CREO六机械手的仿真运动图文教程

合集下载

Creo 动态机构仿真操作手册

Creo 动态机构仿真操作手册

Creo2.0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。

本标准适用于公司产品结构设计选用。

2 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。

对于提高设计效率降低成本有很大的作用。

Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。

design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。

在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。

系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。

下拉菜单的每一个选项与工具栏每一个图标相对应。

用户既可以通过菜单选择进行相关操作。

也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图1图1-2 机构模块下的主界面图图1-3 机构菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:设置。

凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。

3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。

齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。

伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。

执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。

弹簧:打开“弹簧” 对话框,使用此对话框可定义弹簧,也可编辑、移除或复制现有的弹簧。

Creo动态机构仿真操作手册完整版

Creo动态机构仿真操作手册完整版

C r e o动态机构仿真操作手册HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】Creo2.0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。

本标准适用于公司产品结构设计选用。

2 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。

对于提高设计效率降低成本有很大的作用。

Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。

design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。

在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。

系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。

下拉菜单的每一个选项与工具栏每一个图标相对应。

用户既可以通过菜单选择进行相关操作。

也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图图1-2 机构模块下的主界面图图1-3 机构菜单图1-4 模型树菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:连接轴设置:打开“连接轴设置”对话框,使用此对话框可定义零参照、再生值以及连接轴的限制设置。

凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。

3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。

齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。

基于PROE六自由度机械手参数化建模及运动仿真概论

基于PROE六自由度机械手参数化建模及运动仿真概论

基于PROE六自由度机械手参数化建模及运动仿真概论基于PRO/E(Pro/ENGINEER)六自由度机械手参数化建模及运动仿真(Introduction to Parametric Modeling and Motion Simulation of a Six Degree-of-Freedom Robot Arm Based on PRO/E)是一种基于 Pro/E 软件的机械手参数化建模方法和运动仿真技术的概念介绍。

