角形的面积,p为。

第二章一元二次方程1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的次是2的方程。

2 一元二次方程的解法配方法:将方程的一边配成完全平方式,然后两边开方;公式法:因式分解法:左边是两个因式的乘积,右边为零。

3 一元二次方程在实际问题中的应用4 韦达定理:设是方程的两个根,那么有第三章旋转1 图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。

2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;3 关于原点对称的点的坐标第四章圆1 圆、圆心、半径、直径、圆弧、弦、半圆的定义2 垂直于弦的直径圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

5 点和圆的位置关系点在圆外点在圆上 d=r点在圆内 d 定理:不在同一条直线上的三个点确定一个圆。

九年级上册数学必背知识点

九年级上册数学必背知识点

九年级上册数学必背知识点一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 一元二次方程的解法。

- 直接开平方法。

- 对于方程x^2=k(k≥0),解得x=±√(k)。

- 例如,方程(x - 3)^2=16,则x - 3=±4,解得x = 7或x=-1。

- 配方法。

- 步骤:先将方程化为ax^2+bx = - c的形式;然后在方程两边同时加上一次项系数一半的平方((b)/(2a))^2;将左边配成完全平方式(x+(b)/(2a))^2,再用直接开平方法求解。

- 例如,对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。

- 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 例如,方程2x^2-3x - 2 = 0中,a = 2,b=-3,c=-2,Δ=b^2-4ac=(-3)^2-4×2×(-2)=25,则x=(3±5)/(4),解得x = 2或x=-(1)/(2)。

- 因式分解法。

- 把方程化为一边是零,另一边是两个一次因式积的形式(ax + m)(bx +n)=0,则ax + m = 0或bx + n = 0。

- 例如,方程x^2-3x + 2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 一元二次方程根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

九年级上册数学各章节知识点总结(最新最全)

九年级上册数学各章节知识点总结(最新最全)

九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。

最全数学九年级上册重点知识点

最全数学九年级上册重点知识点

最全数学九年级上册重点知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最全数学九年级上册重点知识点数学是研究数量、结构、变化、空间以及信息等概念的一门学科。

九年级上册数学复习知识点

九年级上册数学复习知识点

九年级上册数学复习知识点一、代数与方程式1. 一元一次方程式1.1 解一元一次方程式的基本方法1.2 利用一元一次方程式解实际问题2. 二元一次方程式2.1 消元法解二元一次方程式2.2 代入法解二元一次方程式2.3 应用解二元一次方程式的方法解实际问题3. 不等式3.1 线性不等式的解及图示3.2 用不等式表示实际问题,并求解4. 平方根与平方差4.1 定义和性质4.2 求解平方根的方法4.3 解平方差的方法5. 平方根与二次方程5.1 二次方程的定义和性质 5.2 二次方程的解及图示5.3 利用二次方程解实际问题二、几何1. 平面图形1.1 三角形及其性质1.2 四边形及其性质1.3 多边形及其性质2. 圆与圆周角2.1 圆的定义和性质2.2 圆周角的定义和计算3. 相似与全等3.1 相似三角形的性质及判定3.2 全等三角形的性质及判定4. 三视图与投影4.1 顶视图、正视图和侧视图的概念 4.2 通过三视图还原物体的形状和尺寸5. 三角函数5.1 正弦、余弦和正切的概念及计算 5.2 利用三角函数解实际问题三、数据与统计1. 数据的整理和分析1.1 数据的收集和整理方法1.2 数据的图示和分析方式2. 概率与事件2.1 事件的概念和性质2.2 用树状图表示事件的组合和概率3. 线段与角度的测量3.1 利用直尺和量角器测量线段和角度 3.2 利用比例关系计算线段和角度的长度四、函数与图像1. 函数的概念与性质1.1 定义和符号化1.2 函数的性质及分类2. 一元一次函数2.1 函数关系及表达式的表示2.2 函数的图像和性质3. 一元二次函数3.1 函数关系及表达式的表示 3.2 函数的图像和性质4. 特殊函数的图像4.1 绝对值函数的图像和性质 4.2 反比例函数的图像和性质五、立体几何1. 空间图形的表示1.1 空间图形的名称和性质 1.2 空间图形的展开图2. 空间几何体的计算2.1 空间几何体的表面积计算2.2 空间几何体的体积计算3. 空间几何体的相交关系3.1 空间几何体的轴对称关系3.2 利用空间几何体的相交关系解实际问题六、整式与分式1. 整式的加减乘除1.1 整式的加减法运算1.2 整式的乘法运算1.3 整式的除法运算2. 分式的加减乘除2.1 分式的加减法运算2.2 分式的乘法运算2.3 分式的除法运算3. 整式与分式的应用3.1 利用整式解实际问题3.2 利用分式解实际问题以上是九年级上册数学的复习知识点,通过系统地了解和掌握这些知识点,可以有效提高数学学科的学习成绩,为下一阶段的学习打下坚实的基础。

