2019年高考数学分类汇编:专题十三极坐标与参数方程

合集下载

高考数学:极坐标与参数方程知识点总结

高考数学:极坐标与参数方程知识点总结

高考数学:极坐标与参数方程知识点总结极坐标与参数方程这部分题目比较简单,考法固定,同学们一定要掌握住,高考不失分啊!第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:二极坐标系(1)定义:在平面内取一个定点O,叫做极点;自极点O 引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M是平面内一点,极点O与点M 的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:3.直线的极坐标方程(1)特殊情形如下表:第二讲一曲线的参数方程1.参数方程的概念2.圆的参数方程二圆锥曲线的参数方程三直线的参数方程一参数方程的基本概念定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t的每一个允许值,由于方程组①所确定的点M(x,y)都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。

(完整)2019年高中数学极坐标方程知识点总结题型汇总,推荐文档

(完整)2019年高中数学极坐标方程知识点总结题型汇总,推荐文档

极坐标方程创作时间: 2019.1【学习目标】1.能在极坐标系中用极坐标表示点的位置.2.理解在极坐标系中和直角坐标系中表示点的区别,能进行极坐标和直角坐标的互化. 3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程. 【要点梳理】要点一、极坐标系和点的极坐标 1. 极坐标系定义(1)在平面内取一定点O ,由点O 引出一条射线Ox ,并确定一个长度单位和度量角度的正方向(通常取逆时针方向),这就构成一个极坐标系,定点O 叫做极点,射线Ox 叫做极轴. 要点诠释:①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可. 轴旋 2. 点的极坐标 在极坐标系中,平面上任意一点P 的位置可以由OP 的长度ρ和从Ox 转到OP 的角度θ来确定,(ρ,θ)叫做点P 的极坐标,ρ叫做点P 的极径,θ叫做点P 的极角.极点的极坐标为(0,θ),其中θ可以取任何值. 要点诠释:(1)极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的数量;点M 的极径ρ表示点M 与极点O 的距离|OM|,因此ρ≥0;但必要时,允许ρ<0.(2)在极坐标系中,与给定的极坐标(ρ,θ)相对应的点的位置是唯一确定的;反过来,同一个点的极坐标却可以有无穷多个.如一点的极坐标是(ρ,θ)(ρ≠0),那么这一点也可以表示为(ρ,2n θπ+)或(ρ-,(21)n θπ++)(其中n 为整数).一般情况下,我们取极径ρ≥0,极角θ为0≤θ<2π(或-π<0≤π).如果我们规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)来表示,这时,极坐标与平面内的点之间就是一一对应的关系. 3.相关点的极坐标(1)同一个点:如极坐标系中点4,6π⎛⎫ ⎪⎝⎭,4,26ππ⎛⎫+ ⎪⎝⎭,4,46ππ⎛⎫+ ⎪⎝⎭,4,66ππ⎛⎫+ ⎪⎝⎭,4,26ππ⎛⎫- ⎪⎝⎭,由终边相同的角的定义可知上述点的终边相同,并且与极点的距离相等,这样,它们就表示平面上的同一个点,实际上,4,26k ππ⎛⎫+ ⎪⎝⎭(k ∈Z )都表示点4,6π⎛⎫⎪⎝⎭.于是我们有,一般地,极坐标(ρ,θ)与(ρ,2k θπ+)(k ∈Z )表示平面内的同一个点.特别地,极点O 的坐标为(0,θ)(θ∈R ),也是平面内的同一个点,这样,我们就知道平面内的一个点的极坐标有无数多种表示. 这就是说:平面上的点与这一点的极坐标不是一一对应的.(2)位于同一个圆上的点:如极坐标分别为(4,0)、4,6π⎛⎫⎪⎝⎭、4,3π⎛⎫⎪⎝⎭、4,2π⎛⎫⎪⎝⎭,但它们的极角不相等,也不再是终边相同的角,所有这些点在以极点为圆心,以4为半径的圆上,因而(ρ,θ){这里ρ为定值,[0,2)θπ∈}点的轨迹就是以极点为圆心,以ρ为半径的圆.(3)对称点:(ρ,θ)关于极轴的对称点为(ρ,2πθ-),关于极点的对称点为(ρ,πθ+),关于过极点且垂直于极轴的直线的对称点为(ρ,πθ-). (4)共线的点:如果极坐标为(ρ,θ),其中θ为常数,ρ>0,则表示与极轴成θ角的射线. 4.极坐标系内两点间的距离公式设极坐标系内两点111(,)P ρθ,222(,)P ρθ,则2212121212||2cos()PP ρρρρθθ=+--.特例:当12θθ=,1212||||P P ρρ-=-.要点二、极坐标与直角坐标的互化1、平面内一点的极坐标与直角坐标互化的条件 ①极坐标系中的极点与直角坐标系中的原点重合; ②极坐标系中的极轴与直角坐标系中的x 轴正半轴重合; ③两种坐标系中长度单位相同2、互化公式如图,符合上述三条件的点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则①极坐标化直角坐标:cos ,sin x y ρθρθ==②直角坐标化极坐标:222,tan (0)yx y x xρθ=+=≠ 这就是在两个坐标系下,同一个点的两种坐标间的互化关系. 要点诠释: 由222x y ρ=+求ρ时,ρ不取负值;由tan (0)yx xθ=≠确定θ时,根据点(x ,y )所在的象限取正角.