机械手是一种能够执行预定动作的自动机器人系统,在工业领域被广泛应用。

参数化建模和运动仿真是机械手设计与验证的重要工具,可以提高设计效率和减少实验成本。

首先,本文介绍了 Pro/E 软件的基本原理和特点。

Pro/E 是一种三维 CAD(计算机辅助设计)软件,具有强大的参数化建模和运动仿真能力。

它可以通过调整参数来改变模型的形状和尺寸,以便满足不同的设计要求。

Pro/E 还提供了强大的运动仿真功能,可以模拟机械手在不同工况下的运动特性。

接下来,本文详细介绍了机械手的六个自由度,即机械手可以在三维空间中进行平移和转动的六个方向。

机械手的自由度决定了它的灵活性和工作范围。

参数化建模是在 Pro/E 软件中定义机械手的结构和参数,以便能够根据实际需求对机械手进行定制化设计。

然后,本文提出了一种基于 Pro/E 软件的机械手参数化建模方法。

通过定义机械手的几何尺寸、关节角度和连杆长度等参数,可以实现对机械手结构和工作范围的快速调整。

参数化建模可以大大加快机械手的设计过程,减少人工调整的工作量。

最后,本文介绍了基于 Pro/E 软件的机械手运动仿真技术。

通过给定关节的运动规律和工作环境的约束条件,可以模拟机械手在不同运动状态下的姿态和运动轨迹。

运动仿真可以帮助设计师评估机械手的性能和可靠性,并进行优化设计。

总结起来,基于 Pro/E 的六自由度机械手参数化建模和运动仿真技术是一种高效、准确和可靠的机械手设计方法。

六自由度机械手三维运动仿真研究

六自由度机械手三维运动仿真研究

图 C; 运动学多解示意图 Nhomakorabea在实际应用中, 应根据机器人实际结构选取其中最优的一 组解 ( 如行程最短、 功率最省、 受力最好、 回避障碍) , 建立对反 解值进行划分的规范。在仿真系统算法中, 为使机器人在最短 时间完成任务, 采取了行程最短的方案, 即对各转动关节根据 其单位转角对机器人位姿的影响设定其权值, 然后据此对各反 "> ! ; 运动学方程的建立及正解 首先计算各个连杆坐标系的变换矩阵, 变换矩阵中包括了 机械手连杆结构尺寸参数。将连杆坐标系{$} 相对于{$ ? 9 } 的 变换 $$ ? 9 # 称为连杆变换。每一个连杆变换 $$ ? 9 # 是经由以下四 个子变换得到的: !绕 % $ ? 9 旋转 ! 角; " 绕 & $ ? 9 旋转 " 角; #绕 ’ $ ? 9 旋转 # 角; 下 的 点: $ 将 坐 标 系 原 点 移 到 坐 标{$ ? 9 }
( $@ A ( %, &, ’) 。其中三次旋转是相对于固定坐标系{$ ? 9 } ,
B
得到相应的旋转矩阵 $$ ? 9 ! %&’ 与 $ ? 9 " $@ , 从而可以得到从坐标系
[C] {$ ? 9 } 到坐标系{$} 的齐次变换 $$ ? 9 # 。在本文介绍的机械手
中, 六个关节均为转动关节, 对于转动关节 $, 连杆变换 $$ ? 9 # 是 关节转动角度 $ $ 的函数。根据连杆变换的齐次矩阵式和连杆
第) 期
陈幼平等: 六自由度机械手三维运动仿真研究
- "# -・ ・!
六自由度机械手三维运动仿真研究 !
陈幼平,马志艳,袁楚明,周祖德
( 华中科技大学 机械科学与工程学院,湖北 武汉 ’%"",’ ) 摘- 要:以六自由度机械手三维运动仿真为背景, 介绍了利用 ./0123 实现机械手运动仿真的有效方法, 重点分析 了机械手运动学模型的构建以及运动轨迹规划的实现。对于一般的机械手运动仿真系统, 该实例具有一般普遍性。 关键词: ./0123;机械手;三维运动仿真;轨迹规划 中图法分类号:45!’!- - - 文献标识码:*- - - 文章编号:&""&$ %)6# ( !"") ) ")$ "!"#$ "%

CREO六轴机械手的仿真运动图文教程

CREO六轴机械手的仿真运动图文教程

六自由度机械手因为运动轨迹复杂,坐标法显然不合适。

所以本教程用快照法制作。

1.1首先是装配零件,新建组件P-HAND.ASM,插入m-16ib_base_any_1_1.prt,连接方式是默认,如下图:1.2装配BASEPLATE_1,板上四个孔与机械手基座m-16ib_base_any_1_1.prt 的对齐,并且基座m-16ib_base_any_1_1.prt底部与基板BASEPLATE_1表面配合,(这两个零件哪个先装配都可以,到动画制作时都作为基座处理)如下图:1.3装配零件m-16ib_axis1_any_1_1.prt,以销的方式连接,注意销连接的方向,如图:1.4旋转轴对齐,当前位置输入0,勾选启用重新生成值。

如下图:1.5销连接方式装配m-16ib_axis2_any_1_1.prt,注意销连接的方向,如下图:平移设置中,约束类型为距离,分别选择下面两个面,偏移距离15,如下图:旋转轴选择如下图的两个基准面,当前位置输入0,如下图:当前位置输入-40,零件往如下图所示的方向偏40度(这个要根据销连接的运动方向,如没有如下图所示的方向偏就改变销连接方向),如下图:点击设置零位置,勾选启用重新生成值,确定完成装配,如下图:1.6装配零件m-16ib_axis3_any_1_1.prt,还是销连接,轴对齐,平移选择下图两个面,约束类型为重合,注意销连接方向,如下图:旋转轴选择下面两个基准面,如下图:当前位置输入90,零件往如下图所示方向翻转90度(翻转的方向取决于销的连接方向),如下图:点击设置零位置,勾选重新生成值,如下图:装配零件m-16ib_axis4_any_1_1.prt,销连接,如下图:旋转轴如下图:装配零件m-16ib_axis5-6_any_1_1.prt,销连接,注意连接方向,如下图:旋转轴设置如下图:装配零件FIX_1,销连接,注意连接方向,如下图:旋转轴的设置和前面的差不多,如下图:物料装配,在这里不用约束,用户定义,放置设置成自动,如下图:显示基准面,点击拖动元件,弹出对话框,点击约束—对齐两个图元,分别选择下图两个基准面,如下图:点击对齐两个图元,分别选择下图两个曲面,如下图:点击对齐两个图元,分别选择下图箭头的两个基准面,在下面的偏移,offset处输入-700,如下图:点击拍下当前配置的快照,如下图:再点击拍下当前配置的快照,点击约束,点击对齐两个图元,点击显示基准面,分别选择下图两个基准面,如下图:点击对齐两个图元,分别选择以下曲面,如下图:对齐结果,如下图:隐藏基准面,点击主体-主体锁定约束,如下图:分别选择物料PP_1和FIX_1,然后点击右下角的小对话框的确定,生成一个主体锁定约束,如下图:点击运动轴约束,选择下图箭头中的销连接,如下图:下面的偏移值就是当前销连接的位置,如下图:用同样的办法添加下图所示的三个连接运动轴约束,如下图:添加后,效果如下图:添加完毕后,点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置,如下图:点击拍下当前配置的快照,点击约束,删除两个对齐图元约束,点击相应的对齐图元约束,观察模型显示来判断,如下图:点击连接3、4、8把偏移值分别改成0,观察机械手与物料变化情况,如下图:添加完毕后,参照前面一样,点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置;点击拍下当前配置的快照,点击约束,删除一个对齐图元约束,点击相应的对齐图元约束,观察模型显示来判断,如下图:点击运动轴约束,添加下图所示的连接,如下图:在新添加的连接约束下面的偏移输入90,如下图:整个机械手旋转了90度。