九年级数学上册重要知识点总结(推荐4篇)

九年级数学上册重要知识点总结(推荐4篇)

九年级数学上册重要知识点总结(推荐4篇)九年级数学上册重要知识点总结第1篇1、一元二次方程:在整式方程中,只含个未知数,并且未知数的最高次数是的方程叫做一元二次方程。

一元二次方程的一般形式是( )。

其中()叫做二次项,()叫做一次项,()叫做常数项;()叫做二次项的系数,( )叫做一次项的系数。

2、易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中。

(2)用公式法和因式分解的方法解方程时要先化成一般形式。

(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负。

九年级数学上册重要知识点总结第2篇I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+ca,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

九年级数学上册重要知识点总结第3篇(三角形中位线的定理)三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

(平行四边形的性质)①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分。

(矩形的性质)①矩形具有平行四边形的一切性质;②矩形的四个角都是直角;③矩形的对角线相等。

九年级数学上册知识点归纳

九年级数学上册知识点归纳

九年级数学上册知识点归纳九年级数学上册是中学数学学习中的重要阶段,包含了许多关键知识点。

本文将对这些知识点进行归纳,帮助同学们更好地理解和掌握数学上册的学习内容。

一、代数与函数1. 一元一次方程:包括解一元一次方程的方法、方程与实际问题的应用等。

2. 二元一次方程组:解二元一次方程组的几何解释、代入、消元法等解题方法。

3. 函数与图像:理解函数概念,绘制函数图像,掌握函数图像的性质等。

4. 一次函数与一元一次不等式:学习一次函数与一元一次不等式的关系,解一元一次不等式等。

5. 二次根式:习题掌握二次根式的运算、化简等基本方法。

二、数与式1. 有理数的运算:学习有理数的四则运算,掌握有理数的大小比较。

2. 乘方与科学计数法:学习整数的乘方运算,掌握科学计数法的表示方法及运算规则。

3. 分式:理解分式的概念,学习分式的运算法则,解决与实际问题相关的分式运算。

4. 整式:学习多项式的运算、多项式的因式分解等相关概念和运算方法。

三、几何与图形1. 相似:熟悉相似图形的性质,学习相似比例等相关知识点。

2. 同位角与内错角:了解同位角与内错角的性质,利用这些性质解决几何问题。

3. 平行线与三角形:学习平行线与三角形的性质,运用所学知识解决与平行线和三角形相关的问题。

4. 二维坐标系:学习平面坐标系的概念、二维平面上点的坐标表示等。

四、数据与统计1. 平均值与比例:理解平均值的概念,学习平均值与比例的计算方法。

2. 折线图与统计图:掌握绘制折线图和统计图的方法,学习读取和解释统计图上的数据。

五、概率1. 随机事件与概率:理解随机事件的概念,学习概率的计算方法和判断事件是否独立的条件。

通过对九年级数学上册知识点的归纳,我们可以清晰地了解到每个章节所涵盖的内容。

在学习过程中,同学们需要注重基础知识的理解和掌握,并灵活运用所学知识解决实际问题。

希望本文能对同学们在九年级数学学习中提供一定的帮助。

九年级数学上册知识点总结

九年级数学上册知识点总结

九年级数学上册知识点总结• 1.一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次).•一般形式:ax2+bx+c=0 (a≠0)•二次项:ax2•二次项系数:a•一次项:bx•一次项系数:b•常数项:c• 2.一元二次方程的根:一元二次方程的解类型相同点未知数最高次数例子一元一次方程都是整式11ax+c=0 一元二次方程12ax 2+bx+c=0 二元一次方程21ax+by+c=0•一元二次方程的解法:• 1.配方法• 2.公式法• 3.因式分解法1.