当x ≠0时,θ角才能由tan yxθ=按上述方法确定.当x=0时,tan θ没有意义,这时又分三种情况:(1)当x=0,y=0时,θ可取任何值;(2)当x=0,y >0时,可取2πθ=;(3)当x=0,y <0时,可取32πθ=.要点三、曲线的极坐标方程 1.曲线的极坐标方程的概念(1)一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程(,)0f ρθ=,并且坐标适合方程(,)0f ρθ=的点都在曲线C 上,那么方程(,)0f ρθ=称为曲线C 的极坐标方程.在直角坐标系中,曲线可以用含有变量x 、y 的方程表示;同样地,在极坐标系中,曲线可以用含有ρ、θ这两个变量的方程(,)0f ρθ=来表示,这种方程即为曲线的极坐标方程.要点诠释: 在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如给定曲线ρθ=,设点P 的一极坐标为,44ππ⎛⎫⎪⎝⎭,那么点P 适合方程ρθ=,从而是曲线上的一个点,但点P 的另一个极坐标9,44ππ⎛⎫⎪⎝⎭就不适合方程ρθ=了.所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.2. 求曲线极坐标方程的步骤.①建立适当的极坐标系,设(,)P ρθ是曲线上任意一点.②由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式. ③将列出的关系式进行整理、化简,得出曲线的极坐标方程.④证明所得方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,证明可以省略.要点诠释:(1)求平面曲线的极坐标方程,就是要找极径ρ和极角θ之间的关系,常用解三角形(正弦定理、余弦定理)的知识,利用三角形的面积相等来建立ρ、θ之间的关系. (2)今后我们遇到的极坐标方程多是()ρρθ=的形式,即ρ是θ的一个函数.(3)由极坐标系中点的对称性可得到极坐标方程()ρρθ=的图形的对称性:若()()ρθρθ=-,则相应图形关于极轴对称;若()()ρθρπθ=-,则图形关于射线2πθ=所在的直线对称;若()()ρθρπθ=+,则图形关于极点O 对称.3.圆的极坐标方程(1)圆心在极轴上且过极点的圆圆心在极轴上的点(a ,0)处,且圆过极点O (如图所示).P 为圆与极轴的另一交点,(,)M ρθ为圆上的动点,连接OM 和MP ,由平面几何知识知OM ⊥MP .在直角三角形OMP 中,由三角知识可得2cos a ρθ=.坐标(,)ρθ满足此方程的点也在该圆上.因此,得该圆的方程为2cos a ρθ=.也可以先写出该圆的直角坐标方程,再化为极坐标方程.如图所示,建立直角坐标系,在直角坐标系中,该圆的圆心为(a ,0),半径为a ,故圆的直角坐标方程为 (x -a)2+y 2=a 2,即 x 2+y 2=2ax . 由坐标变换公式得 22cos a ρρθ=,即 2cos a ρθ=.这样就得到前面推导出的极坐标方程. 所以,方程2cos a ρθ=就是圆上任意一点极坐标(,)ρθ所满足的条件,另一方面,我们也可以验证,坐标适合方程2cos a ρθ=的点都在这个圆上.(2)圆心在极点的圆如果已知⊙O 的半径为r ,我们可以以圆心为极点,以从圆心O 发出的一条射线为极轴建立极坐标系,那么圆上各点的特征是它们的极径都等于圆的半径r ,这时圆的极坐标方程为r ρ=(ρ∈R ). 4.直线的极坐标方程(1)过极点的直线的极坐标方程.如图所示,直线AA '过极点且与极轴成的角为α,即直线AA '的极坐标方程为 θα=(ρ≥0)和θπα=+(ρ≥0). 特别地,我们规定ρ为全体实数,那么该直线的极坐标方程就为θα=(ρ∈R ),或θαπ=+(ρ∈R ). (2)过点A (a ,0)(a >0)且垂直于极轴的直线l 的极坐标方程.如图所示,设(,)M ρθ为直线l 上的除A 外的任意一点.连接OM ,则有△AOM 为直角三角形并且∠AOM=θ,|OA|=a ,|OM|=ρ,所以有||cos ||OMOA θ=.即cos a ρθ=,化为直角坐标方程为x=a .(3)过点,2A a π⎛⎫⎪⎝⎭且平行于极轴所在直线的直线极坐标方程. 如图所示,设M 为直线上任意一点,其极坐标为(,)M ρθ,连接OM ,则有|OA|=a ,|OM|=ρ,2AOM πθ∠=-,在直角三角形AOM 中,我们有||cos ||2OMOA πθ⎛⎫⋅-= ⎪⎝⎭.∴cos 2a πρθ⎛⎫-= ⎪⎝⎭,即sin a ρθ=,化为直角坐标方程为y=a .【典型例题】类型一、极坐标系中的点的表示例1. 写出右图中各点的极坐标(ρ>0,0≤θ<2π).【思路点拨】 根据极坐标定义:若M 是平面上任一点,ρ表示OM 的长度,θ表示以射线Ox 为始边,射线OM 为终边所成的角. 【解析】 由图可知: A (5,0),2,6B π⎛⎫⎪⎝⎭,4,2C π⎛⎫⎪⎝⎭,35,4D π⎛⎫ ⎪⎝⎭,E (2,π),45,3F π⎛⎫⎪⎝⎭,53.5,3G π⎛⎫ ⎪⎝⎭.【总结升华】 本题考查了极坐标的定义,已知点在极坐标系中的位置,要准确写出它的极坐标,对应的极角可以限定一个范围,如[0,2π).当ρ>0时,每一点都对应唯一确定的一个极坐标. 举一反三:【变式1】下列各点中与2,6π⎛⎫⎪⎝⎭不表示极坐标中同一个点的是( ). A .112,6π⎛⎫-⎪⎝⎭ B .132,6π⎛⎫ ⎪⎝⎭ C .112,6π⎛⎫ ⎪⎝⎭ D .232,6π⎛⎫- ⎪⎝⎭【答案】C 。