CREO 机构的运动仿真与分析 ppt课件

CREO 机构的运动仿真与分析 ppt课件

使用此区域计算惯性矩。惯性矩是对机构的旋转惯量的定量测量,换言之,也就是主体 围绕固定轴旋转以反抗旋转运动发生改变的这种趋势。
“在坐标系原点”单选钮
测量相对于当前坐标系的惯性矩。
“在重心”单选钮
测量相对于机构的主惯性轴的惯性矩
CREO 机构的运动仿真与 2021/3/26 分析 ppt课件
16
11.3.2 重力的定义
7
其常用函数的具体含义如下表
CREO 机构的运动仿真与 2021/3/26 分析 ppt课件
函数类型 常数 斜坡
余弦
摆线 抛物线
多项式
公式 y=A y=A+B*t
y=A*cos(2*Pi*t/T+B)+C
y=L*t/TL*sin(2*Pi*t/T)/2*Pi y=A*t+1/2B(t2)
y=A+B*t+C+t2+D*t3
伺服电动机
3.选项说明
6
CREO 机构的运动仿真与 2021/3/26 分析 ppt课件
“伺服电动机定义”对话框中的选项含义见表
选项 “类型”选项卡
含义
“运动轴”单选钮
用于沿某一方向明确定义的运动,选择的运动轴可以为移动轴、旋转 轴或者由槽连接建立起的槽轴。
“几何”单选钮
通过指定模型中的几何图元建立运动过程,用于创建复杂的三维运动。
设置伺服电动机的运动类型
“轮廓”选项卡
“规范”选项组
设置电动机的位置、速度、加速度,可分别设置电动机的运动形式
“模”选项组 “图形”选项组
可以指定“模”的函数及参数,指定伺服电动机的位置、速度、加速 度的变化形式。常用函数的具体含义如下表11-2所示。

Creo运动仿真实例 PPT

Creo运动仿真实例 PPT
添加第2销钉); “应用”——“机构”,进入仿真界面 二、设置运动副(凸轮副、齿轮副) 三、设置电机
1、电机位置(类型):拾取“销钉运动副”; 2、电机大小(轮廓):速度、A为360 deg/sec。 四、调整:手形“拖动”图标,进行调整,“快照”确定当 前位置。
五、分析
1、类型:运动学; 2、终止时间:1--3 sec; 3、桢频:100-200; 4、若有“快照” ,点“快照”,“运行”。 六、回放
轨迹曲线——纸零件(选装配图或机架)——选取点——选“结果集”— —确定
参照下图,设计一万向连接传动机构,结构、尺寸 均自己设计确定,并装配、运动仿真、分析。
1、播放; 2、生成视频:在“播放”的“动画”窗口内,点“捕获”,输入“路 径”、文件名。
七、分析结果(测量):分析测量 1、新建“测量点”:测量点1(摇杆的位置)、测量点2(摇杆的速度)、 测量点3(摇杆的加速度); 2、按ctrl选多个测量点、复选“分别绘制”、选“结果集”中仿真分析名 称;
3、点左上角 “绘制”图标,再点“文件”——“输出EX现方式做保护处理对用户上传分享的文档内容o运动仿真实例 PPT
(装配模块)
(机构运动 仿真模块)
大家学习辛苦了,还是要坚持
继续保持安静
(铰链)
(移动副) (丝杆螺母副)
(采用普通装配的方式进行约束) (垫片)
1、刚性:采用普 通装配的方式进行 约束;(自动)
2、焊接:采用坐 标系进行约束; (缺省)
SVA
四连杆机构
一、装配 1、机架(左):缺省方式; 2、机架(右):前面、底面对齐,右面相距120; 3、曲柄、连杆:销钉; 4、摇杆:两个销钉(在“放置”页左下点“新设置”,

