万有引力定律计算题

合集下载

万有引力定律

万有引力定律

万有引力定律一、选择题1、行星绕恒星运动的轨道如果是圆,那么它的轨道的长半轴三次方与公转周期T的平方的比为常数,设,则常数k的大小()2、经长期观测,人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体,如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1∶m2=3∶2,下列说法中正确的是()A.m1、m2做圆周运动的线速度之比为3∶2 B.m1、m2做圆周运动的角速度之比为3∶2C.m1做圆周运动的半径为L D.m2做圆周运动的半径为L3、一颗小行星绕太阳做匀速圆周运动的半径是地球公转半径的4倍,则这颗小行星运转的周期是()A.4年 B.6年 C.8年 D.年4、两个质量均为M的星体,其连线的垂直平分线为AB。

O为两星体连线的中点,如图,一个质量为M的物体从O沿OA方向运动,则它受到的万有引力大小变化情况是()A.一直增大 B.一直减小C.先减小,后增大 D.先增大,后减小5、已知两个质点相距为r时,它们之间的万有引力大小为F。

若只将它们之间的距离变为2r,则它们之间的万有引力大小为 ( )A. 4F B.2F C. F D. F6、一颗人造地球卫星,在地面时,所受万有引力大小为F;当它被送到距地心的距离为地球半径2倍的运行轨道后,所受万有引力大小为()A.F D . F C.F B.3F7、已知两球的半径为r1和r2,r为两球之间的最小距离,如图2所示,而且两球质量均匀分布、大小分别为m1和m2,则两球间万有引力大小为( )A. B .C. D .8、设地球表面重力加速度为g o,物体距离地心3R(R是地球半径)处,由于地球的作用而产生的加速度为g,则g/g o 为( )A、1B、1/9C、1/4D、1/169、设想把物体放到地球的中心,则此物体与地球间的万有引力是( )(A)零 (B)无穷大 (C)与放在地球表面相同 (D)无法确定10、地球的第一宇宙速度为若某行星质量是地球质最的4倍,半径是地球半径的该行星的第一宇宙速度为( )A.2 B . C . D.411、若已知某行星绕太阳公转的半径为r,公转周期为T,万有引力常量为G,则由此可求出( )(A)某行星的质量 (B)太阳的质量(C)某行星的密度 (D)太阳的密度12、如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火将卫星送入椭圆轨道2,然后再次点火,将卫星送入同步轨道3.轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,下列说法中正确的是( )(A)卫星在轨道3上的速率大于在轨道1上的速率(B)卫星在轨道3上的角速度大于在轨道1上的角速度(C)卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度(D)卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度D13、一颗人造卫星绕地球做匀速圆周运动。

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。

双方确定对火星及其卫星“火卫一”进行探测。

火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。

若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。

“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。

如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。

现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。

下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

第五章万有引力定律会考练习

第五章万有引力定律会考练习

第五章 万有引力定律一.选择题1.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( )A.只与行星的质量有关B.只与恒星的质量有关C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关2.把太阳系各行星的运动都近似看做匀速圆周运动,则对离太阳越远的行星说法错误..的是( ) A .周期越小 B .线速度越小C .角速度越小D .加速度越小3.若地球表面处的重力加速度为g ,而物体在距地球表面3R (R 为地球半径)处,由于地球作用而产生的加速度为g',则g'/g 为 ( )A .1B . 1/9C .1/4D . 1/164.人造卫星绕地球做匀速圆周运动,其绕行速率( )A .一定等于7.9km/sB .等于或小于7.9km/sC .一定大于7.9km/sD .介于7.9km/s ~11.2km/s 之间5.一个半径是地球的3倍,质量是地球的36倍的行星,它表面的重力加速度是地球表面的重力加速度的( )A .6倍B .18倍C .4倍 D.135倍6.已知地球绕太阳公转周期及公转轨道半径分别为T 和R ,月球绕地球公转周期及公转轨道半径分别为t 和r ,则太阳质量与地球质量之比为( )A .R 3t 2/r 3T 2B .R 3T 2/r 3t 2C .R 2t 3/r 2T 3D . R 2T 3/r 2t 37.地球表面重力加速度为g ,地球半径为R ,引力常量为G ,下列关于地球密度的估算式正确的是( )A .RG g πρ43=B .G R g 243πρ=C .RG g =ρD .2GR g =ρ 8.两个行星质量分别为M 1.M 2,绕太阳运行轨道的半径之比为R 1.R 2,那么它们绕太阳公转的周期之比T 1:T 2为( )A .212221R M R M B .222211R M R M C .2/322/31R R D .2/312/32R R9.若已知某行星绕太阳公转的半径和公转周期,万有引力恒量为G ,则由此可求出以下物理量中的( )A.某行星的质量B.太阳的质量C.某行星的密度D.太阳的密度10.两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA:TB=1:8,轨道半径之比和运动速率之比分别为( )A. R A :R B =4:1; V A :V B =1:2B. R A :R B =4:1; V A :V B =2:1C. R A :R B =1:4; V A :V B =1:2D. R A :R B =1:4; V A :V B =2:1二.填空题11.两颗人造卫星,它们的质量之比为1:2,它们的轨道半径之比为1:3,那么它们所受的向心力之比____________;它们的角速度之比______________。

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

备战2020年高考物理计算题专题复习:《万有引力定律》(解析版)

备战2020年高考物理计算题专题复习:《万有引力定律》(解析版)

《万有引力定律》一、计算题1.2019年1月3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了第一张近距离拍摄月球背面的图片。

此次任务实现了人类探测器首次在月球背面软着陆、首次在月球背面通过中继卫星与地球通讯,因而开启了人类探索月球的新篇章。

探测器在月球背面着陆的难度要比在月球正面着陆大很多。

其主要原因在于:由于月球的遮挡,着陆前探测器将无法和地球之间实现通讯。

2018年5月,我国发射了一颗名为“鹊桥”的中继卫星,在地球和月球背面的探测器之间搭了一个“桥”,从而有效地解决了通讯问题。

为了实现通讯和节约能量,“鹊桥”的理想位置就是围绕“地—月”系统的一个拉格朗日点运动,如图1所示。

所谓“地—月”拉格朗日点是指空间中的某个点,在该点放置一个质量很小的天体,该天体仅在地球和月球的万有引力作用下保持与地球和月球的相对位置不变。

设地球质量为M,月球质量为m,地球中心和月球中心间的距离为L,月球绕地心运动,图1中所示的拉格朗日点到月球球心的距离为r。

推导并写出r与M、m和L之间的关系式。

地球和太阳组成的“日—地”系统同样存在拉格朗日点,图2为“日—地”系统示意图,请在图中太阳和地球所在直线上用符号“”标记出几个可能拉格朗日点的大概位置。

2.利用万有引力定律可以测量天体的质量.英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g,地球半径为R,引力常量为若忽略地球自转的影响,求地球的质量.测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O做匀速圆周运动的两个星球A和B,如图所示.已知A、B间距离为L,A、B绕O点运动的周期均为T,引力常量为G,求A、B的总质量.测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”已知月球的公转周期为,月球、地球球心间的距离为你还可以利用、中提供的信息,求月球的质量.3.如图所示是“月亮女神”、“嫦娥1号”绕月做圆周运行时某时刻的图片,用、、、、分别表示“月亮女神”和“嫦娥1号”的轨道半径及周期,用R表示月亮的半径.请用万有引力知识证明:它们遵循其中k是只与月球质量有关而与卫星无关的常量经多少时间两卫星第一次相距最远;请用所给“嫦娥1号”的已知量.估测月球的平均密度.4.2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注。