2019年高考数学第一轮复习:极坐标与参数方程

2019年高考数学第一轮复习:极坐标与参数方程

高考数学第一轮复习:极坐标与参数方程第一部分:极坐标知识点讲解一、极坐标系与极坐标:1、极坐标系:如下图所示:一条射线就是一个极坐标系。

其中射线的端点叫做极点,这条射线叫做极轴。

2、极坐标的表示:如下图所示:点到极点的距离叫做极径,其中极径用字母ρ表示;极径与极轴之间的夹角叫做极角,极角用θ表示。

点P的极坐标为),(θρ。

二、极坐标与直角坐标的转换:1、极坐标与直角坐标的对应关系:如下图所示:2、极坐标转换为直角坐标:θρcos=x;θρsin=y;例一:把下列的极坐标转换为直角坐标。

(1)、)3,2(π (2)、)32,3(π (3)、)2,4(π (4)、)23,3(π(5)、),4(π【解析】:(1)、12123cos2=⨯=⋅=πx ;32323sin 2=⨯=⋅=πy ; 所以:极坐标)3,2(π转换为直角坐标)3,1(。

(2)、23)21(332cos3-=-⨯=⋅=πx ;23323332sin 3=⨯=⋅=πy ; 所以:极坐标)32,3(π转换为直角坐标)233,23(-。

(3)、因为:极角2πθ=;所以:点)2,4(π在y 轴正半轴上,对应的直角坐标为)4,0(; (4)、因为:极角23πθ=;所以:点)23,3(π在y 轴负半轴上,对应的直角坐标为)3,0(-;(5)、因为:极角),4(π;所以:点),4(π在x 轴的负半轴上,对应的直角坐标为)0,4(-; 3、直角坐标转换为极坐标坐标: 22y x +=ρ;22sin y x y +=θ;22cos yx x +=θ;xy=θtan 例二:把下列的直角坐标转换为极坐标。

(1)、)3,3( (2)、)3,1(- (3)、)2,2(- (4)、)2,6(- (5)、)0,2(- (6)、)6,0( (7)、)3,0(- (8)、)0,2(【解析】:(1)、32)3(322=+=ρ,33tan =θ,点)3,3(为第一象限角,6πθ=。

