线性代数重要公式
线性代数公式必背完整归纳清晰版
![线性代数公式必背完整归纳清晰版](https://img.taocdn.com/s3/m/d3ccb12ff4335a8102d276a20029bd64793e627d.png)
线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。
在学习线性代数的过程中,掌握一些重要的公式是非常重要的。
下面是线性代数中一些常见且重要的公式,希望能够帮助到你。
1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。
2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。
3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。
4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。
《线性代数》公式大全
![《线性代数》公式大全](https://img.taocdn.com/s3/m/09972e0cf6ec4afe04a1b0717fd5360cba1a8dc5.png)
《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。
考研数学线性代数常用公式
![考研数学线性代数常用公式](https://img.taocdn.com/s3/m/eabe1223ad51f01dc381f1d6.png)
考研数学线性代数常用公式数学考研考前必背常考公式集锦。
希望对考生在暑期的复习中有所帮助。
本文内容为线性代数的常考公式汇总。
1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。
线性代数全部必背公式
![线性代数全部必背公式](https://img.taocdn.com/s3/m/4734871502d8ce2f0066f5335a8102d276a26184.png)
线性代数全公式基本运算①A B B A +=+②()()C B A C B A ++=++③()cB cA B A c +=+ ()dA cA A d c +=+ ④()()A cd dA c =⑤00=⇔=c cA 或0=A 。
()A A TT=()T T TB A B A ±=±()()T TA c cA =。
()T T TA B AB =()()()212112-==-n n C n n n τ n n A a A a A a D 2222222121+++=转置值不变A A T = 逆值变AA11=- A c cA n =γβαγβαγββα,,,,,,2121+=+()321,,ααα=A ,3阶矩阵 ()321,,βββ=B B A B A +≠+()332211,,βαβαβα+++=+B A332211,,βαβαβα+++=+B A B A BA B A =*=*0()()1,=c j i E有关乘法的基本运算nj in j i j i ij b a b a b a C +++= 2211 线性性质 ()B A B A B A A 2121+=+, ()2121AB AB B B A +=+ ()()()cB A AB c B cA == 结合律 ()()BC A C AB = ()T T TA B AB =B A AB =l k l k A A A += ()kl lkA A =()k k kB A AB =不一定成立!A AE =,A EA =()kA kE A =,()kA A kE =E BA E AB =⇔=与数的乘法的不同之处()k k kB A AB =不一定成立!无交换律 因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如 ()()E A E A E A A +-=--3322 无消去律(矩阵和矩阵相乘) 当0=AB 时0=⇒/A 或0=B 由0≠A 和00=⇒/=B AB由0≠A 时C B AC AB =⇒/=(无左消去律)特别的 设A 可逆,则A 有消去律。
线性代数重要公式
![线性代数重要公式](https://img.taocdn.com/s3/m/4b85cf98b04e852458fb770bf78a6529647d35f5.png)
线性代数重要公式在线性代数中,有许多重要的公式和定理,它们在解决线性方程组、矩阵运算、向量空间等问题中起到了关键作用。
接下来我们将介绍一些线性代数中的重要公式。
1.矩阵乘法的结合律:对于任意矩阵A、B和C,满足大小相容时,有(A·B)·C=A·(B·C)。
2.矩阵乘法的分配律:对于任意矩阵A、B和C,满足大小相容时,有A·(B+C)=A·B+A·C。
3.矩阵的转置:对于任意矩阵A,有(A^T)^T=A,其中A^T表示A的转置矩阵。
4.矩阵的转置与乘法:若A和B是满足乘法规则的矩阵,那么有(A·B)^T=B^T·A^T。
5.矩阵的逆:对于n阶方阵A,若存在逆矩阵A^-1,使得A·A^-1=A^-1·A=I,那么称A是可逆矩阵。
6.矩阵的伴随矩阵:对于n阶方阵A,将其每个元素的代数余子式组成的矩阵A*称为A的伴随矩阵。
7.克拉默法则:对于n个线性方程和n个未知数的线性方程组,如果行列式的值不为0,则该方程组存在唯一解,可以通过克拉默法则求解。
8.行列式的性质:-互换行列式的两行(列),行列式的值变号;-将行列式的行(列)乘以一个非零常数k,行列式的值变为原来的k 倍;-将行列式的行(列)加上另一行(列)的k倍,行列式的值不变。
9.矩阵的行列式和转置:对于矩阵A,有,A^T,=,A。
10.矩阵的秩:对于任意矩阵A,定义A的秩为矩阵A的行或列向量组的最大线性无关组中所含向量的个数。
11.矩阵的特征值和特征向量:对于n阶矩阵A,如果存在非零向量x,使得Ax=λx,其中λ是常数,那么称λ为矩阵A的特征值,x为对应的特征向量。
12.特征多项式和特征方程:对于n阶矩阵A,定义特征多项式为f(λ)=,λI-A,其中I为n阶单位矩阵。
将特征多项式f(λ)=0得到的方程称为特征方程。
13.矩阵的相似:对于n阶矩阵A和B,如果存在可逆矩阵P,使得P^-1AP=B,则称A 和B是相似的。
线性代数公式大全
![线性代数公式大全](https://img.taocdn.com/s3/m/3b8a8e6052ea551811a68706.png)