万有引力定律的练习题

万有引力定律的练习题

四、万有引力定律的练习题一、选择题1、关于地球同步通讯卫星,下列说法中正确的是[]A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间2、设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是[]3、人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是[]A.R不变,使线速度变为 v/2B.v不变,使轨道半径变为2RD.无法实现4、两颗靠得较近天体叫双星,它们以两者重心联线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是[]A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比C.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成反比5、由于地球的自转,地球表面上各点均做匀速圆周运动,所以[]A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心6、以下说法中正确的是[]A.质量为m的物体在地球上任何地方其重力都一样B.把质量为m的物体从地面移到高空中,其重力变小C.同一物体在赤道上的重力比在两极处重力大D.同一物体在任何地方质量都是相同的7、假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pq8、假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则[]A.根据公式v=ωr,可知卫星的线速度将增大到原来的2倍9.如图为某行星绕太阳运动的轨道,下列关于太阳位置的描述正确的是 ( )A .太阳的位置在O 点B .太阳的位置一定在C .太阳的位置一定在C 1、C 2两点中的一点D .太阳的位置可以在C 1、O 、C 2任意一点 10. 地球绕太阳的运行轨道是椭圆形,因而地球与太阳之间的距离岁季节变化。

万有引力定律(附带答案)

万有引力定律(附带答案)

万有引力定律姓名:_______________班级:_______________考号:_______________一、计算题1、(15分) 要使一颗人造地球通讯卫星(同步卫星)能覆盖赤道上东经75.0°到东经135.0°之间的区域,则卫星应定位在哪个经度范围内的上空?地球半径R0= 6.37×106m.地球表面处的重力加速度g = 9. 80m/s2.2、(2011·武汉市四月调研)人们通过对月相的观测发现,当月球恰好是上弦月时,如图甲所示,人们的视线方向与太阳光照射月球的方向正好是垂直的,测出地球与太阳的连线和地球与月球的连线之间的夹角为θ.当月球正好是满月时,如图乙所示,太阳、地球、月球大致在一条直线上且地球在太阳和月球之间,这时人们看到的月球和在白天看到的太阳一样大(从物体两端引出的光线在人眼光心处所成的夹角叫做视角,物体在视网膜上所成像的大小决定于视角).已知嫦娥飞船贴近月球表面做匀速圆周运动的周期为T,月球表面的重力加速度为g0,试估算太阳的半径.3、假设某次天文现象中,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动,如图所示,地球的轨道半径为R,运转周期为T。

地球和太阳中心的连线与地球和行星的连线所夹的角叫做地球对该行星的观察视角(简称视角)。

已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上的天文爱好者观察该行星的最佳时期。

若某时刻该行星正处于最佳观察期,行星、地球的绕太阳的运行方向相同,如图所示,求:(1)该行星绕太阳的运转周期T 1(2)问该行星下一次处于最佳观察期至少需要经历多长的时间Δt4、西昌卫星发射中心用长征三号丙运载火箭,成功将“天链一号02星”送入太空.火箭飞行约26分钟后,西安卫星测控中心传来的数据表明,星箭分离,卫星成功进入地球同步转移轨道.“天链一号02星”是我国第二颗地球同步轨道数据中继卫星,又称跟踪和数据中继卫星,由中国航天科技集团公司所属中国空间技术研究院为主研制.中继卫星被誉为“卫星的卫星”,是航天器太空运行的数据“中转站”,用于转发地球站对中低轨道航天器的跟踪测控信号和中继航天器发回地面的信息的地球静止通信卫星.(1)已知地球半径R,地球表面的重力加速度g,地球自转周期T,万有引力常量为G,请你求出地球的密度和“天链一号02星”距地面的高度?(2)某次有一个赤道地面基站发送一个无线电波信号,需要位于赤道地面基站正上方的“天链一号02星”把该信号转发到同轨道的—个航天器,如果航天器与“天链一号02星”处于同轨道最远可通信距离的情况下,航天器接收到赤道地面基站的无线电波信号的时间是多少?(已知地球半径为R,地球同步卫星轨道半径为r,无线电波的传播速度为光速c.)5、如图所示,在半径为R,质量分布均匀的某星球表面,有一倾角为θ的斜坡。

万有引力定律

万有引力定律

第六章万有引力定律练习1 行星的运动一、选择题(每小题5分,共35分)1.A下列说法正确的是( )A.地球是宇宙的中心,太阳、月亮及其他行星绕地球转动B.太阳足静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的答案:CD2.A关于日心说被人们接受的原因是 ( )A.太阳总是从东面升起,从西面落下B.若以地球为中心来研究的运动有很多无法解决的问题C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单D.地球是围绕太阳运转的答案:C3.B 关于开普勒行星运动的公式32RkT=,以下理解正确的是( )A.k是一个与行星无关的量B.若地球绕太阳运转轨道的半长轴为R,周期为T,月球绕地球运转轨道的半长轴为R',期为T',则3322'' R R T T=C.T表示行星运动的自转周期D.T表示行星运动的公转周期答案:AD4.A 关于行星的运动,下列说法中正确的是( )A.行星轨道的半长轴越长,公转周期越长B.行星轨道的半长轴越长,公转周期越短C.水星的半长轴最短,公转周期最大D.太阳系九大行星中冥王星离太阳“最远”,绕太阳运动的公转周期最长答案:AD5.A 有关开普勒关于行星运动的描述,下列说法中正确的是( )A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等D.不同的行星绕太阳运动的椭圆轨道是不同的答案:AD6.B 某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3,则此卫星运行的周期大约是( ) A.1~4天 B.4~8天 C.8~16天 D.16~20天答案:B(点拨:根据开普勒第三定律可求出T=5.8天)7.A 太阳系的几个行星,与太阳之间的平均距离越大的行星,它绕太阳公转一周所用的时 ( ) A.越长 B.越短C.相等D.无法判断答案:A二、填空题(每小题8分,共40分)8.A 所有的行星围绕太阳运动的轨道都是________;太阳处在________上;所有行星的轨道的________的比值都相等。