(完整版)极坐标和参数方程知识点+典型例题及其详解

(完整版)极坐标和参数方程知识点+典型例题及其详解

极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.错误!.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2. 错误!.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). (三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

高中数学极坐标与参数方程知识汇编及高考题型汇总

高中数学极坐标与参数方程知识汇编及高考题型汇总

高中数学极坐标与参数方程知识点汇编及题型汇总【知识汇编】参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+⎧⎨=+⎩为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量;圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+⎧⎨=+⎩为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=⎧⎨=⎩为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=⎧⎨=⎩为参数; 抛物线22y px =的参数方程是22()2x pt t y pt⎧=⎨=⎩为参数 极坐标与直角坐标互化公式:若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan yx θ=。

【题型1】参数方程和极坐标基本概念1.已知曲线C的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。

1)求曲线c 的极坐标方程2)若直线l 的极坐标方程为ρ(sinθ+cosθ)=1,求直线l 被曲线c 截得的弦长。

解:(1)∵曲线c 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数)∴曲线c 的普通方程为(x-2)2+(y-1)2=5将⎩⎨⎧==θρθρsin cos y x 代入并化简得:ρ=4cosθ+2sinθ 即曲线c 的极坐标方程为ρ=4cosθ+2sinθ (2)∵l 的直角坐标方程为x+y-1=0∴圆心c 到直线l 的距离为d=22=2∴弦长为225-=23 .2.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=sin (θ+4π),曲线C2的极坐标方程为ρsin θ=a (a >0),射线θ=ϕ,θ=ϕ+4π,θ=ϕ-4π,θ=2π+ϕ与曲线C1分别交异于极点O 的四点A ,B ,C ,D .(1)若曲线C1关于曲线C2对称,求a 的值,并把曲线C1和C2化成直角坐标方程; (2)求|OA |·|OC |+|OB |·|OD |的值. 解:(1)1C :2)1()1(22=-+-y x , 2C :a y =, 因为曲线1C 关于曲线2C 对称,1=a ,2C :1=y (2))4sin(22||πϕ+=OA ;ϕsin 22||=OC ,【题型2】直线参数方程几何意义的应用1.在平面直角坐标系xOy 中,直线l的参数方程为122x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t为参数),直线l 与曲线C :22(2)1y x --=交于A ,B 两点.(1)求AB的长;(2)在以O 为极点,x轴的正半轴为极轴建立的极坐标系中,设点P的极坐标为⎛⎝,求点P 到线段AB 中点M 的距离.解:(1)直线l的参数方程为1222x t y ⎧=-+⎪⎪⎨⎪=⎪⎩,,(t为参数),代入曲线C 的方程得24100t t +-=.设点A ,B 对应的参数分别为12t t ,,则124t t +=-,1210t t =-,所以12||||AB t t =-=(2)由极坐标与直角坐标互化公式得点P 的直角坐标为(22)-,, 所以点P 在直线l 上,中点M 对应参数为1222t t +=-,由参数t 的几何意义,所以点P 到线段AB 中点M 的距离||2PM =. 2.已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程。

2011-2019高考数学极坐标与参数方程分类汇编

2011-2019高考数学极坐标与参数方程分类汇编

2011-2019新课标《坐标系与参数方程》分类汇编【2011年新课标】在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是C 1上的动点,P 点满足OP→ =2OM→ ,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. 【答案】(1)设P (x , y ),则由条件知(,)22x y M . 由于M 点在C 1上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而C 2的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数). (2)曲线C 1的极坐标方程为4sin ρθ=,曲线C 2的极坐标方程为8sin ρθ=. 射线3πθ=与C 1的交点A 的极径为14sin3πρ=,射线3πθ=与C 2的交点B 的极径为28sin3πρ=.所以21||||AB ρρ-==【2012年新课标】已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围. 【答案】(1)依题意,点A ,B ,C ,D 的极坐标分别为5411(2,),(2,),(2,),(2,)3636ππππ. 所以点A ,B ,C ,D的直角坐标分别为、(、(1,-、1)-. (2) 设()2cos ,3sin P ϕϕ,则222222||||||||(12cos )3sin )PA PB PC PD ϕϕ+++=-+222222(2cos )(13sin )(12cos )(3sin )2cos )(13sin )ϕϕϕϕϕϕ++-+--+++-- []22216cos 36sin 163220sin 32,52ϕϕϕ=++=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52.【2013年新课标1】已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π=【答案】(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C2的普通方程为x2+y2-2y=0.由2222810160,20x y x yx y y⎧+--+=⎨+-=⎩解得1,1xy=⎧⎨=⎩或0,2.xy=⎧⎨=⎩所以C1与C2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫⎪⎝⎭.【2013年新课标2】已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π=,M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【答案】(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M的轨迹的参数方程为cos cos2,sin sin2,xyαααα=+⎧⎨=+⎩(α为参数,0<α<2π).(2)M点到坐标原点的距离d=<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【2014年新课标2】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标。