解一元二次方程(降次)的方法:1.1配方法配方原理:完全平方公式x 2=a a≥0 x =±a步骤:化一般形式二次项系数化为1等号两边同时加(b2)2左边写成(x+b 2)2的形式.2;2)()(222222b a b ab a b a ab ab −+=+−=++完全平方公式:.22p n mx p x p p n mx x ±=+±===+或那么可得的形式,或如果方程能化成)((2)x 2+2 x +5=0(3)x 2-6x-7=0例2 解下列方程:(1)x 2+6x+9=15第21章一元二次方程• 3.2公式法•步骤:Δ≤0,无实数根化成一般形式判别式Δ=b 2-4acΔ≥0, 两实根x=−b±b 2−4ac 2aΔ=0时,两实根相等20ax bx c ++=(a≠0)用求根公式解一元二次方程的方法叫做公式法。

用公式法解一元二次方程的一般步骤:242b b acx a−±−∴=3、代入求根公式:2、求出的值,24b ac −1、把方程化成一般形式,并写出的值。

a b 、、c 4、写出方程的解:12x x 、特别注意:当时无解240b ac −<例1 解方程:27180x x −−=解:1292x x ==−242b b ac x a−±−=1718a b c ==−=−22474118121b ac −=−−⨯⨯=()()>0方程有两个不等的实数根242b b acx a−±−∴=211712121)7(±=⨯±−−=2022/4/23用公式法解下列方程:(1)2x 2-9x+8=0;(2)9x 2+6x+1=0;(3)16x 2+8x=3.• 3.3因式分解法:先进行因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次因式分别等于零,从而实现降次,这种解一元二次方程的方法叫做因式分解法•注意三个公式的使用:•a2+b2+2ab=(a+b)2•a2+b2-2ab = (a-b)2•a2-b2=(a+b)(a-b)•3.3因式分解法•x2-3x=x(x-3)•y2-36=y2-62= (y+6)×(y-6)•x2-4x+4=(x-2)2•因式分解法解一元二次方程的一般步骤:• 1.通过移项将方程右边化为0;• 2.将方程左边分解成两个一次因式的乘积;• 3.令每个因式为0,得到两个一元一次方程;• 4.分别求出两个方程的解,就得到一元二次方程的解.第21章一元二次方程•4.根与系数的关系(韦达定理):x 1+x 2=-b a x 1∙x 2=c a •5.实际问题:(21.3节,19页)•5.1传染问题:•5.2增长(降低)率问题:• 5.3矩形(其他图形)面积问题:•5.1 传染问题•例题1:有一个人患了流感,经过两轮传染后有121人患了流感,每轮传染中平均一个人传染了几个人?•分析:设每轮传染中平均一个人传染了x人•开始有一人患了流感, 第一轮的传染源•第一轮:他传染了x人,第一轮后共有x+1 人患了流感.•第一轮后共有x+1 人患了流感. 第二轮的传染源•第二轮:这些人中的每个人都又传染了x人,•第二轮后共有1+x+x(x+1)=(x+1)2 人患了流感.•1+x+x(x+1)=121 x=10;x=-1如果按照这样的传染速度,三轮传染后有多少人患流感?3.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?解:设每天平均一个人传染了x 人。

九年级上册数学知识点详解

九年级上册数学知识点详解

第一章实数一、重要概念 1.数的分类及概念数系表:说明:"分类"的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义("三要素")②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数-自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号"││"是"非负数"的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。

二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从"左" 到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。