人教版(2019)高中物理选择性必修二 7 万有引力定律 试题(含答案)

人教版(2019)高中物理选择性必修二 7  万有引力定律 试题(含答案)

7.2 万有引力定律1.关于万有引力定律的数学表达式F =G 122m m r ,下列说法中正确的是( ) A .公式中的G 为引力常量,其数值首先由英国物理学家卡文迪什测定,G 没有单位B .当r 趋近于零时,万有引力趋近于无穷大C .m 1、m 2受到的对方给予的万有引力总是大小相等,是一对作用力与反作用力D .m 1、m 2受到的对方给予的万有引力总是大小相等,方向相反,是一对平衡力2.下列关于万有引力定律的说法中,正确的是( )①万有引力定律是卡文迪许在实验室中发现的①对于相距很远、可以看成质点的两个物体,万有引力定律2Mm F Gr 中的r 是两质点间的距离 ①对于质量分布均匀的球体,公式中的r 是两球心间的距离①质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力。

A .①①①B .①①C .①①①D .①①3.下列实验用到与“探究加速度与力、质量的关系”相同实验方法的是( )A .甲图斜面理想实验B .乙图卡文迪什扭秤实验C .丙图共点力合成实验D .丁图“探究向心力大小”实验4.地球对月球具有相当大的万有引力,但月球却没有向下掉落回地面的原因是( )A .不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力合力为零B .地球对月球的引力还不算大C .不仅地球对月球有万有引力,而且太阳系里其他星球对月球也有万有引力D .地球对月球的万有引力不断改变月球的运动方向,使得月球绕地球运动5.“月一地检验”为万有引力定律的发现提供了事实依据.已知地球半径为R ,地球中心与月球中心的距离r = 60R ,下列说法正确的是 ( )A .“月一地检验”表明地面物体所受地球的引力与月球所受地球的引力是不同性质的力B .苹果在月球表面受到的引力约为在地球表面的160C .月球由于受到地球对它的万有引力而产生的加速度与月球绕地球做近似圆周运动的向心加速度相等D .由万有引力定律可知,月球绕地球做近似圆周运动的向心加速度是地面重力加速度的160 6.假设地球是一个均匀球体,其半径为R 。

万有引力定律计算题精粹

万有引力定律计算题精粹

《万有引力定律》计算题练习1.已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g。

某同学根据以上条件,提出一种估算地球质量M的方法:同步卫星绕地球做圆周运动,由222MmG m hh Tπ⎛⎫= ⎪⎝⎭得2324hMGTπ=。

(1)请判断上面的结果是否正确,并说明理由。

如不正确,请给出正确的解法和结果;(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。

2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。

双星系统在银河系中很普遍。

利用双星系统中两颗恒星的运动特征可推算出它们的总质量。

已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。

(引力常量为G)3.2011年8月25日23时27分,经过77天的飞行,“嫦娥二号”在世界上首次实现从月球轨道出发,受控准确进入日地系统——拉格朗日L2点的环绕轨道,如图所示。

已知地球半径为R0,地球表面重力加速度为g。

(1)若月球绕地球运动的周期为T,月球绕地球的运动近似看作匀速圆周运动,试求出月球绕地球运动的轨道半径r;(2)日地系统——拉格朗日L2点在太阳与地球连线上的地球外侧,由于同时受到太阳和地球的引力,飞船绕太阳运动的周期与地球的公转周期相等(不考虑月球及其他因素影响)。

若地球轨道半径为R,公转周期为T0,试写出计算日地系统——拉格朗日L2点到地球的距离L的表达式(只要求写出用已知量表示的关系式)。

4.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ,石油密度远小于ρ,可将上述球形区域视为空腔。

如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向,当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏高。

万有引力练习及答案

万有引力练习及答案

《万有引力定律》习题1.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看做是均匀的球体,月球仍沿开采前的圆周轨道11运动.则与开采前相比()A.地球与月球的万有引力将变大 B.地球与月球的万有引力将变小C.月球绕地球运动的周期将变长D.月球绕地球运动的周期将变短定2、同步卫星是指相对于地面不动的人造地球卫星()A.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同值B.它可以在地面上任一点的正上方,但离地心的距离是一定的C.它只能在赤道的正上方,但离地心的距离可按需要选择不同值D.它只能在赤道的正上方,且离地心的距离是一定的3、火星有两颗卫星,分别为火卫一和火卫二,它们的轨道近似为圆,已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比(AC) A.火卫一距火星表面较近B.火卫二的角速度较大C.火卫一的运动速度较大D.火卫二的向心加速度较大4、环绕地球在圆形轨道上运行的人造地球卫星,其周期可能是()A.60分钟B.80分钟C.180分钟D.25小时5、人造地球卫星在圆形轨道上环绕地球运行时有:( )A.轨道半径越大,速度越小,周期越长B.轨道半径越大,速度越大,周期越短C.轨道半径越大,速度越大,周期越长D.轨道半径越小,速度越小,周期越长6、可以发射一颗这样的人造地球卫星,使其圆轨道()A.与地球表面上某一纬度线(非赤道)是共面同心B.与地球表面上某一经度线所决定的圆是共面同心圆C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的D.与地球表面上赤道线是共面同心圆,但卫星相对地球表面是运动的7、地球可近似看成球形,由于地球表面上物体都随地球自转,所以有:( )A.物体在赤道处受的地球引力等于两极处,而重力小于两极处B.赤道处的角速度比南纬300大C.地球上物体的向心加速度都指向地心,且赤道上物体的向心加速度比两极处大D.地面上的物体随地球自转时提供向心力的是重力8、地球半径为R,地球表面的重力加速度为g,若高空中某处的重力加速度为g/2,则该处距地面球表面的高度为:( )A.(2—1)R B.R C.2R D.2R9、A、B两颗行星,各有一颗卫星,卫星轨道接近各自的行星表面,如果两行星的质量比为M A:M B=p,两行星的半径比为R A:R B=q,则两卫星的周期之比为:()A.pq B.q p C.P qq/p/D.q p10、绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,物体:()A.不受地球引力作用B.所受引力全部用来产生向心加速度C.加速度为零D.物体可在飞行器悬浮11、如图所示,三颗人造地球卫星的质量M a=M b<( )A.线速度v b=v c<v aB.周期T b=T c>T aC.b与c的向心加速度大小相等,且大于aD.b所需的向心力最小12、设行星绕恒星运动轨道为圆形,则它运动的周期平方与轨道半径的三次方之比T2/R3=K为常数,此常数的大小:()A.只与恒星质量有关B.与恒星质量和行星质量均有关C.只与行星质量有关D.与恒星和行星的速度有关13、假如一个做匀速圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做匀速圆周运动,则:( )A.根据公式v=ωr,可知卫星的线速度增大到原来的2倍B.根据公式F=mv2/r,可知卫星所需的向心力减小到原来的1/2C.根据公式F=GMm/r2,可知地球提供的向心力将减小到原来的1/4D.根据上述B和A给出的公式,可知卫星的线速度将减小到原来的√2/2 14.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体飘起来,则地球转速应为原来的( )A.g/aB. ()ag/)g/(- D. aa+ C . aag/15.根据观测,在土星层有一个环,为了判断和土星连在一起的是连续物还是小卫星群,可测出环中各层的线速度v与该层到土星中心的距离r之间的关系下列说法正确的是()A.若v与r成正比,则环的连续物。