线性代数公式大全1、行列式n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;对于n 阶矩阵A :**AA A A A E == 无条件恒成立;矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1.一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE OF O O ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) ()()T r A A r A =;(101P 例15)n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用; ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E =()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E =()r A n ⇔=、P 的行向量线性无关;12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 施密特正交化:12(,,,)r a a a11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); A 为对称阵,则A 为二次型矩阵; n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
《线性代数》公式大全
![《线性代数》公式大全](https://img.taocdn.com/s3/m/751ed80d777f5acfa1c7aa00b52acfc789eb9f1d.png)
《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。
它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。
本文将介绍线性代数中的基本概念和相关公式。
1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。
设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。
单位向量表示模为1的向量,计算公式为:u=a/,a。
3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。
外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。
4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。
设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。
线性代数公式总结大全
![线性代数公式总结大全](https://img.taocdn.com/s3/m/00d71dc4ed3a87c24028915f804d2b160a4e864d.png)
线性代数公式总结大全在线性代数中,有许多重要的公式被广泛应用于向量、矩阵和线性方程组的求解。
下面将对这些公式进行一个全面的总结,并说明它们的应用。
1. 向量的加法和减法- 向量加法:给定两个向量A和B,其加法可以表示为A + B = C,其中C的每个分量等于A和B对应分量的和。
- 向量减法:给定两个向量A和B,其减法可以表示为A - B = C,其中C的每个分量等于A和B对应分量的差。
2. 向量的数量积和向量积- 数量积:给定两个向量A和B,其数量积可以表示为A · B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。
- 向量积:给定两个向量A和B,其向量积可以表示为A × B = |A| |B| sinθ * n,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n是垂直于A和B所在平面的单位向量。
3. 矩阵的基本运算- 矩阵加法:给定两个矩阵A和B,其加法可以表示为A + B = C,其中C的每个元素等于A和B对应元素的和。
- 矩阵减法:给定两个矩阵A和B,其减法可以表示为A - B = C,其中C的每个元素等于A和B对应元素的差。
- 矩阵数乘:给定一个矩阵A和一个标量k,其数乘可以表示为kA = B,其中B的每个元素等于A对应元素乘以k。
4. 矩阵的乘法- 矩阵乘法:给定两个矩阵A和B,其乘法可以表示为AB = C,其中矩阵C的元素等于A的行向量与B的列向量的数量积。
- 矩阵转置:给定一个矩阵A,其转置可以表示为A^T,其中A^T的第i行第j列元素等于A的第j行第i列元素。
- 矩阵的逆:给定一个可逆矩阵A,其逆可以表示为A^−1,其中AA^−1 = I,I是单位矩阵。
5. 线性方程组的解法- 列主元消去法:通过消去矩阵A的部分元素,将其转化为上三角矩阵,然后通过回代法求解线性方程组的解。
- 伴随矩阵法:利用矩阵的伴随矩阵和行列式的性质求解线性方程组的解。
线性代数重要公式
![线性代数重要公式](https://img.taocdn.com/s3/m/a2c237cc0508763231121272.png)
《 线 代 》第一章行列式一、重要公式1.AA11=- 2.1-*=n AA 3.A k kA n =4.B A AB = 5.B A BOA ∙=* 6.B A BO A ∙=*7.n m mnmn B A OA B O ∙-=)1( 8.∏====ni iiaOO OO 1**9.范德蒙行列式:∏≤<≤-----=nj i i jn nn n n nn x xx x x x x x x x x x x x 111312112232221321)(1111二、主要知识网络图nnn n n n a a a a a a a a a212222111211=行列互换,行列式值不变,即行列式与其转置行列式相等。
互换两行(列),行列式值变号。
某行(列)有公因数,可提到行列式之外。
某行(列)的k 倍加到另一行(列)上去,行列式值不变。
若行列式某行(列)的所有元素均为两项之和,则行列式可拆成两行列式之和。
若行列式有两行(列)对应成比例,则值为零。
行列式某行元素与另一行对应的元素的代数余子式乘积之和为零。