六自由度机械臂控制系统设计与运动学仿真

六自由度机械臂控制系统设计与运动学仿真

六自由度机械臂控制系统设计与运动学仿真一、本文概述随着机器人技术的快速发展,六自由度机械臂作为一种重要的机器人执行机构,在工业自动化、航空航天、医疗手术等领域得到了广泛应用。

六自由度机械臂控制系统设计与运动学仿真研究对于提高机械臂的运动性能、优化控制策略以及实现高精度操作具有重要意义。

本文旨在深入探讨六自由度机械臂控制系统的设计原理与实现方法,并通过运动学仿真验证控制系统的有效性和可靠性。

本文将首先介绍六自由度机械臂的基本结构和运动学原理,包括机械臂的正运动学和逆运动学分析。

在此基础上,详细阐述六自由度机械臂控制系统的总体设计方案,包括硬件平台的选择、控制算法的设计以及传感器的配置等。

接着,本文将重点介绍控制系统的核心算法,如路径规划、轨迹跟踪、力控制等,并分析这些算法在六自由度机械臂运动控制中的应用。

为了验证控制系统的性能,本文将进行运动学仿真实验。

通过构建六自由度机械臂的运动学模型,模拟机械臂在不同工作环境下的运动过程,并分析控制系统的实时响应、运动精度以及稳定性等指标。

本文将总结六自由度机械臂控制系统设计与运动学仿真的研究成果,并展望未来的研究方向和应用前景。

通过本文的研究,旨在为六自由度机械臂控制系统的设计与优化提供理论支持和实践指导,推动机器人技术在各领域的广泛应用和发展。

二、六自由度机械臂基本理论六自由度机械臂,又称6DOF机械臂,是现代机器人技术中的重要组成部分。

其理论基础涉及机构学、运动学、动力学以及控制理论等多个领域。

六自由度机械臂之所以得名,是因为其末端执行器(如手爪、工具等)可以在三维空间中实现六个方向上的独立运动,包括三个平移运动(沿、Y、Z轴的移动)和三个旋转运动(绕、Y、Z轴的转动)。

机构学基础:六自由度机械臂的机构设计是其功能实现的前提。

通常,它由多个连杆和关节组成,每个关节都有一个或多个自由度。

通过合理设计连杆的长度和关节的配置,可以实现末端执行器在所需空间内的灵活运动。

六自由度机械手动力学仿真

六自由度机械手动力学仿真

机电工程学院机械动力学课程设计学号:专业:机械工程学生姓名:任课教师:2012年10月基于PRO/E和ADAMS的六自由度机械手运动仿真本文利用PRO/E软件对所设计六自由度机械手进行三维实体建模,然后通过PRO/E 和ADAMS良好的数据接口将模型数据直接导入ADAMS,根据实际设计要求添加相关约束,在此基础上进行运动仿真,研究机械手各机构关节的运动,测量各个关节的关节角位移、速度、加速度和驱动力矩的变化情况,通过观察各机构的运动轨迹以及相关曲线的变化趋势确定设计中存在的问题,对设计阶段的产品进行虚拟性能测试。

1 六自由度机械手的三维实体模型1.1利用Pro/E建立机械手的三维实体模型本文所研究的六自由度机械手由Part2-Part8七部分零件构成,Part_1为大地。

将绘制完成的零件采用从下向上的装配顺序进行装配,其装配效果图如图1所示。

图1 机械手装配模型1.2三维模型的导入首先在Pro/E环境下将机械手装配模型保存为“.x_t”格式,然后在ADAMS中执行[import]导入刚才生成的“.x_t”文件。