三、应用举例(略)附:典型例题1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

九年级上册知识点大全数学

九年级上册知识点大全数学

九年级上册知识点大全数学一、有理数1. 整数的概念和性质2. 正负数的比较和大小3. 有理数的加减法运算4. 有理数的乘法运算5. 有理数的除法运算6. 有理数的混合运算7. 有理数的运算定律二、代数式与方程式1. 代数式的定义和性质2. 代数式的加减法运算3. 代数式的乘法运算4. 一元一次方程的概念和解法5. 一元一次方程的应用6. 一元一次方程组的概念和解法7. 一元一次方程组的应用三、几何图形1. 点、线、面的概念2. 平行线和垂直线的性质3. 三角形的分类和性质4. 四边形的分类和性质5. 五线图形的分类和性质6. 直角三角形和勾股定理7. 圆的概念和性质四、图形的相似与等腰三角形1. 图形的相似性判定2. 相似三角形的性质和判定3. 图形的放缩与相似比例4. 等腰三角形的概念和性质5. 等腰三角形的判定和性质应用五、数列与函数1. 数列的概念和性质2. 数列的通项公式和前n项和公式3. 等差数列与等差数列的求和公式4. 等比数列与等比数列的求和公式5. 函数的概念和性质6. 一次函数和一次函数图像7. 一次函数的斜率和截距六、数据统计与概率1. 统计调查和数据收集2. 数据的整理、分析和展示3. 平均数和中位数的计算4. 概率的基本概念和计算5. 事件的概率与互斥事件6. 概率分布和频率分布7. 抽样和抽样调查在九年级上册数学学习中,这些知识点的掌握对于解决数学问题和应用数学知识具有重要意义。

通过对整数、代数式和方程式、几何图形、相似与等腰三角形、数列与函数、数据统计与概率等知识的学习,可以锻炼学生的逻辑思维能力、问题解决能力和数学运算技巧。

同时,在学习的过程中,要注意理论与实践的结合,通过大量的练习和实际问题的应用,培养学生的数学思维和实际解决问题的能力。

此外,在学习数学的过程中,要注重培养学生的数学思维方法和逻辑推理能力,提高解决问题的能力和创新意识。

九年级上册数学知识点的掌握将为学生在中学和高中的数学学习打下坚实的基础,为今后对数学的深入研究和应用打下良好的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21章 一元二次方程考点1.一元二次方程的判断标准: (1)方程是整式方程(2)只有一个未知数——(一元)(3)未知数的最高次数是2——(二次) 三个条件同时满足的方程就是一元二次方程 练习:1、下面关于x 的方程中:①ax 2+bx+c=0;②3x 2-2x=1;③x+3=1x;④x 2-y=0;④(x+1)2= x 2-1.一元二次方程的个数是 .2、若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是_________.3、若关于x 的方程05122=+-+-x k x k是一元二次方程,则k 的取值范围是_________.、若方程(m-1)x |m|+1-2x=4是一元二次方程,则m=______.2.一元二次方程一般形式及有关概念一般地,任何一个关于x 的一元二次方程,经过整理,都能化成一元二次方程的一般形式20 (0)ax bx c a ++=≠ 2ax 是二次项,a 为二次项系数,bx 是一次项,b 为一次项系数,c 为常数项。

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号 练习:1、将一元二次方程3(1)5(2)x x x -=+化成一般形式为_____________,其中二次项系数a =________,一次项系数b=__________,常数项c=__________3.完全平方式a 2+2ab+b 2 a 2-2ab+b 2 练习:1、说明代数式2241x x --总大于224x x --2、已知1a a+求1a a-的值.3、若x 2+mx+9是一个完全平方式,则m= ,若x 2+6x+m 2是一个完全平方式,则m 的值是 。

若942++kx x 是完全平方式,则k = 。

4.整体运算思路:把一个代数式看成一个整体来求值,然后代入去求另一个代数式的值。

练习:1、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为2、已知实数x 满足210x x +-=则代数式2337x x ++的值为____________5.方程的解 练习:1、已知关于x 的方程x 2+3x+k 2=0的一个根是x=-1,则k=_ __.2、求以12x 1x 3=-=-,为两根的关于x 的一元二次方程 。

6.方程的解法⑴ 方 法:①接开方法;②因式分解法;③配方法;④公式法;⑤十字相乘法;⑵关键点:降次 aac b b x 242-±-=练习:1、直接开方解法方程(x-6)2 -3=0 21(3)22x -=2、用配方法解方程2210x x +-= 2430x x -+=3、用公式法解方程03722=+-x x 210x x --=4、用因式分解法解方程3(2)24x x x -=- 22(24)(5)x x -=+5、用十字相乘法解方程2900x x --= 22100x x +-=7.一元二次方程根的判别式:2b 4ac ∆=- 练习:1、关于x 的一元二次方程012)2(2=-+++m x m x . 求证:方程有两个不相等的实数根2、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