万有引力定律习题.docx

万有引力定律习题.docx

万有引力定律1、飞船沿半径为R的圆周绕地球运转,其周期为T,如图6—1—4所 /示,如果飞船要返回地面,可在轨道上某一点A处将速率降低到适当/ 数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,已知地球半径为r,求飞船由A点运动到B点所需的时间。

\图6-1-42.宇宙飞船进入一个围绕太阳运行的近似圆形轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是()A. 3 年B. 9 年C. 27 年D. 81 年3.据美联社2002年10月7日报道,天文学家在太阳系的9大行星之外,又发现了一颗比地球小得多的新行星,而且还测得它绕太阳公转周期约为288年.若把它和地球绕太阳公转的轨道都看作圆,问它与太阳的距离约是地球与太阳距离的多少倍?(最后结果可用根式表示)4.下列说法正确的是()A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的5.关于行星绕太阳运动的正确说法是()A.所有行星都在同一椭圆轨道上绕太阳运动B.行星绕太阳运动时太阳位于行星轨道的中心处C.离太阳越近的行星,运动周期越大D.所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等6.两行星运行周期之比为1: 1,其运行轨道半长轴之比为()7、在太阳系里有一千多颗小行星,某一颗行星绕日运行的半径是金星绕日运行半径的4倍,则两行星绕日运行的周期比为()A. 1:16B. V16 :1C. 8 :1D. 1:18、月球中心离地球中心的距离是地球半径的60倍,月球质量约是地球质量的上,当火箭81飞到月球和地球中心连线上的何处时,它受到月球引力跟地球引力刚好相等?9、假设火星和地球都是球体,火星的质量M火和地球的质量M地之比为P,火星半径和地球半径之比为q,那么在火星表面和地球表面重力加速度之比是()A. [B. pq2C. —-D. pq10、某星球的半径是地球半径的m倍,密度是地球密度的n倍,则物体在该星球表面的重力加速度是地球表面的重力加速度的()m m n2 ,以A.——倍B. 倍C. 772 •〃倍D. 倍n" n m11、关于万有引力定律和引力常量的发现,下面说法哪个正确()A.万有引力定律是由开普勒发现的,而引力常量是由伽利略测定的.B.万有引力定律是开普勒发现的,而引力常量是由卡文迪许测定的.C.万有引力定律是牛顿发现的,而引力常量是由胡克测定的.D.万有引力定律是牛顿发现的,而引力常量是由卡文迪许测定的.12、引力常量的测出,所具有的重要意义是()A.证明了两球体间的万有引力很小B.使万有引力定律具有了实用价值C.直接证明万有引力定律是正确的D.实验方法在物理研究中的成功应用13、设想有一宇航员在某行星的极地上着陆时,发现在当地的重力是同一物体在地球上重力的0. 01倍,而该行星一昼夜的时间与地球相同,物体在它的赤道时恰好失重,若存在这样的星球,它的半径R应多大?14、视地球为标准球体,已知其半径R=6400km.若在地球表面上质量为m=lkg的物体所受到的重力Go=9.8N,那在距地面高为h=6400km的高空,该物体重为多少?(忽略地球自转).15>质量为M的均质实心球半径为R,中心为O点,在其内部造成了一个半径为r=R/2的球形空腔,中心为O, 点,空腔表面与实心球面内切.如图6-2-3所示,在O和O,连线上与O点相距为d的P点,放一质量为m的小球(体积不计).试求球的剩余部分对球m的引力F为多大?图6—2—316、一物体在地面上受到的重力为160N,将它放置在航天飞机中,当航天飞机以0 =苴加 速度随火箭向上加速升空的过程中,某时刻测得物体与航天飞机中的支持物的相互挤压力为 90N,求此时航天飞机距地面的高度.(地球半径取6. 4xl06m, g 取1 Om / s 2)17、 一物体在地球表面重16N,它在以5m/s 2的加速度上升的火箭中视重为9N,则此火箭离 开地球表面的距离是地球半径的()A. ]/2 倍B. 2 倍C. 3 倍D. 4 倍——r ---- >■ 18、 如图6-2-4所示,两半径分别为门,启质量分别为m 】、(、 rm2的均匀球体,相距为r,万有引力常量为G,则两球间的 顷 7万有引力为 o ' --------- / "19、 设地球表面重力加速度为go,物体在距离地心4R (R 是地球的半径)处,由于地球的作用 而产生的加速度为g,则g/go 为 ()A. 1B. 1/9C. 1/4D. 1/1620、 已知地球表面重力加速度为g,地球半径为R,万有引力恒量为G.用以上各量表示地球 质量M=。

万有引力定律计算题精选

万有引力定律计算题精选

习题精选
1、宇航员站在某行星表面的上某高处,沿水平方向抛出一个小球,经过时间,小球落到行星表面,测得抛出点与落地点之间的距离为。

若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为。

已知两落地点在同一水平面内,该行星的半径为,万有引力常数为,求该行星的质量。

2、所谓“双星”就是在宇宙中有两颗相对距离较近的星球,离其它星球较远,质量分别为和,相距为,如果它们的保持距离不变,共同绕其连线上某点,各自做匀速圆周运动,求点的位置。

3、太阳距离银河系中心约光年,太阳绕银河系中心运动的轨道可视为圆,运动的周期约年。

太阳光射到地球上需历时约500s,由此可估算银河系质量是太阳质量的多少倍?(取两位有效数字)
4、将来人类离开地球到宇宙中去生活,有人设计了宇宙村,它是一个圆环形的密封建筑,人们生活在圆环的边上。