导入的模型没有质量,需要自己添加,在ADAMS 中分别定义各零件材料属性为“steel”。

2 ADAMS运动仿真机械手在运动过程中要尽量平滑、平稳,否则会产生机械部件的磨损加剧,并导致机械手的振动和冲击。

因此在仿真过程中测量各个关节的关节角位移、速度、角加速度和驱动力矩的变化情况。

将模型各零部件导入ADAMS软件中后,各个构件之间还没有任何的约束,模型只是提供了各构件的初始位置。

本机械手两两相邻的构件构成的六个关节都是转动关节,均定义为旋转副,底座与大地之间定义为固定副,然后再为每个旋转副分别定义驱动(Motion)。

从下往上,Part_2和Part_3之间为Motion_1,直到Part_7和Part_7之间为Motion_6。

添加完驱动后的模型如图2所示。

图2 ADAMS环境下机械手仿真模型本题为已知各关节转角运动关系,因此使用STEP函数定义各关节驱动为角位移的函数。

六自由度机器手运动仿真说明书

六自由度机器手运动仿真说明书

六自由度机器手运动仿真摘要机器人是当今工业的重要组成部分,它能够精确地执行各种各样地任务和操作,并且无需人们工作时所需的安全措施和舒适的工作条件。

机械手臂是目前在机械人技术领域中得到最广泛实际应用的自动化机械装置,在工业制造、医学治疗、娱乐服务、军事以与太空探索等领域都能见到它的身影。

本文主要任务是对该机器人的结构进行分析研究并且对其进行运动仿真,同时要求设计者对三维建模软件的应用有较高的要求,运用UG4.0三维建模软件建立串联六自由度机器手机械结构模型,并导入到UG6.0对其进行运动仿真,通过对其进行运动仿真,得出相应工作围。

关键词:传动部件;建模;仿真;AbstractNow the robot is an important part of the industry, it can carry out various tasks and operations precisely without the security measure and the comfortable working condition which people need. It is the automated machinery which is the most widely practical applied in the field of the robot technology, and it can be seen in many areas such as the industrial manufacturing, medical treatment, entertainment, military and space exploration and so on.This main task is the analysis of the structure of the robot and its simulation exercise, Also asked the designer of the 3D modeling software application for a higher,using three-dimensional modeling software to establish the series UG4.0 six degrees of freedom robot mechanical structure model, importing into UG6.0 for motion simulation, and corresponding results are obtained by analyzing comparison.Keywords: transmission parts; modeling; simulation;目录Abstract1引言11机器手的概述12 UG三维建模软件的介绍33 题目的意义与目的4第一章建立六自由度机器手三维模型51.1串联六自由度机器手结构说明51.2 安装尺寸71.3 外形尺寸和最大动作围81.4各关节部位电动机的选定91.5 UG4.0实体建模121.5.1分析机器手结构121.5.2 UG4.0建立六自由度机器手模型零件。

creo运动仿真教程

creo运动仿真教程

连接类型机构的连接:在装配零件时,采用如图所示的连接类型,使的零件的之间具有一定的自由度小J 实现相对的运动. Type Graphic Icon DOF Pin销钉X1 Cyluklei 囲柱2 SI K I CI滑块8—] Planar平而3Weld焊接0 Ball 球伽3B^anng袖承C6—p74 Cain凸轮c5(S Vaiies Sim槽a沁Yari”Rigid刚性N/A-110 Gear齿轮N/A%Varies General —嚴Varies6D0F6连接类型销钉连接 mdo\connections\pin&cylinder♦轴对齐/插入曲面.平面匹配/对齐或点对齐(径向)汪:即允许绕着指定的轴逬行旋转的连接•共1个自由度. 注:即允许绕着指定的轴迸行旋转和平移的连接,共2个 自由度.连接类型滑动杆连接 mdo\co nnections'slider♦轴对齐/插入曲面♦平面匹配/对齐或点对齐帥向) 注:即允许沿着指定的轴逬行平移的连接 总共1个自由度.平面连接 mdo\connections\plane♦平面匹配/对齐汪:即允许沿着1轴旋转和沿2轴方向平移 总共3个自由度.PTC Channel Advantoge••••W PTC*圆拄连接♦轴对齐/插入曲面平面连接销钉连接11拄连接滑块连接连接类型焊接连接两个坐标系对齐,元件自由度被完全消除。

连接后,元件与组件成为一 个主体■相互之间不再有自由度。

如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系按其原有自由度的作用。

总自由度 为0。

刚性连接使用一个或多个基本约束,将元件与组件连接到一起。

连接后,元件与 组件成为一个主体,相互之间不再有自由度.如果将一个子组件与组件 用刚性连接,子组件内各零件也将一起被"粘〃住,其原有自由度不起作 用。

总自由度为0。

PTC Channel Advanlogc•••••W PTC*连接类型 球连接点与点对齐注:即允许绕着任意方向旋转的连接,总3个自由度轴承连接点在轴/曲线上注:它与机械上的“轴承”不同,它是元件(或组件)上 的一个点对齐到组件(或元件)上的一条直边或轴线 上,因此元件可沿轴线平移并任意方向旋转,具有1 个平移自由度和3个旋转自由度,总自由度为4拖拽当机构连接好以后,可以通过拖拽功能,使元件间产生 相对运动. 使用快照使剃拖动“(Dfdg )对话框中的•快照气Snapshots )迭项卡可显示不同配 置组件的己保存快範的列表。