(完整版)极坐标与参数方程知识点、题型总结(最新整理)

(完整版)极坐标与参数方程知识点、题型总结(最新整理)

(完整版)极坐标与参数⽅程知识点、题型总结(最新整理)极坐标与参数⽅程知识点、题型总结⼀、伸缩变换:点是平⾯直⾓坐标系中的任意⼀点,在变换),(y x P 的作⽤下,点对应到点,称伸缩变换>?='>?=').0(,y y 0),(x,x :µµλλ?),(y x P ),(y x P '''⼀、1、极坐标定义:M 是平⾯上⼀点,表⽰OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极⾓;⼀般地,,。

,点P 的直⾓坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直⾓坐标极坐标 2、极坐标直⾓坐标?cos sin x y ρθρθ=??=??222tan (0)x y y x xρθ?=+??=≠?3、求直线和圆的极坐标⽅程:⽅法⼀、先求出直⾓坐标⽅程,再把它化为极坐标⽅程⽅法⼆、(1)若直线过点M(ρ0,θ0),且极轴到此直线的⾓为α,则它的⽅程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆⼼为M (ρ0,θ0),半径为r 的圆⽅程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0⼆、参数⽅程:(⼀).参数⽅程的概念:在平⾯直⾓坐标系中,如果曲线上任意⼀点的坐标都是某个变数的函数并且对于的每⼀个允许值,由这个⽅程所确y x ,t ?==),(),(t g y t f x t 定的点都在这条曲线上,那么这个⽅程就叫做这条曲线的参数⽅程,联系变数),(y x M 的变数叫做参变数,简称参数。

相对于参数⽅程⽽⾔,直接给出点的坐标间关系的y x ,t ⽅程叫做普通⽅程。

(⼆).常见曲线的参数⽅程如下:直线的标准参数⽅程1、过定点(x 0,y 0),倾⾓为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的⼏何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t|(2)直线上对应的参数是。

2019年高考数学试题分项版—极坐标参数方程(解析版)

2019年高考数学试题分项版—极坐标参数方程(解析版)

2019年高考数学试题分项版—极坐标参数方程(解析版)1、(2019年高考XX 卷理)下列极坐标方程中,对应的曲线为右图的是()(A )θρcos 56+=(B )θρin s 56+= (C )θρcos 56-=(D )θρin s 56-= 【答案】D考点:极坐标系【名师点睛】本题是极坐标系问题中的基本问题,从解法上看,一是可通过记忆比对,作出判断,二是利用特殊值代入检验的方法.本题突出体现了高考试题的基础性,能较好的考查考生基本运算能力、数形结合思想等.2、(2019年高考卷理)在极坐标系中,直线与圆交于A ,B 两点,则______. 【答案】2考点:极坐标方程与直角方程的互相转化.【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x =以与,,同时要掌握必要的技巧.cos sin 10ρθθ-=2cos ρθ=||AB =θρθρsin ,cos ==y x θρθρsin ,cos ==y x 22y x +=ρ)0(tan ≠=x xyθ3、(2019年高考XX 卷)在平面直角坐标系xOy 中,已知直线l的参数方程为112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长. 【答案】167考点:直线与椭圆参数方程【名师点睛】1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 与y 的取值范围的影响.4、(2019年高考新课标Ⅰ卷理)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C ∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化与应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式与应用.5、(2019年高考新课标Ⅰ卷文)在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1试题解析:⑴cos 1sin x a t y a t=⎧⎨=+⎩(t 均为参数),∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=即为1C 的极坐标方程 ⑵24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C ∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化与应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式与应用.6、(2019年高考新课标Ⅱ卷理)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||10AB =求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)153±.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-. 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式. 【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.7、(2019年高考新课标Ⅱ卷文)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||AB =求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-. 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式. 【名师点睛】极坐标与直角坐标互化的注意点:在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.8、(2019年高考新课标Ⅲ卷理)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值与此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)31(,)22. 试题解析:(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. ……5分(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-.………………8分当且仅当2()6k k Z παπ=+∈时,()d α,此时P 的直角坐标为31(,)22. ………………10分考点:1、椭圆的参数方程;2、直线的极坐标方程.【技巧点拨】一般地,涉与椭圆上的点的最值问题、定值问题、轨迹问题等,当直接处理不好下手时,可考虑利用椭圆的参数方程进行处理,设点的坐标为(cos ,cos )a b αα,将其转化为三角问题进行求解.9、(2019年高考新课标Ⅲ卷文)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=.(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值与此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)31(,)22. 试题解析:(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. ……5分(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-.………………8分当且仅当2()6k k Z παπ=+∈时,()d α取得最小值,最小值为,此时P 的直角坐标为31(,)22. ………………10分考点:1、椭圆的参数方程;2、直线的极坐标方程.【技巧点拨】一般地,涉与椭圆上的点的最值问题、定值问题、轨迹问题等,当直接处理不好下手时,可考虑利用椭圆的参数方程进行处理,设点的坐标为(cos ,cos )a b αα,将其转化为三角问题进行求解.。