为了使人们在其中生活不致于有失重感,可以让它绕中心轴旋转。

假设这个宇宙村的直径为200m,当它绕中心轴的转速达到多少时,人们感觉到像生活地球上一样承受10m/s2的加速度?并请你设计一个适合人类生活的宇宙村。

5、宇航员在某星球表面,将一小球从离地面h 高处以初速度v0 水平抛出,测出小球落地点与抛出点间的水平位移为s,若该星球的半径为R,万有引力常量为G,求该星球的密度为多大?。

高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版

高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版

可编辑修改精选全文完整版高考物理万有引力定律的应用真题汇编(含答案)一、高中物理精讲专题测试万有引力定律的应用1.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.2.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.【答案】t =或者t =【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22MmGmr rω= 航天飞机在地面上,有2mMG Rmg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.3.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。

万有引力定律练习题(含答案)

万有引力定律练习题(含答案)

万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。

只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。

2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。

3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。

4.假设地球是一半径为R,质量分布均匀的球体。

已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。

则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。

当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。

之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析一.解答题(共14小题)1.(2015春•锦州校级期中)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.(2)一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?【分析】(1)行星绕太阳的运动按圆周运动处理时,此时轨道是圆,就没有半长轴了,此时=k应改为,再由万有引力作为向心力列出方程可以求得常量k 的表达式;(2)球体表面物体随球体自转做匀速圆周运动,球体有最小密度能维持该球体的稳定,不致因自转而瓦解的条件是表面的物体受到的球体的万有引力恰好提供向心力,物体的向心力用周期表示等于万有引力,再结合球体的体积公式、密度公式即可求出球体的最小密度.【解答】解:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r.根据万有引力定律和牛顿第二定律有G=m r于是有=即k=所以太阳系中该常量k的表达式是.(2)设位于赤道处的小块物质质量为m,物体受到的球体的万有引力恰好提供向心力,这时球体不瓦解且有最小密度,由万有引力定律结合牛顿第二定律得:GM=mω2R又因ρ=由以上两式得ρ=.所以球的最小密度是.答:(1)太阳系中该常量k的表达式是.(2)若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是.2.(2017春•德惠市校级月考)月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天,应用开普勒定律计算:在赤道平面内离地多高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样?(R地=6400km)【分析】月球和同步卫星都绕地球做匀速圆周运动,根据开普勒第三定律列式求解即可.【解答】解:月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天;同步卫星的周期为1天;根据开普勒第三定律,有:解得:R月=R同==9R同由于R月=60R地,故R同=,故:h=R地==36267km.答:在赤道平面内离地36267km高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样.3.(2015春•东方校级期中)地球公转运行的轨道半径R1=1.49×1011m,若把地球公转周期称为1年,那么土星运行的轨道半径R2=1.43×1012m,其周期多长?【分析】根据万有引力提供圆周运动的向心力,列式求圆周运动的周期与半径的关系然后求比值即可.【解答】解:根据万有引力提供圆周运动的向心力有:G=mr()2得卫星运动的周期:T=所以有:因此周期T2==29.7年;答:土星运行的轨道周期为29.7年.4.(2015春•浮山县校级期中)卡文迪许把他自己的实验说成是“称地球的重量”(严格地说应是“测量地球的质量”).如果已知引力常量G、地球半径R和地球表面重力加速度g,计算地球的质量M和地球的平均密度各是多少?【分析】根据地在地球表面万有引力等于重力公式先计算出地球质量,再根据密度等于质量除以体积求解.【解答】解:根据地在地球表面万有引力等于重力有:=mg解得:M=所以ρ==.答:地球的质量M和地球的平均密度各是,.5.(2017春•孝感期末)火星(如图所示)是太阳系中与地球最为类似的行星,人类对火星生命的研究在今年因“火星表面存在流动的液态水”的发现而取得了重要进展.若火星可视为均匀球体,火星表面的重力加速度为g火星半径为R,火星自转周期为T,万有引力常量为G.求:(1)火星的平均密度ρ.(2)火星的同步卫星距火星表面的高度h.【分析】(1)根据万有引力等于重力求出火星的质量,结合火星的体积求出火星的密度.(2)根据万有引力提供向心力求出火星同步卫星的轨道半径,从而得出距离火星表面的高度.【解答】解:(1)在火星表面,对质量为m的物体有①又M=②联立①②两式解得ρ=.(2)同步卫星的周期等于火星的自转周期T万有引力提供向心力,有③联立解得h=.答:(1)火星的平均密度ρ为.(2)火星的同步卫星距火星表面的高度h为.6.(2017春•蓟县期中)已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地球作圆周运动,由G==m()2h得M=(1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果.(2)请根据已知条件再提出两种估算地球质量的方法并解得结果.【分析】(1)根据万有引力提供向心力,列式求解,地球半径较大,不能忽略;(2)对月球或地球应用万有引力提供向心力,也可根据在地球表面重力等于向心力求解.【解答】解:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果:得(2)方法一:月球绕地球做圆周运动,由得;方法二:在地面重力近似等于万有引力,由得.答:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果如上所述.(2)请根据已知条件再提出两种估算地球质量的方法如上所述.7.(2017春•新余期末)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星﹣500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的.已知地球表面的重力加速度是g,地球的半径为R,忽略火星以及地球自转的影响,求:(1)火星表面的重力加速度g′的大小;(2)王跃登陆火星后,经测量发现火星上一昼夜的时间为t,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?【分析】(1)求一个物理量之比,我们应该把这个物理量先表示出来,在进行之比,根据万有引力等于重力,得出重力加速度的关系,根据万有引力等于重力求出火星表面的重力加速度g′的大小;(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同,据此求解即可.【解答】解:(1)在地球表面,万有引力与重力相等,=m0g对火星=m0g′测得火星的半径是地球半径的,质量是地球质量的,联立解得g′=g(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h,则=m0()2(R′+h)GM′=g′R′2解出同步卫星离火星表面高度h=﹣R答:(1)火星表面的重力加速度g′的大小为g;(2)它正常运行时距离火星表面的距离为﹣R.8.(2017春•邹平县校级期中)地球的两颗人造卫星质量之比m1:m2=1:2,圆周轨道半径之比r1:r2=1:2.求:(1)线速度之比;(2)角速度之比;(3)运行周期之比;(4)向心力之比.【分析】(1)根据万有引力充当向心力,产生的效果公式可得出线速度和轨道半径的关系,可得结果;(2)根据圆周运动规律可得线速度和角速度以及半径的关系,直接利用上一小题的结论,简化过程;(3)根据圆周运动规律可得运行周期和角速度之间的关系,直接利用上一小题的结论,简化过程;(4)根据万有引力充当向心力可得向心力和质量以及半径的关系.【解答】解:设地球的质量为M,两颗人造卫星的线速度分别为V1、V2,角速度分别为ω1、ω2,运行周期分别为T1、T2,向心力分别为F1、F2;(1)根据万有引力和圆周运动规律得∴=故二者线速度之比为.(2)根据圆周运动规律v=ωr 得∴故二者角速度之比为.(3)根据圆周运动规律∴故二者运行周期之比为.(4)根据万有引力充当向心力公式∴故二者向心力之比为2:1.9.(2017春•郑州期中)我国月球探测计划“嫦娥工程”已经启动,科学家对月球的探索会越来越深入.(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看做匀速圆周运动,试求出月球绕地球运动的轨道半径;(2)若宇航员随登月飞船登陆月球后,在月球表面高度为h的某处以速度v0水平抛出一个小球,小球飞出的水平距离为x.已知月球半径为R月,引力常量为G,试求出月球的质量M月.【分析】(1)在地球表面重力与万有引力相等,月球绕地球圆周运动的向心力由万有引力提供,据此计算月球圆周运动的半径;(2)根据平抛运动规律求得月球表面的重力加速度,再根据月球表面的重力与万有引力相等计算出月球的质量M.【解答】解:(1)设地球质量为M,月球质量为M月,根据万有引力定律及向心力公式得:…①在地球表面重力与万有引力大小相等有:…②由①②两式可解得:月球的半径为:(2)设月球表面处的重力加速度为g月,小球飞行时间为t,根据题意水平方向上有:x=v0t…④竖直方向上有:…⑤又在月球表面重力万有引力相等故有:…⑥由④⑤⑥可解得:答:(1)月球绕地球运动的轨道半径为;(2)月球的质量M月为.10.(2017春•信阳期中)如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的第一宇宙速度v;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.【分析】(1)根据平抛运动规律列出水平方向和竖直方向的位移等式,结合几何关系求出重力加速度.(2)忽略地球自转的影响,根据万有引力等于重力列出等式.根据密度公式求解.(3)该星球的近地卫星的向心力由万有引力提供,该星球表面物体所受重力等于万有引力,联立方程即可求出该星球的第一宇宙速度υ【解答】解:(1)设该星球表现的重力加速度为g,根据平抛运动规律:水平方向:x=v0t竖直方向:平抛位移与水平方向的夹角的正切值得;(2)在星球表面有:,所以该星球的密度:;(3)由,可得v=,又GM=gR2,所以;(4)绕星球表面运行的卫星具有最小的周期,即:故答案为:(1);(2)该星球的密度;(3)该星球的第一宇宙速度;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期11.(2015春•长春校级期中)某行星绕太阳沿椭圆轨道运行,它的近日点A到太阳距离为r,远日点B到太阳的距离为R.若行星经过近日点时的速度为v A,求该行星经过远日点时的速度v B的大小.【分析】由开普勒第二定律行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等,在近日点与远日点各取一极短时间,利用扫过的面积相等.得等式:=,进行求解.【解答】解:根据开普勒第二定律,行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等.如图所示,分别以近日点A和远日点B为中心,取一个很短的时间△t,在该时间内扫过的面积如图中的两个曲边三角形所示.由于时间极短,可把这段时间内的运动看成匀速率运动,从而有=所以,该行星经过远日点时的速度大小为答:行星经过远日点时的速度v B的大小为:.12.(2017•四模拟)“测某星球表面的重力加速度和该星球的第一宇宙速度”的实验如图甲所示,宇航员做了如下实验:(1)在半径R=5000km的某星球表面,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球,从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H 的大小,F随H 的变化关系如图乙所示,圆轨道的半径为0.2 m,星球表面的重力加速度为 5 m/s2.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,该星球的第一宇宙速度大小为5000 m/s.【分析】(1)小球从A到C运动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律和牛顿第二定律分别列式,然后结合F﹣H图线求出圆轨道的半径和星球表面的重力加速度.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,根据万有引力等于重力求出该星球的第一宇宙速度.【解答】解:(1)小球过C点时满足又根据联立解得,由题目可知:时;时,可解得,r=0.2m(2)据可得故答案为:(1)0.2 5 (2)500013.(2017春•武邑县校级期中)某行星的质量是地球的6倍,半径是地球的1.5倍,地球的第一宇宙速度约为8m/s,地球表面处的重力加速度为10m/s2,此行星的第一宇宙速度约为32 m/s,此行星表面处的重力加速度为m/s2.【分析】本题采用比例法求解.根据万有引力等于重力,得到此行星表面处的重力加速度与地球表面处的重力加速度的比值,再求得行星表面处的重力加速度.再由v=求出行星的第一宇宙速度与地球的第一宇宙速度的比值,从而求得行星的第一宇宙速度.【解答】解:在星球表面上,根据万有引力等于向心力,有:G=mg,得:g=所以行星表面处的重力加速度与地球表面处的重力加速度之比为:==×=则行星表面处的重力加速度为:g行=g地=m/s2.由mg=m得:v=可得,行星的第一宇宙速度与地球的第一宇宙速度之比为:== =4,则得此行星的第一宇宙速度为:v行=4v地=32km/s故答案为:32,.14.(2016春•龙岩期末)已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响.(1)试推导第一宇宙速度v1的表达式(要有详细的推导过程,只写结果不得分);(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T.【分析】(1)在地球表面重力和万有引力相等,万有引力提供卫星圆周运动的向心力;(2)万有引力提供卫星的向心力,和万有引力等于重力求解即可.【解答】解:(1)在地球表面有重力等于万有引力:可得:GM=gR2所以,近地卫星的向心力由万有引力提供有:所以有:=(2)距地面高度为h的卫星,轨道半径为r=R+h,根据万有引力提供向心力有:所以卫星的周期为T==答:(1)试推导第一宇宙速度v1的表达式为:;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,卫星的运行周期T为.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