3、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是8.韦达定理1212,b c x x x x a a+=-=(a ≠0, Δ=b 2-4ac ≥0)使用的前提:(1)不是一般式的要先化成一般式;(2)定理成立的条件0∆≥ 练习:1、已知方程25x mx 6=0+-的一个根为x=3,求它的另一个根及m 的值。

2、已知22x 4x 30+-=的两根是x 1 ,x 2 ,利用根于系数的关系求下列各式的值1211x x + 2212x x + 12(1)(1)x x ++ 212()x x - 3、已知关于x 的一元二次方程x 2-(m+2)x+14m 2-2=0.(1)当m 为何值时,这个方程有两个的实数根.(2)如果这个方程的两个实数根x 1,x 2满足x 12+x 22=18,求m 的值.9.一元二次方程与实际问题1、病毒传播问题2、树干问题3、握手问题(单循环问题)4、贺卡问题(双循环问题)5、围栏问题6、几何图形(道路、做水箱)7、增长率、折旧、降价率问题8、利润问题(注意减少库存、让顾客受惠等字样) 9、数字问题 10、折扣问题第22章 二次函数考点 1、二次函数的定义定义: y=ax2+ bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式 练习:1、y=-x ²,y=2x ²-2/x ,y=100-5 x ²,y=3 x ²-2x ³+5,其中是二次函数的有____个。

2.当m_______时,函数y=(m+1)χ - 2χ+1 是二次函数?2、二次函数的图像及性质表达式、对称轴、顶点坐标、位置、增减性、最值、 练习:1、已知二次函数(1)求抛物线开口方向,对称轴和顶点M 的坐标。

(2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。

(3)x 为何值时,y 随的增大而减少,x 为何值时,y 有最大(小)值,这个最大(小)值是多少?(4)x 为何值时,y<0?x 为何值时,y>0?2、直线y =ax +c 与抛物线y =ax 2+bx +c 在同一坐标系内大致的图象是……m m -223212-+=x x y()考点3、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式y=ax2+bx+c(a≠0)2,顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式y=a(x-h)2+k(a ≠0)3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式y=a(x-x1)(x-x2) (a≠0)练习:1、根据下列条件,求二次函数的解析式。

(1)、图象经过(0,0), (1,-2) , (2,3) 三点;(2)、图象的顶点(2,3),且经过点(3,1) ;(3)、图象经过(0,0), (12,0) ,且最高点的纵坐标是3 。

2、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。

求a、b、c。

4、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:(1)a的符号:上正下负(2)b的符号:左同右异(3)C的符号:上正下负原点零(4)b2-4ac的符号:由抛物线与x轴的交点个数确定(5)a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y值决定。

(6)a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c的符号由x=-1时,对应的y值决定。

(7)4a+2b+c的符号:因为x=2时,y=4a+2b+c,所以4a+2b+c的符号由x=2时,对应的y值决定。

(8)4a-2b+c的符号:因为x=-2时,y=4a-2b+c,所以4a-2b+c的符号由x=-1时,对应的y值决定。

以此类推.练习:1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为() A、a<0,b>0,c>0 B、a<0,b>0,c<0C、a<0,b<0,c>0D、a<0,b<0,c<02、二次函数y=ax2+bx+c(a ≠0)的图象如图所示,则a 、b 、c 的符号为( ) A 、a>0,b>0,c=0 B 、a<0,b>0,c=0 C 、a<0,b<0,c<0 D 、a>0,b<0,c=03、二次函数y=ax2+bx+c(a ≠0)的图象如图所示,则a 、b 、c 、 △的符号为( ) A 、a>0,b=0,c>0,△>0 B 、a<0,b>0,c<0,△=0 C 、a>0,b=0,c<0,△>0 D 、a<0,b=0,c<0,△<0要点:熟练掌握a ,b , c ,△与抛物线图象的关系(上正、下负)(左同、右异)4.抛物线y=ax2+bx+c(a ≠0)的图象经过原点和 二、三、四象限, 判断a 、b 、c 的符号情况:a 0,b 0,c 0.5.抛物线y=ax2+bx+c(a ≠0)的图象经过原点,且它的顶点在第三象限,则a 、b 、c 满足 的条件是:a 0,b 0,c 0.6.二次函数y=ax2+bx+c 中,如果a>0,b<0,c<0,那么这个二次函数 图象的顶点必在第 象限要点:先根据题目的要求画出函数的草图,再根据图象以及性质确定结果(数形结合的思想)7.已知二次函数的图像如图所示,下列结论。