三角化、递推法、加边法、公式法、拆项法 Grame 法则奇次线性方程组有非零解的充分条件第二章 矩阵一、重要定理定理2.1 设A ,B 是n 的阶矩阵,则B A AB =。
定理2.2 如果A 是可逆矩阵,则A 的逆矩阵唯一。
定理2.3 n 阶矩阵A 可逆,)(021s P P P A n A r A =⇔=⇔≠⇔),,是初等矩阵(s i P i 1= 定理2.4 初等阵左(右)乘给定的矩阵,其结果就是对给定的矩阵作相应的行(列)变换。
定理2.5 初等矩阵可逆,且其逆同类型初等矩阵,即)()()),1(())((,111k E k E k i E k i EE E ij ij ij ij-===---。
定理2.6 如果矩阵A 与B 等价,则(1)秩r(A)=r(B) (2 )存在可逆矩阵P 与Q,使PAQ=B 。
线性代数和概率论重要公式
![线性代数和概率论重要公式](https://img.taocdn.com/s3/m/411750aab9f67c1cfad6195f312b3169a551ea6e.png)
线性代数和概率论重要公式一、线性代数公式1.行列式展开式公式:对于n阶方阵A,行列式展开式公式可以表示为:det(A) = a11C11 + a12C12 + … + an1C1n其中,aij表示A矩阵第i行第j列的元素,Cij表示该元素的代数余子式。
这个公式允许我们通过行列式展开式计算任意阶的行列式。
2.特征值和特征向量公式:对于n阶方阵A,若存在一个非零向量x和一个标量λ,使得Ax=λx,则称λ为矩阵A的特征值,x称为矩阵A对应于特征值λ的特征向量。
3.正交向量组的正交分解公式:对于一个n维向量空间中的一组正交向量{v1, v2, …, vn},任意一个向量x都可以通过这组向量的线性组合表示:x = (x · v1)v1 + (x · v2)v2 + … + (x · vn)vn其中,x·v表示向量x和向量v的内积。
4.奇异值分解公式:对于任意的m×n矩阵A,存在一个m×m正交矩阵U,一个n×n正交矩阵V和一个m×n的对角矩阵Σ,使得:A=UΣV^T其中,Σ的对角线上的元素称为矩阵A的奇异值,U的列向量称为A 的左奇异向量,V的列向量称为A的右奇异向量。
二、概率论公式1.概率公式:对于一个随机试验E,设S为其样本空间,A为S的一个事件,P(A)表示事件A发生的概率,概率公式如下:(1)P(Ω)=1,其中Ω为S的全体事件(即一定会发生的事件)(2)P(∅)=0,其中∅为不可能事件(即一定不会发生的事件)(3)0≤P(A)≤1,对于任意事件A(4)对于互不相容的事件A1,A2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+…2.条件概率公式:对于两个事件A和B,其中P(B)≠0,条件概率P(A,B)表示在事件B 已经发生的条件下,事件A发生的概率,条件概率公式如下:P(A,B)=P(A∩B)/P(B)3.贝叶斯公式:贝叶斯公式是一种用于计算条件概率的公式,如下:P(A,B)=P(B,A)×P(A)/P(B)其中,P(A)和P(B)为事件A和事件B的概率,P(B,A)为在事件A已经发生的情况下事件B发生的概率。
《线性代数》重要公式
![《线性代数》重要公式](https://img.taocdn.com/s3/m/ae2cd2fee87101f69f319567.png)
1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行〔列〕的元素乘以其它行〔列〕元素的代数余子式为0; ③、某行〔列〕的元素乘以该行〔列〕元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,那么(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,那么(1)22(1)n n D D -=-;将D 主对角线翻转后〔转置〕,所得行列式为3D ,那么3D D =;将D 主副角线翻转后,所得行列式为4D ,那么4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式〔 = ◥◣〕:主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠〔是非奇异矩阵〕; ⇔()r A n =〔是满秩矩阵〕 ⇔A 的行〔列〕向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成假设干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行〔列〕向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:假设12s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,那么: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;〔主对角分块〕 ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;〔副对角分块〕 ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;〔拉普拉斯〕 ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;〔拉普拉斯〕 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,假设()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:〔初等列变换类似,或转置后采用初等行变换〕①、假设(,)(,)rA E E X ,那么A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,那么A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的根本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、假设AB ,那么()()r A r B =;④、假设P 、Q 可逆,那么()()()()r A r PA r AQ r PAQ ===;〔可逆矩阵不影响矩阵的秩〕 ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;〔※〕 ⑥、()()()r