7.2 万有引力定律(专题训练)【四大题型】-2023-2024学年高中物理同步知识点解读与专题训练

7.2 万有引力定律(专题训练)【四大题型】-2023-2024学年高中物理同步知识点解读与专题训练

7.2 万有引力定律(专题训练)【四大题型】一.万有引力定律的内容、推导及适用范围(共8小题)二.万有引力常量的测定(共8小题)三.万有引力的计算(共9小题)四.空壳内及地表下的万有引力(共7小题)一.万有引力定律的内容、推导及适用范围(共8小题)A.只有天体间才存在万有引力9.关于卡文迪什及其扭秤装置,下列说法中错误的是()A.帮助牛顿发现万有引力定律B.首次测出万有引力恒量的数值C.被誉为“第一个称出地球质量的人”D.使万有引力定律有了实用价值10.以下关于物理学史和物理方法的叙述中正确的是()A.牛顿测定引力常量的实验运用了放大法测微小量B.在建立合力、分力、重心、质点等概念时都用到了等效替代法C.在推导匀变速直线运动位移公式时,把整个运动过程划分为很多小段,每一小段近似看成匀速直线运动,然后把各段位移相加,应用了“微元法”D.伽利略利用斜槽实验,直接得到了自由落体规律11.在物理学发展的进程中,许多物理学家的科学发现推动了人类历史的进步。