⑴a+b+c=0 ⑵a-b+c ﹥0 ⑶abc ﹥0 ⑷b=2a其中正确的结论的个数是( ) A 1个 B 2个 C 3个 D 4个要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x 轴、y 轴的交点的位置,注意运用数形结合的思想。

考点5、抛物线的平移左加右减,上加下减;左右平移看自变量,上下平移看常数项。

练习:⑴二次函数y=2x2的图象向 平移 个单位可得到y=2x2-3的图象; 二次函数y=2x2的图象向 平移 个单位可得到y=2(x-3)2的图象。

⑵二次函数y=2x2的图象先向 平移 个单位,再向 平移 个单位可得到函数y=2(x+1)2+2的图象。

引申:y=2(x+3)2-4 y=2(x+1)2+2(3)由二次函数y=x2-5x+6的图象.y=x2-5x+64125(2--=x y=x4125(2--=x y6二次函数与一元二次方程的关系 、一元二次方程根的情况与b ²-4ac 的关系我们知道:代数式b2-4ac 对于方程的根起着关键的作用.2、二次函数y=ax ²+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax ²+bx +c=0的解。

3、二次函数y=ax2+bx+c 的图象和x 轴交点有三种情况: (1)有两个交点– 4ac > 0 (2)有一个交点– 4ac= 0 (3)没有交点– 4ac< 0若抛物线y=ax2+bx+c 与x 轴有交点– 4ac ≥0 练习:(1)如果关于x 的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线 y=x2-2x+m 与x 轴有____个交点.(2)已知抛物线 y=x2 – 8x +c 的顶点在 x 轴上,则c=____.(3)一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x 轴的交点坐标是____.(4)已知函数y =x 2-(2m +4)x +m 2-10与x 轴的两个交点间的距离为22,则m =___________.(5)若函数y =kx 2+2(k +1)x +k -1与x 轴只有一个交点,求k 的值.7二次函数的综合运用 已知抛物线y=ax2+bx+c 与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x 轴的距离为5,请写出满足此条件的抛物线的解析式. 解:Θ抛物线y=ax2+bx+c 与抛物线y=-x2-3x+7的形状相同 ∴ a=1或-1又Θ顶点在直线x=1上,且顶点到x 轴的距离为5, ∴ 顶点为(1,5)或(1,-5) 所以其解析式为:(1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5 展开成一般式即可. 练习:1.直线y =3 x -1与y =x -k 的交点在第四象限,则k 的范围是………………( )()有两个不相等的实数根方程时当00,0422≠=++>-a c bx ax ac b ():00,0422有两个相等的实数根方程时当≠=++=-a c bx ax ac b ()没有实数根方程时当00,0422≠=++<-a c bx ax ac b(A )k <31 (B )31<k <1 (C )k >1 (D )k >1或k<1 2、若a+b+c=0,a 0,把抛物线y=ax2+bx+c 向下平移 4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式. 分析:(1)由a+b+c=0可知,原抛物线的图象经过(1,0) (2) 新抛物线向右平移5个单位,再向上平移4个单位即得原抛物线3、已知二次函数y =ax 2+bx +c 的图象抛物线G 经过(-5,0),(0,25),(1,6)三点,直线l 的解析式为y =2 x -3.(1)求抛物线G 的函数解析式; (2)求证抛物线G 与直线l 无公共点;(3)若与l 平行的直线y =2 x +m 与抛物线G 只有一个公共点P ,求P 点的坐标. 【分析】(1)略;(2)要证抛物线G 与直线l 无公共点,就是要证G 与l 的解析式组成的方程无实数解; (3)直线y =2 x +m 与抛物线G 只有一个公共点,就是由它们的解析式组成的二元二次方程组有一个解,求出这组解,就得P 点的坐标.第23章 旋转考点1.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角. 旋转三要素:旋转中心、旋转方向、旋转角度 练习:1、如图,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ABD 绕点A 按逆时针方向旋转到△ACD ′的位置,回答下列问题:(1)旋转中心为 ,旋转角度为 度(2)△AD D ′的形状是 。

相关文档
最新文档