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结

极坐标和参数方程知识点总结在数学的广阔天地中,极坐标和参数方程是两个独具特色且非常有用的工具。

它们为我们解决各类几何和物理问题提供了新的视角和方法。

接下来,让我们一同深入探索极坐标和参数方程的奥秘。

一、极坐标极坐标是一种用距离和角度来表示平面上点的位置的坐标系统。

在极坐标系中,一个点由极径和极角来确定。

1、极坐标的定义极径:表示点到极点(通常是坐标原点)的距离,用符号ρ 表示。

极角:表示极径与极轴(通常是 x 轴正半轴)所成的角,用符号θ 表示。

2、极坐标与直角坐标的转换(1)直角坐标转极坐标极径ρ =√(x²+ y²)极角θ = arctan(y / x) (需要根据点所在的象限确定θ 的取值)(2)极坐标转直角坐标x =ρ cosθy =ρ sinθ3、常见的极坐标曲线(1)圆圆心在极点,半径为 a 的圆的极坐标方程:ρ = a圆心在点(a, 0),半径为 a 的圆的极坐标方程:ρ =2a cosθ(2)直线过极点且与极轴夹角为α 的直线的极坐标方程:θ =α过点(a, 0) 且垂直于极轴的直线的极坐标方程:ρ cosθ = a4、极坐标的应用在物理学中,描述物体的平面运动轨迹,如圆周运动,极坐标常常能使问题简化。

二、参数方程参数方程是通过引入参数来表示曲线或曲面的方程。

1、参数方程的定义对于平面曲线,如果曲线上任意一点的坐标 x 和 y 都可以表示为某个变量 t 的函数,即 x = f(t),y = g(t),那么我们称这两个方程为该曲线的参数方程,t 称为参数。

2、参数方程的常见形式(1)直线的参数方程若直线过点(x₀, y₀),倾斜角为α,则直线的参数方程为:x = x₀+ t cosαy = y₀+t sinα (t 为参数)(2)圆的参数方程圆心在点(a, b),半径为 r 的圆的参数方程为:x = a +r cosθy = b +r sinθ (θ 为参数)(3)椭圆的参数方程焦点在 x 轴上的椭圆 x²/ a²+ y²/ b²= 1 的参数方程为:x =a cosθy =b sinθ (θ 为参数)3、参数的几何意义在直线的参数方程中,参数 t 通常具有几何意义,如表示直线上动点到定点的距离。

2019年高考讲座极坐标与参数方程高考题的几种常见类型 (共17张PPT)

2019年高考讲座极坐标与参数方程高考题的几种常见类型 (共17张PPT)
P
A
(PM MB) (PM MA)
M
2PM (MB MA) 2PM
P B
PM= t1 t2 2
PM 1(PA PB) |PM | 1 |PA PB|
2
2
|PM | | t1 t2 | 2
•A
t1
M •B
t2
P
xM

t1 t2 2
(1)x2 y2 1. 2
xP
2

cos 4
1, yP

2

sin
1
4
2019福建省普通高中毕业班质量检查
直线l
的参数方程为



x y

1 1
3 5 4 5
t t
(t为参数).
(2)设直线l交C于A,B两点,线段AB的中点为M,求 | PM | .
(1)x2 y2 1. 2
C : x2 y2 1;l : x 1或 y - 2 tan (x -1)
4 16 (1+3cos2 )t2 4(2 cos sin )t 8 0
A
P B
2019福建省普通高中毕业班质量检查
在直角坐标系xOy 中,直线l 的参数方程为



x y
3.能在极坐标系中给出简单图形的方程(说明)
与已有知识的联系帮助理解新的概念
P )
O
x cos y sin
cos = x
r
sin = y
r