对以下科学家所作科学贡献的表述中,符合史实的是:()A.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,并测出了引力常量G的数值B.牛顿第一定律是由实验得出的定律C.开普勒研究了第谷的行星观测记录,提出了开普勒行星运动定律D.伽利略认为物体的自然状态是静止的,力是维持物体运动的原因12.在物理学的研究中用到的思想方法很多,下列说法不正确的是()A.甲图中推导匀变速直线运动位移与时间关系时运用了微元法B.乙图中卡文迪许测定引力常量的实验中运用了等效替代法C.丙图中探究向心力大小与质量、角速度和半径之间关系时运用了控制变量法D.丁图中伽利略在研究自由落体运动时采用了实验和逻辑推理的方法13.(多选)卡文迪许利用如图所示的扭秤实验装置测量了引力常量G。

为了测量石英丝极微小的扭转角,该实验装置中采取的“微小量放大”的主要措施是()A.减小石英丝的直径B.增大T型架横梁的长度C.利用平面镜对光线的反射D.增大刻度尺与平面镜的距离14.(多选)关于万有引力定律发现过程中的科学史,下列说法正确的是()A.托勒密和哥白尼都坚持日心说B.开普勒发现三定律利用了第谷的观测数据C.卡文迪许测定了万有引力常量D .月-地检验的结果表明月球与地球表面的物体,受到地球的引力遵循同样的规律 15.探究向心力大小的实验中采用了 物理方法(选填“A 或B”,A 等效替代,B 控制变量法);万有引力常量是 通过扭秤实验测得的。

万有引力综合计算题

万有引力综合计算题

1.(11分)试将一天的时间记为T ,地球半径记为R ,地球表面重力加速度为g .(结果可保留根式) (1)试求地球同步卫星P 的轨道半径R P ;(2)若已知一卫星Q 位于赤道上空且卫星Q 运动方向与地球自转方向相反,赤道上一城市A 的人平均每三天观测到卫星Q 四次掠过他的上空,试求Q 的轨道半径R Q2.寻找地外文明与地球外的生存环境一直是科学家们不断努力的目标。

如图所示是我国的“探月工程”向月球发射一颗绕月探测卫星“嫦娥一号”过程简图.月球探测计划“嫦娥工程”预计在2017年送机器人上月球,实地采样送回地球,为载人登月及月球基地选址做准备.现设想你是宇航员随“嫦娥”号登月飞船绕月球飞行,飞船上备有以下实验仪器:A .计时表一只,B .弹簧秤一把,C .已知质量为m 的物体一个,D .天平一台(附砝码一盒).在飞船贴近月球表面时可近似看成绕月球做匀速圆周运动,你已测量出飞船在靠近月球表面的圆形轨道绕行N 圈所用的时间为T .为了能测算出月球的半径和质量,飞船的登月舱在月球上着陆后,你遥控机器人利用所携带的仪器又进行了第二次测量.(已知万有引力常量为G),求:(1)说明你给机器人发的指令,如何让它进行第二次测量的? (2)试推导用上述测量的物理量表示的月球半径和质量的表达式. (3)若已知地月地月,g g R R 6141==,则可以推知近月卫星的运行速度约为近地卫星运行速度的多少倍?3.未来“嫦娥五号”落月后,轨道飞行器将作为中继卫星在绕月轨道上做圆周运动,如图所示.设卫星距离月球表面高为h ,绕行周期为T ,已知月球绕地球公转的周期为T 0,地球半径为R ,地球表面的重力加速度为g ,月球半径为r ,万有引力常量为G .试分别求出: (1)地球的质量和月球的质量;(2)中继卫星向地球发送的信号到达地球,最少需要多长时间?(已知光速为c ,且h≤r≤R)中段轨道修正发 射进入奔月轨道 进入月球轨道 制动开始4.由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 万有引力定律计算题6-1 试由月球绕地球运行的周期(T = 27.3天)和轨道半径(r = 3.85×105 km)来确定地球的质量M E 。

设轨道为圆形。

这样计算的结果与标准数据比较似乎偏大了一些,为什么?解: 243221006,64⨯==r GTM πkg .6-2 在伴星的质量与主星相比不可忽略的条件下,利用圆轨道推导严格的开普勒常量的公式。

解:)(4223m M GT r K +==π.6-3 我们考虑过月球绕地球的轨道问题,把地心看作一固定点而围绕着它运动。

然而实际上地球和月球是绕着它们的共同质心转动的。

如果月球的质量与地球相比可以忽略,一个月要多长?已知地球的质量是月球的81倍。

解: 5.2781813.27'=+=+=mmm M m M TT d .6-4 众所周知,四个内层行星和五个外层行星之间的空隙由小行星带占据,而不是第十个行星占据。

这小行星带延伸范围的轨道半径约为从2.5 AU 到3.0 AU .试计算相应的周期范围,用地球年的倍数表示。

解: a 1 = 2.5 AU : 95.3)/(2/311==T a a T y ; a 2 = 3.0AU :18.5)/(2/322==T a a T y .6-5 已知引力常量G 、地球年的长短以及太阳的直径对地球的张角约为0.55°的事实,试计算太阳的平均密度解: 3321029.124⨯=≈θπρGT kg/m 3 .6-6 。

证明在接近一星球表面的圆形轨道中运动的一个粒子的周期只与引力常量G 和星球的平均密度有关。

对于平均密度等于水的密度的星球(木星差不多与此情况相应),推算此周期之值。

证明:332234,,4R M R r r GMT πρπ⋅=≈=及, 得 ρρπ13∝=G T .6-7 已知火星的平均直径为6900 km ,地球的平均直径为1.3×104 km , 火星质量约为地球质量的0.11倍。

试求:(1) 火星的平均密度ρM 与地球密度ρE 之比; (2) 火星表面的g 值。

解: (1) 74.033=⋅=M E E M E M d d M M ρρ; (2) 03.2207.022===E E ME E M M g g d M d M g m/s 2.6-8 计划放一个处于圆形轨道、 周期为2小时的地球卫星。