Creo机构动态仿真教程

Creo机构动态仿真教程

Creo2.0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。

本标准适用于公司产品结构设计选用。

2 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。

对于提高设计效率降低成本有很大的作用。

Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。

design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。

在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。

系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。

下拉菜单的每一个选项与工具栏每一个图标相对应。

用户既可以通过菜单选择进行相关操作。

也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图1图1-2 机构模块下的主界面图图1-3 机构菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:设置。

凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。

3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。

齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。

伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。

执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。

弹簧:打开“弹簧” 对话框,使用此对话框可定义弹簧,也可编辑、移除或复制现有的弹簧。

六足爬行机器人设计--第5章 六足爬行机器人的运动仿真

六足爬行机器人设计--第5章 六足爬行机器人的运动仿真

第5章六足爬行机器人的运动仿真机构仿真是机械系统现代设计方法中的一门新的应用技术,机构仿真具有模拟样机数值仿真。

缩短设计周期和成本、在实物产生前预先评估设计作用和功效,是现代机械设计技术的经典所在。

Pro E是基于单一数据库、参数化、全相关及工程数据再利用等概念的基础上开发出的一个功能强大的CAD/CAE/CAM软件,是目前国内外机械制造业中应用广泛的软件。

Pro E集成了多种模块,可以提供从工业设计到NC加工同步工程的产品开发方法。

现在一般的机械设计都采用其作为仿真软件,此次六足爬行机器人的设计也采用了Pro E仿真,并且可以用Pro E对机械结构进行有限元分析,提高设计的合理性。

使用软件对设计模型进行运动仿真和有限元分析,能够模拟出在真实环境工作状况并对其进行分析和研究,尽早发现设计中的缺陷,并验证产品功能和性能的可靠性,提前进行修改和优化,从而减少制造中发现问题而付出昂贵的代价,提高设计的可行性和缩短周期。

Pro E版本更新较快,最新的Pro E 5.0除了界面变化外,其功能也增加很多,此次采用Pro E 5.0作为设计软件,在绘制草图时,系统将会自动加入约束条件,使几何关系满足自己的实际要求。

5.1零件模型的建立1、选取新建命令在工具栏中单击新建文件图标(红色框内图标)。

2、选取文件类型、子类型、输入文件名、取消使用装配默认模版在弹出的文件“新增”对话框中,进行下列操作:1)选择“类型”选项组下的零件;2)选择“子类型”选项下的实体;3)在“名称”问本框中输入要制作零件的英文文件名;4)通过取消的“√”号,来取消“使用默认模版”;5)在模板下面的选择框内选择mmns_part_solid;6)单击“确定;3、在绘图区域,绘制玩零件后保存,至此零件已做好。

由于此次设计的六足爬行机器人零件非常多,所以限于篇幅的限制,在这里不做太多的讲解。

以下几个图是机器人身体上比较重要的几个零件。

图5.1 六足爬行机器人机体底板建模机器人的腿部结构是这次设计的重点,在满足设计尺寸的要求下,我设计的模拟仿真图如下。

机械手设计及运动仿真说明书

机械手设计及运动仿真说明书

搬运机械手结构设计及运动仿真摘要机械手可谓是自动手,能够模仿手等的部分工作一些功能,根据处理对象固定的程序还是爬行,操作工具自动运行装置。

机械手起到很多作用,简答来说可以能够取代人的复杂劳动,来实现生产活动的机械化及自动化,也可以在不良环境下运作,起到保护人身安全的作用,因为这方面的要求我们可以将机械手应用于机械制造中锻造方面、冶金方面、电子方面等部门,将机械手运用这些方面可以提高生产效率等。

本课题要求是通常圆柱坐标系设计的搬运机械手。

论文中是对对机械手的功能、分类及进行了叙述,并通过该论文设计要求,对机械手的手、腕、臂以及机身的结构方面的设计及计算和液压传动原理方面设计,使其能实现自动上料、腕部旋转、手臂伸展、机身旋转及升降等动作,并运用Pro/E对搬运机械手的工作过程进行机构运动仿真。

