人教版数学必修三知识点总结及典型例题解析副本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标必修3概率部分知识点总结及典型例题解析 ◆ 事件:随机事件,确定性事件: 必然事件和不可能事件 ❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()n
m A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值
♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P
② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件
()()()B P A P B A P B A +=+:,则有互斥和
⌧ 古典概率:① 所有基本事件有限个 ② 每个基本事件发生
的可能性都相等 , 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n 1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为
()n m A P =
⍓ 几何概型:一般地,一个几何区域D 中随机地取一点,记事
件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为
()的侧度的侧度D d A P =
( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般
地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )
几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多
为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。
互斥事件:不能同时发生的两个事件称为互斥事件
对立事件:两个互斥事件中必有一个发生,则称两个事件为对立
事件 ,事件A 的对立事件 记为:A
① 若, B , , B , 中最多有一个发生则为互斥事件A A 可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集 ② 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 ③ 对立事件一定是互斥事件 ④ 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集 ⑤ 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于1 ⑥ 若事件B A ,是互斥事件,则有()()()B P A P B A P +=+ ⑦ 一般地,如果 n A A A ,...,,21 两两互斥,则有
()()()()n n A P A P A P A A A P +++=+++......2121 ⑧ ()()A P A P -=1 ⑨ 在本教材中n A A A +++...21 指的是n A A A ,...,,21 中至少发生一
个 ⑩ ★ 在具体做题中,希望大家一定要注意书写过程,设出事件来,利用哪种概型解题,就按照那种概型的书写格式,最重要的是要设出所求的事件来 ,具体的格式请参照我们课本上的例题
例题选讲:
例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?
【分析】题目所给的6个球中有4个红球,2个其它颜色的球,我们可以根据不同的思路有不同的解法
解法:(基本事件一一列举略)
设事件 A 为“选取2个球至少有1个是红球” ,则其互斥事件为A 意义为“选取2个球都是其它颜色球” ()()()1514 151 - 1A P - 1 A P 151 2)56(1A P ===∴=⨯=
答:所选的2个球至少有一个是红球的概率为
1514 . 评价:本题重点考察我们对于概率基本知识的理解,综合所学的方法,根据自己的理解用不同的方法,但是基本的解题步骤不能少!
变式训练1: 在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率? 答:所选的3个球至少有一个是红球的概率为 54 .
变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率: (1)第1次抽到的是次品
(2)抽到的2次中,正品、次品各一次
解:设事件A 为“第1次抽到的是次品”, 事件B 为“抽到的2次中,正品、次品各一次”
则 ()3162==A P ,()94664224=⨯⨯+⨯=B P (或者()9
462646462=⨯+⨯=B P ) 答:第1
次抽到的是次品的概率为31 ,抽到的2次中,正品、
次品各一次的概率为9
4 变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率?
【分析】(1)由于是不放回的抽,且只抽两道题,甲抽到选择题而乙抽到填空题是独立的,所以可以用独立事件的概率(2)事件“至少1人抽到选择题”和事件“两人都抽到填空题”时互斥事件,所以可以用互斥事件的概率来
解:设事件A 为“甲抽到选择题而乙抽到填空题”,事件B 为“至少1人抽到选择题”,则B
为“两人都抽到填空题”
(1)()()⎪⎪⎭⎫ ⎝⎛=⨯⨯===⨯=1035633 103536326
1313P P P A P A P 或者 (2)()()⎪⎪⎭⎫ ⎝⎛===⨯=51 5152632623P P B P B P 或者 则
()()5
45111=-=-=B P B P 答:甲抽到选择题而乙抽到填空题的概率为
103,少1人抽到选
择题的概率为 54
. 变式训练4:一只口袋里装有5个大小形状相同的球,其中3个
红球,2 个黄球,从中不放回摸出2个球,球两个球颜色不同的概率?
【分析】先后抽出两个球颜色相同要么是1红1球,要么是1黄
1球