A B r A r B +≤+;〔※〕 ⑦、()min((),())r AB r A r B ≤;〔※〕⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,那么:〔※〕 Ⅰ、B 的列向量全部是齐次方程组0AX =解〔转置运算后的结论〕;Ⅱ、()()r A r B n +≤⑨、假设A 、B 均为n 阶方阵,那么()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵〔向量〕⨯行矩阵〔向量〕的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;〔两句话〕②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,那么:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换〔只能使用初等行变换〕;②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭〔向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数〕 ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭〔全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭〕; ④、1122n n a x a x a x β+++=〔线性表出〕⑤、有解的充要条件:()(,)r A r A n β=≤〔n 为未知数的个数或维数〕4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;〔齐次线性方程组〕②、向量的线性表出 Ax b ⇔=是否有解;〔线性方程组〕 ③、向量组的相互线性表示 AX B ⇔=是否有解;〔矩阵方程〕3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线〔平行〕;③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:假设12,,,s ααα线性相关,那么121,,,,s s αααα+必线性相关;假设12,,,s ααα线性无关,那么121,,,s ααα-必线性无关;〔向量的个数加加减减,二者为对偶〕假设r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :假设A 线性无关,那么B 也线性无关;反之假设B 线性相关,那么A 也线性相关;〔向量组的维数加加减减〕简言之:无关组延长后仍无关,反之,不确定;7. 向量组A 〔个数为r 〕能由向量组B 〔个数为s 〕线性表示,且A 线性无关,那么r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,那么()()r A r B ≤;〔86P 定理3〕 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=〔85P 定理2〕向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==〔85P 定理2推论〕8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=〔左乘,P 可逆〕0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=〔右乘,Q 可逆〕; ③、矩阵等价:~A B PAQ B ⇔=〔P 、Q 可逆〕; 9. 对于矩阵m n A ⨯与l n B ⨯:①、假设A 与B 行等价,那么A 与B 的行秩相等;②、假设A 与B 行等价,那么0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 假设m s s n m n A B C ⨯⨯⨯=,那么:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;〔转置〕11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:〔110P 题19结论〕1212(,,,)(,,,)r s b b b a a a K =〔B AK =〕其中K 为s r ⨯,且A 线性无关,那么B 组线性无关()r K r ⇔=;〔B 与K 的列向量组具有相同线性相关性〕〔必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法〕 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;〔87P 〕 ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;〔定义〕⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,那么n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 假设*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个根底解系,那么*12,,,,n r ηξξξ-线性无关;〔111P 题33结论〕5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=〔定义〕,性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、假设A 为正交矩阵,那么1T A A -=也为正交阵,且1A =±; ③、假设A 、B 正交阵,那么AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;假设C 为正交矩阵,那么T C AC B =⇒A B ,〔合同、相似的约束条件不同,相似的更严格〕; 6. A 为对称阵,那么A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数重要公式定理大全
![线性代数重要公式定理大全](https://img.taocdn.com/s3/m/80ffe8a7f9c75fbfc77da26925c52cc58ad6907c.png)