通过运动仿真对机械手的结构设计有个比较详细的了解,能够更好让机械手广泛运用于工业方面。

关键词机械手;液压传动;机械手结构设计;运动仿真Handling Robot Design and Motion SimulationAbstractManipulator can be described as automatic hand, can mimic some of the features hands and other parts of the work, according to the processing target fixed procedure or crawling, operating tool automatically run devices. Robot plays many roles, it may be able to replace short-answer people's complex labor to mechanization and automation of production activities, and can also operate in adverse environments, protect the personal safety role because this requirement, we can The robot used in machinery manufacturing in terms of forging, metallurgy, electronics and other departments, the robot can use these areas to improve production efficiency.The requirements of the subject is generally cylindrical coordinate system designed handling robot. Paper is a mechanical hand function, classification and has been described, and by the paper design requirements, design and calculation of structures of the robot's hand, wrist, arm, and body and hydraulic drive principle aspects of the design, so that it can automatic feeding, wrist rotation, arm extension, rotation and lifting and other body movements, and the use of Pro / E for the handling of the robot motion simulation work processes. By motion simulation to design the robot has a more detailed understanding, better able to make the robot widely used in industry.Keywords manipulator; hydraulic transmission; hand structure design; motion simulation目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.2 研究意义 (2)1.3 国内外研究现状分析 (3)1.4 研究的主要内容及方法 (3)1.5 工业机械手的分类,基本形式及组成 (4)1.5.1 工业机械手的分类 (4)1.5.2 工业机械手的基本形式 (4)1.5.3 基本组成 (6)1.6 本章小结 (9)第2章搬运机械手总体设计方案 (10)2.1 搬运机械手设计参数 (10)2.2 搬运机械手基本形式的选择 (11)2.3 驱动机构的选择..................................................... 错误!未定义书签。

Creo动态机构仿真操作手册

Creo动态机构仿真操作手册

Creo动态机构仿真操作手册Creo2.0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。

本标准适用于公司产品结构设计选用。

2 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。

对于提高设计效率降低成本有很大的作用。

Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。

design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。

在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。

系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。

下拉菜单的每一个选项与工具栏每一个图标相对应。

用户既可以通过菜单选择进行相关操作。

也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图1图1-2 机构模块下的主界面图图1-3 机构菜单如图1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:设置。

凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。

3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。

齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。

伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。

执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。

Creo 动态机构仿真操作手册

Creo 动态机构仿真操作手册

Creo2.0动态机构仿真操作手册1 范围本标准规定了Creo2.0动态机构仿真建模方法及思路。

本标准适用于公司产品结构设计选用。

2 Creo2.0机构模块简介在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。

对于提高设计效率降低成本有很大的作用。

Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。

design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。

在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。

系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。

下拉菜单的每一个选项与工具栏每一个图标相对应。

用户既可以通过菜单选择进行相关操作。

也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图1图1-2 机构模块下的主界面图图1-3 机构菜单如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下:设置。

凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。

3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。

齿轮:打开“齿轮副”对话框,使用此对话框可创建新的齿轮副,也可编辑、移除、复制现有的齿轮副。

伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。

执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。

弹簧:打开“弹簧” 对话框,使用此对话框可定义弹簧,也可编辑、移除或复制现有的弹簧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六自由度机械手因为运动轨迹复杂,坐标法显然不合适。

所以本教程用快照法制作。

1.1首先是装配零件,新建组件P-HAND.ASM,插入m-16ib_base_any_1_1.prt,连接方式是默认,如下图:
1.2装配BASEPLATE_1,板上四个孔与机械手基座m-16ib_base_any_1_1.prt 的对齐,并且基座m-16ib_base_any_1_1.prt底部与基板BASEPLATE_1表面配合,(这两个零件哪个先装配都可以,到动画制作时都作为基座处理)如下图:
1.3装配零件m-16ib_axis1_any_1_1.prt,以销的方式连接,注意销连接的方向,如图:
1.4旋转轴对齐,当前位置输入0,勾选启用重新生成值。