(1) 这个卫星必须离地表面多高?(2) 如果它的轨道处于地球的赤道平面内,而且与地球的转动方向相同,在赤道海平面的一给定地方能够连续看到这颗卫星的时间有多长?解:(1) 63221069.14⨯=-=-=R GMTR r h πm (2) 21063.2)/arccos(2⨯=∆=ωr R t s.6-9 要把一个卫星置于地球的同步圆形轨道上,卫星的动力供应预期能维持10年,如果在卫星的生存期内向东或向西的最大容许漂移为10°,它的轨道半径的误差限度是多少? 解:同步卫星圆形轨道的半径 7321023.4⨯==ωGMr m , 容许的半径误差为2146060242606024365101031023.42327=⨯⨯⨯⨯⨯⨯⋅⨯⨯=∆⋅=∆πωωr r m .6-10 为了研究木星的大气低层中的著名“大红斑”,把一个卫星放置在绕木星的同步圆形轨道上,这卫星将在木星表面上方多高的地方? 木星自转的周期为9.6小时,它的质量M J 约为地球质量的320倍,半径R J 约为地球半径的11倍。

解: 7321077.84⨯=-=-=木木木R T GM R r h πm .6-11 一质量为M 的行星同一个质量为M /10的卫星由互相间的引力吸引使它们保持在一起,并绕着它们的不动质心在一圆形轨道上转,它们的中心之间的距离是D ,(1) 这一轨道运动的周期有多长? (2) 在总的动能中,卫星所占比例有多少?忽略行星和卫星绕它们自轴的任何自转。

解:(1) GMDD GM r DT C 1110222ππ==;(2) 1110102/2/2/222122222122=+=+v v v mv Mv mv .6-12 哈雷彗星绕日运动的周期为76年,试估算它的远日点到太阳的距离。

解:轨道椭圆长轴 143/1221069.24⨯==)(πT GM a S m , 远日点141038.52⨯=≈+a r m .6-13 在卡文迪许实验中(见图7-10),设M 与 m 的中心都在同一圆周上,两个大球分别处于同一直径的两端,各与近处小球的球心距离为 r = 10.0 cm , 轻杆长l = 50.0 cm , M = 10.0 kg , m = 10.0 g ,悬杆的角偏转θ= 3.96×10-3 rad , 悬丝的扭转常量D = 8.34×10-8 kg ·m 2/s 2 , 求G .解: 1121061.6-⨯==MmlDr G θm 3/kg.s 2 . 6-14 在可缩回的圆珠笔中弹簧的松弛长度为3 cm ,弹簧的劲度系数大概是0.05N/m . 设想有两个各为10.000 kg 的铅球,放在无摩擦的面上,使得一个这样的弹簧在非压缩状态下嵌入它们的最近两点之间。

(1) 这两个球的引力吸引将使弹簧压缩多少?铅的密度约11000 kg/m 3 . (2) 使这个系统在水平面内转动,在什么转动频率下这两个铅球不再压缩弹簧?解:(1) 623/1021090.5])43(2[/-⨯=+=πρM l k GM x m ; (2) 4001023.6)2)(2//(-⨯=++=l R l R GM ωrad/s .6-15 将地球内部结构简化为地幔和地核两部分,它们分别具有密度ρM 和ρC ,二者之间的界面在地表下2900km 深处。

试利用总质量M E = 6.0×1024 kg 和转动惯量I E = 0.33 M E R E 2 的数据求ρM 和ρC .解: 32231017.4)(34/)33.025(⨯=--⨯=c E E E c E M r R R M r R πρkg/m 3 ,3333107.1234/])(34[⨯=--=c M c E E c r r R M πρπρ kg/m 3 .6-16 利用上题的模型和数据来计算,地球内部何处的重力加速度最大。

解: 地幔和地核交界处,重力加速度最大:3.1234==C C c r G g ρπm/s 2 .6-17 一个不转动的球状行星,没有大气层,质量为M ,半径为R . 从它的表面上发射一质量为m 的粒子,速率等于逃逸速率的3/4.根据总能量和角动量守恒,计算粒子 (a)沿径向发射 (b)沿切向发射所达到的最远距离(从行星的中心算起)。

解: (a) 逃逸速度 R GM v /22=, 按能量守恒,可求得离球心的最大距离为 r = 16 R /7 ;(b) 1224343v RGMR GM v =〉=, 即此速度大于第一宇宙速度,粒子此情况下已成为卫星,但可求得其离球心的最大距离为 r = 9R / 7 .6-18 设想有一不转动的球状行星,质量为M ,半径为R ,没有大气层。

从这行星的表面发射一卫星,速率为v 0,方向与当地的竖直线成 30°角。

在随后的轨道中,这卫星所达到的离行星中心的最大距离为5R /2. 用能量和角动量守恒原理证明 v 0 = (5GM /4R )1/2. 解: 由角动量守恒和能量守恒定律可证 .6-19 一质量为m 的卫星绕着地球(质量为M )在一半径为r 的理想圆轨道上运行。

卫星因爆炸而分裂为相等的两块, 每块的质量为m /2. 刚爆炸后的两碎块的径向速度分量等于v 0/2, 其中v 0是卫星于爆炸前的轨道速率; 在卫星参考系中两碎块在爆炸的瞬间表现为沿着卫星到地心的连接线分离。

(1) 用G 、M 、m 和r 表示出每一碎块的能量和角动量(以地心系为参考系)。

(2) 画一草图说明原来的圆轨道和两碎块的轨道。

作图时,利用卫星椭圆轨道的长轴与总能量成反比这一事实。

解:(1) rmM G rMm G v m E E v v v v v 1632/221;4/5)2/(21212020202221-=-⋅===+==GMr m r v m L L )2/()2/(021===.(2) 两碎块均为以圆心为焦点的镜象对称椭圆; 其长半轴为r E m GM a 342)2/(1=-=,偏心率为21)2/(21322211=-=m M G L E ε, 短半轴为r a b 332)1(22=-=ε.6-20 彗星在近日点的速率比在沿圆形轨道上运行的行星约大几倍?[提示:彗星的轨道非常狭长]解: 圆轨道上行星的速度为 rGMv =0; 彗星在近日点的速度接近逃逸速度, 即 rGMv v 2=≈逃近 ; 故 20=v v :近.6-21 假设SL9彗星与木星的密度一样,试计算它被撕碎的洛希极限在木星表面上空多少千米。

解:按洛希公式,木R R r C 45539.2)'/(45539.23/1==ρρ; 即撕裂发生在木星上空高8710041.110154.7)145539.2(⨯=⨯⨯-=-=木R r h C m = 1.041×105km 处 .6-22 试根据图7-61估算SL9彗星碎片与木星相撞时的相对速度。

解:相对速度近似等于木星的逃逸速度,即604.52.1111320)11()320(22≈⨯==≈=≈地逃地地木木木逃v R M G R GM v V km/s .。

相关文档
最新文档