线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。
在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。
在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。
下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。
一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。
2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。
(2)行列式相邻行(列)对换,行列式的值不变。
(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。
(4)互换行列式的两行(列),行列式的值不变。
(5)若行列式的行(列)的元素都是0,那么行列式的值为0。
(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。
3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。
(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。
(3)行列式的转置等于行列式的值不变。
二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。
大一线性代数知识点公式
![大一线性代数知识点公式](https://img.taocdn.com/s3/m/29765510b5daa58da0116c175f0e7cd1842518c5.png)
大一线性代数知识点公式线性代数是大一数学课程中的一门重要学科,涵盖了许多核心概念和基本公式。
下面将介绍一些大一线性代数中常见的知识点和相关公式。
1. 向量的加法和标量乘法向量的加法和标量乘法是线性代数中最基本的运算。
对于向量v和w,其加法定义为:v + w = (v₁ + w₁, v₂ + w₂, ..., vₙ + wₙ)其中vᵢ和wᵢ是向量v和w的第i个分量。
标量乘法定义为:k · v = (k · v₁, k · v₂, ..., k · vₙ)其中k是一个实数。
2. 向量的点乘和模长向量的点乘也称为向量的内积或数量积。
对于向量v和w,其点乘定义为:v ∙ w = v₁w₁ + v₂w₂ + ... + vₙwₙ点乘的结果是一个实数。
另外,向量的模长定义为:‖v‖ = √(v₁² + v₂² + ... + vₙ²)模长表示向量的长度或大小。
3. 矩阵的加法和标量乘法矩阵的加法和标量乘法也是线性代数中常见的操作。
对于m×n 的矩阵A和B,其加法定义为:A +B = [aᵢₙ + bᵢₙ]其中aᵢₙ和bᵢₙ是矩阵A和B的第i行第j列的元素。
标量乘法定义为:k · A = [kaᵢₙ]其中k是一个实数。
4. 矩阵的乘法矩阵的乘法是线性代数中最重要的运算之一。
对于m×n的矩阵A和n×p的矩阵B,它们的乘积AB定义为:AB = [cᵢₙ]其中cᵢₙ是矩阵乘积的第i行第j列的元素,计算公式为:cᵢₙ = aᵢ₁b₁ₙ + aᵢ₂b₂ₙ + ... + aᵢₙbₙₙ5. 行列式的计算行列式是线性代数中独特的概念,用于描述矩阵的性质。
对于n阶方阵A,其行列式定义为|A|或det(A)。
行列式的计算公式较复杂,可以通过展开定理、高斯消元法等方法进行计算。
6. 矩阵的转置和逆矩阵的转置是将其行和列对调得到的新矩阵。
线性代数公式大全
![线性代数公式大全](https://img.taocdn.com/s3/m/c7f74038ba1aa8114431d952.png)
线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。
1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。
证明如下:设排列为111l m n a a ab b bc c ,作m 次相邻对换后,变成111l m n a a abb b c c ,再作1m +次相邻对换后,变成111l m n a a bb b ac c ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。
2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。
性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。
性质4:任意行列式可按某行(列)分解为两个行列式之和。
性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
对性质4的重要拓展: 设n 阶同型矩阵,()()(); ij ij ij ij A a B b A B a b ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。
韦达定理的一般形式为:()121201201110; ; 1n nnn n n n n n n n n i i j i i i j i n n n a a aa x a xa xa x x x x a a a ------=≠==++++=⇒=-==-∑∑∏一、行列式定义 1.定义111212122212n n n n nna a a a a a a a a n n nj j j j j j a a a 221211)()1(τ∑-=其中逆序数 ()121nj j j j τ=后面的1j 小的数的个数 2j +后面比2j 小的数的个数+1n j -+后面比1n j -小的数的个数.2.三角形行列式1112122200n n nna a a a aa 11212212000n n nna a a a a a =1122nn a aa=1211000n n n nn nna a a a a -111212122100n n a a a a a a =()()12112111n n n n n a a a τ-⋅⎡⎤⎣⎦-=-()()1212111n n n n n a a a --=-二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理1122i k i k in kn ik a A a A a A A δ+++=A A a A a A a jk nk nj k j k j δ=+++2211三、重要公式 设A 是n 阶方阵,则 1.T A A =2.11A A--=3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则00A C A A B B CB ==()10mnAC A A BB CB==-7.