如下图:
1.5销连接方式装配m-16ib_axis2_any_1_1.prt,注意销连接的方向,如下图:
平移设置中,约束类型为距离,分别选择下面两个面,偏移距离15,如下图:
旋转轴选择如下图的两个基准面,当前位置输入0,如下图:
当前位置输入-40,零件往如下图所示的方向偏40度(这个要根据销连接的运动方向,如没有如下图所示的方向偏就改变销连接方向),如下图:
点击设置零位置,勾选启用重新生成值,确定完成装配,如下图:
1.6装配零件m-16ib_axis3_any_1_1.prt,还是销连接,轴对齐,平移选择下图两个面,约束类型为重合,注意销连接方向,如下图:
旋转轴选择下面两个基准面,如下图:
当前位置输入90,零件往如下图所示方向翻转90度(翻转的方向取决于销的连接方向),如下图:
点击设置零位置,勾选重新生成值,如下图:
装配零件m-16ib_axis4_any_1_1.prt,销连接,如下图:
旋转轴如下图:
装配零件m-16ib_axis5-6_any_1_1.prt,销连接,注意连接方向,如下图:
旋转轴设置如下图:
装配零件FIX_1,销连接,注意连接方向,如下图:
旋转轴的设置和前面的差不多,如下图:
物料装配,在这里不用约束,用户定义,放置设置成自动,如下图:
显示基准面,点击拖动元件,弹出对话框,点击约束—对齐两个图元,分别选择下图两个基准面,如下图:
点击对齐两个图元,分别选择下图两个曲面,如下图:
点击对齐两个图元,分别选择下图箭头的两个基准面,在下面的偏移,offset处输入-700,如下图:
点击拍下当前配置的快照,如下图:
再点击拍下当前配置的快照,点击约束,点击对齐两个图元,点击显示基准面,分别选择下图两个基准面,如下图:
点击对齐两个图元,分别选择以下曲面,如下图:
对齐结果,如下图:
隐藏基准面,点击主体-主体锁定约束,如下图:
分别选择物料PP_1和FIX_1,然后点击右下角的小对话框的确定,生成一个主体锁定约束,如下图:
点击运动轴约束,选择下图箭头中的销连接,如下图:
下面的偏移值就是当前销连接的位置,如下图:
用同样的办法添加下图所示的三个连接运动轴约束,如下图:
添加后,效果如下图:
添加完毕后,点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置,如下图:
点击拍下当前配置的快照,点击约束,删除两个对齐图元约束,点击相应的对齐图元约束,观察模型显示来判断,如下图:
点击连接3、4、8把偏移值分别改成0,观察机械手与物料变化情况,如下图:
添加完毕后,参照前面一样,点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置;
点击拍下当前配置的快照,点击约束,删除一个对齐图元约束,点击相应的对齐图元约束,观察模型显示来判断,如下图:
点击运动轴约束,添加下图所示的连接,如下图:
在新添加的连接约束下面的偏移输入90,如下图:
整个机械手旋转了90度。

点击连接11约束,偏移输入90,如下图:
吸盘与物料也旋转了90度。

点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置,如下图:
点击拍下当前配置的快照,点击约束,把连接3、4、8运动轴约束删除,如下图:
点击对齐两个图元,分别选择下图所示的两个曲面,在偏移中输入150,如下图:
点击对齐两个图元,分别选择下图所示两个曲面,如下图:
用前面提到的方法,重新添加3、4、8连接运动轴约束。

如下图:
点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置。

点击拍下当前配置的快照,点击约束,把主体-主体锁定、两个图元对齐删除,如下图:
删除上面三个约束后的结果:
把连接3、4、8对应的偏移值分别改成0,设置后结果,如下图:
点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置。

点击拍下当前配置的快照,点击约束,把连接2、11运动轴约束的偏移改成0,点击约束旁边的快照,点击将选定快照更新为屏幕上的当前配置。

关闭拖动对话框,点击应用程序-动画切换到动画模块,如弹出下图的对话框,请点击确定,如下图:
新建动画-快照,在弹出对话框中点击确定,如下图:
点击定义主体,在弹出对话框中点击每个主体一个零件,如下图:
点击上图中的Ground,点击右边的编辑,按CTRL不放,分别选择基板和机械手基座,点击确定,确定,点击主体定义对话框的封闭如下图:
点击关键帧序列,弹出对话框,点击+,如下图:
在对话框中关键帧下面设置成Snapshot2,确定下面的时间是1,点击加;
用同样的方法添加剩下的5个关键帧,结果如下图:
点击确定,点击时域,弹出对话框中终止时间输入6,点击确定,如下图:
点击时间轴上方的播放键就可以看到动画效果。

点击回放,点击左边的保存,弹出对话框就可以输出动画视频,如下图:
在实际制作过程中,如发现动画播放的动作不够连贯,可以多拍几个动作过程,如附件中的快照:。

相关文档
最新文档