=3(源自R)x 0 t cos

y

0

t

极坐标与参数方程-题型归纳

极坐标与参数方程-题型归纳

极坐标与参数方程-题型归纳高考高频题型整理汇总——《极坐标与参数方程》除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及以下部分问题。

一)有关圆的题型题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较根据圆心到直线的距离公式,即可算出圆心到直线的距离d,再与半径r比较大小,得出圆与直线的位置关系。

当d>r 时,圆与直线相离,无交点;当d=r时,圆与直线相切;当d<r时,圆与直线相交,有两个交点。

题型二:圆上的点到直线的最值问题根据圆心到直线的距离公式,算出圆上任意一点到直线的距离d,再根据圆与直线的位置关系,分别代入公式dmax=d+r和dmin=d-r,得出圆上距离直线最远的点和距离直线最近的点。

题型三:直线与圆的弦长问题根据圆心到直线的距离公式,算出圆心到直线的距离d,再根据弦长公式l=2√(r^2-d^2),得出直线与圆的弦长。

延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题弦长公式为l=t1-t2,其中t1和t2为直线与曲线的交点在曲线参数方程中的参数值。

二)距离的最值:用“参数法”1.曲线上的点到直线距离的最值问题2.点与点的最值问题参数法”:设点的坐标用该点在所在曲线的参数方程来表示,利用点到线的距离公式求出该点到直线的距离,再利用三角函数辅助角公式进行化简,得出距离的最值。

解:1)将圆C的参数方程化为普通方程:x = 3\cos t。

y = 3\sin t$则圆C的普通方程为:x^2 + y^2 = 9$将直线l的极坐标方程$r=2\cos\theta$化为直角坐标方程:r^2 = x^2 + y^2$r\cos\theta = x$代入$r=2\cos\theta$中得:x = 2\cos^2\theta$r\sin\theta = y$代入$r=2\cos\theta$中得:y = 2\sin\theta\cos\theta$则直线l的直角坐标方程为:x = 2y$2)在极坐标系中,圆C的半径为3,直线l的极坐标方程为$r=2\cos\theta$,则直线l与圆C的交点分别为$(\frac{4}{3},\frac{2\sqrt{2}}{3})$和$(\frac{4}{3},-\frac{2\sqrt{2}}{3})$。

2019年高考数学理科数学 坐标系与参数方程分类汇编

2019年高考数学理科数学 坐标系与参数方程分类汇编

2019年高考数学理科数学坐标系与参数方程1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l的距离是 A .15B .25C .45D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l 的距离226543d ==+,故选D . 2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l 的直角坐标方程为23110x +=;(27.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l 的直角坐标方程为23110x y ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos 3sin 110ρθρθ++=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l .3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【答案】(1)023ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 233ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .。

极坐标与参数方程PPT课件

极坐标与参数方程PPT课件

(2)求直线 l 上到椭圆 C 的中心距离为 5
的点的坐标. 思 路:直线上每个点对应一个参数,求出
这个参数即可.
2019/9/11
35
过程解析
解 ( 1) 因 P 为 椭 圆 x2 y2 1 上 任 意 点 , 故 可 设 4
P(2cosq ,sinq ) ,其中q R . 依题意,直线 l 的普通
4
基础知识
一般地, 若( r , q )是点M的极坐标.极坐标系中
点M的极坐标有无数个,统一表示为:
( r , q + 2kp ) (k ∈ Z )或(-r , q+(2k+1)p ) ( k ∈ Z ).
一般地,如果一条曲线上任意一点都有一个极坐标
适合方程f (r ,q ) = 0 ;反之,极坐标适合方程f (r ,q )
化简,得 ρ2-4ρcos(θ- π )-1=0, 3
此即为所求的圆 C 的方程.
2019/9/11
10
回顾反思
(1)基本思路:( 求曲线的极坐标方程 ) ① 直接法; ② 转化为直角坐标.
(2)思想方法:化归转化思想. (3)思维误区:在极坐标系中应用直角坐标系
中的结论.
2019/9/11
11
回顾反思
它的一个参数方程为


x y

x0 y0

t cosq,(t t sinq
为参数).
若圆的一般方程为 ( x a)2 ( y b)2 r2 ,
它的一个参数方程为

x y

a b

r r
cosq,(q sinq
为参数).
若椭圆的方程为

2019年高考文科数学知识点总结:极坐标与参数方程

2019年高考文科数学知识点总结:极坐标与参数方程

高中数学知识点总结 第 1 页 共 1 页 2019年高考文科数学知识点总结:极坐标与参数方程
极坐标与参数方程
116.点的极坐标
对于平面上任意一点M ,用ρ表示线段OM 的长度,用θ表示从OX 到OM 的角度,ρ叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。

117. 极坐标与直角坐标的互化公式
{cos sin x y ρθ
ρθ== 222tan x y y
x ρθ=+=⎧⎨⎩
118、参数方程的概念
在平面直角坐标系中,曲线上任意一点的坐标,x y 都是第三个变量t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩
(1),并且对于t 的每一个值,由(1)式所确定的点(),M x y 都在这条曲线上,那么(1)式叫做这条曲线的参数方程,其中变量t 叫做参数。

119、过定点),(00y x P 倾斜角为α的直线的参数方程⎩
⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) 参数|t|的几何意义是直线上由参数t 确定的点到定点P 的距离
120. (1)圆心在原点O ,半径为R 的圆的参数方程{
cos sin x R y R θθ== (2)圆心在(a ,b),半径为R 的圆的参数方程{cos sin x a R y b R θ
θ=+=+
(3)焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0) ⇔{
cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三篇:极坐标与参数方程
一、填空题
1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,
则a =__________.
2.【2018天津卷12】)已知圆22
20x y x +-=的圆心为C
,直线1,
32

=-+⎪⎪⎨
⎪=-⎪⎩
x y (t 为参数)
与该圆相交于A ,B 两点,则ABC △的面积为 .
二、解答题
1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2
2cos 30ρρθ+-=.
(1)求2C 的直角坐标方程;
(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.
2.【2018全国二卷22】在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ
=⎧⎨=⎩,
(θ为参数),
直线l 的参数方程为
1cos 2sin x t αy t α=+⎧⎨
=+⎩

(t 为参数). (1)求C 和l 的直角坐标方程;
(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.
3.【2018全国三卷22】在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩

(θ为参数),
过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.
(1)求α的取值范围;
(2)求AB 中点P 的轨迹的参数方程.
4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为π
sin()26
ρθ-=,曲线C 的方程为
4cos ρθ=,求直线l 被曲线C 截得的弦长.
参考答案 一、填空题 1.21+ 2.
2
1 二、解答题
1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.
(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.
由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与
2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两
个公共点.

1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故
4
3
k =-或0k =.
经检验,当0k =时,1l 与2C 没有公共点;当4
3
k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.

2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0
k =或4
3
k =
. 经检验,当0k =时,1l 与2C 没有公共点;当4
3
k =
时,2l 与2C 没有公共点.
综上,所求1C 的方程为4
||23
y x =-
+. 2.解:(1)曲线C 的直角坐标方程为
116
42
2=+y x . 当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.
(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程
22(13cos )4(2cos sin )80t t ααα+++-=.①
因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则
120t t +=.
又由①得α
αα2
21cos 31)
sin cos 2(4++-
=+t t ,故2cos sin 0αα+=, 于是直线l 的斜率tan 2k α==-.
3.解:(1)O 的直角坐标方程为221x y +=.
当2
απ
=
时,l 与O 交于两点. 当2
απ

时,记tan k α=,则l
的方程为y kx =.l 与O
交于两点当且仅当|1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π
∈.
综上,α的取值范围是(,
)44
π3π
. (2)l
的参数方程为cos ,
(sin x t t y t αα
=⎧⎪⎨
=⎪⎩为参数,44απ3π<<).
设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2
A B
P t t t +=,且A t ,B t
满足2sin 10t α-+=. 于
是s i n
A B t t α+=
,P t α.又点P 的坐标(,)x y 满
足c o s ,
s i n .
P P x t y t αα
=⎧⎪⎨
=⎪⎩ 所以点P
的轨迹的参数方程是sin 2,2222
x y αα
⎧=⎪⎪⎨
⎪=--⎪⎩(α为参数,44απ3π<<). 4.解:因为曲线C 的极坐标方程为=4cos ρθ,
所以曲线C 的圆心为(2,0),直径为4的圆.
因为直线l 的极坐标方程为π
sin()26ρθ-=,
则直线l 过A (4,0),倾斜角为
π6
, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =
π6
. 连结OB ,因为OA 为直径,从而∠OBA =
π2

所以π
4cos
6
AB == 因此,直线l 被曲线C
截得的弦长为.。

相关文档
最新文档