范德蒙行列式()1222212111112111n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关 A ⇔的n 个特征值0,1,2,,i i n λ≠=⇔A 可写成若干个初等矩阵的乘积 ⇔)()(B r AB r = ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解 ⇔n A r <)( ⇔0是A 的特征值 ⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i =λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。
线性代数公式总结
![线性代数公式总结](https://img.taocdn.com/s3/m/b83106f51b37f111f18583d049649b6648d709f8.png)
线性代数公式总结线性代数是数学中的一个分支,主要研究向量、向量空间、矩阵、线性方程组等概念和性质。
线性代数公式总结如下:1.向量加法和标量乘法:- 向量加法:如果u和v是n维向量,则它们的和为u + v = (u1 + v1, u2 + v2, ..., un + vn)- 标量乘法:如果k是一个实数,则k乘以向量v的结果为kv = (k*v1, k*v2, ..., k*vn)2.线性方程组:-n个未知数的线性方程组可以用矩阵和向量表示:Ax=b,其中A是一个m×n的矩阵,x是一个n维列向量,b是一个m维列向量。
- 如果Ax = b有唯一解,则A的行列式不为零。
行列式表示为det(A)。
-矩阵的逆:如果矩阵A的行列式不为零,则存在矩阵A的逆矩阵A^-1,使得AA^-1=A^-1A=I,其中I是单位矩阵。
3.向量空间和线性无关性:- 向量空间是指由向量的线性组合构成的集合,满足以下性质:对于任意的向量u和v以及任意的标量k和l,ku + lv仍然在向量空间内。
- 向量v1, v2, ..., vn是线性无关的,如果方程k1v1 + k2v2+ ... + knvn = 0只有零解。
- 如果一组向量v1, v2, ..., vn张成一个向量空间V,则称这组向量是V的基。
4.矩阵的运算:- 矩阵的加法:如果A和B是相同大小的矩阵,则它们的和为A + B = (aij + bij),其中aij和bij分别是矩阵A和B对应位置的元素。
- 矩阵的乘法:如果A是m×n的矩阵,B是n×p的矩阵,它们的乘积为C = AB,其中C是m×p的矩阵,其中C的元素cij可以表示为cij= Σ(k=1 to n) aikbk,其中aik是矩阵A的元素,bk是矩阵B的元素。
5.特征值和特征向量:-如果矩阵A乘以向量v得到一个与v方向相同的向量,那么v是A的特征向量,对应的乘积结果是特征值λ,即Av=λv。
考研线性代数公式
![考研线性代数公式](https://img.taocdn.com/s3/m/300e4370effdc8d376eeaeaad1f34693daef1021.png)
考研线性代数公式线性代数是数学的一个重要分支,是研究向量空间、线性映射等概念和性质的数学学科。
在考研中,线性代数作为一个重要的科目之一,公式的掌握是非常关键的。
下面将为大家介绍一些考研线性代数中常用的公式。
1.向量的长度公式:向量a的长度(或者说模)可以表示为:,a,=√(a1^2+a2^2+...+an^2)2.向量的点积公式:向量a和向量b的点积可以表示为:a·b=a1*b1+a2*b2+...+an*bn3.向量的叉积公式:向量a和向量b的叉积可以表示为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)4.向量的内积公式(柯西-施瓦茨不等式):对于向量空间V中任意两个向量a和b,有,a·b,≤,a,*,b,当且仅当a和b共线时等号成立。
5.矩阵的转置公式:矩阵A的转置可以表示为:A^T=(a_ij)^T=(a_ji)6.矩阵的行列式公式:对于n阶矩阵A,其行列式可以表示为:det(A)=,A,=∑(-1)^i*a_i1*M_i1,其中a_i1是A的第i行第1列的元素,M_i1是a_i1的余子式。
7.矩阵的逆矩阵公式:对于n阶可逆矩阵A,其逆矩阵可以表示为:A^(-1)=1/det(A)*adj(A),其中adj(A)是A的伴随矩阵,det(A)是A的行列式。
8.矩阵的秩公式:矩阵A的秩可以表示为:rank(A)=n-l,其中n是A的行数或列数,l 是A的列或行向量组的极大线性无关组的向量个数。
9.矩阵的特征值和特征向量公式:对于n阶矩阵A,如果存在一个数λ和非零向量x,使得Ax=λx,则称λ是A的特征值,x是对应于特征值λ的特征向量。
10.矩阵的特征多项式和特征方程公式:对于n阶矩阵A,其特征多项式可以表示为:det(A-λI)=0,其中I 是n阶单位矩阵。
11.相似矩阵的公式:如果有可逆矩阵P,使得P^(-1)AP=B,则称矩阵B是矩阵A的相似矩阵,P是A到B的相似变换。
线性代数公式大全
![线性代数公式大全](https://img.taocdn.com/s3/m/d9d0ad342f60ddccda38a09c.png)
则其中 c ≠ 0 ,否则 c1,, cs 不全为 0,c1α1 + + csα s = 0 ,与条件α1,,α s 无关矛
盾。于是
β
=
−
c1 c
α1
−−
cs c
αs。
④当 β → α1,,α s 时,表示方式唯一 ⇔ α1 α s 无关
(表示方式不唯一 ⇔ α1 α s 相关)
⑤若 β1,, βt → α1,,α s ,并且 t > s ,则 β1,, βt 一定线性相关。
关于矩阵右上肩记号: T , k , − 1,*
i) 任何两个的次序可交换,
( ) 如 AT * = (A *)T , ( ) (A )* −1 = A−1 *等
ii) (AB)T ( ) = BT AT , AB −1 = B −1 A−1 , (AB)* = B * A * 但 (AB)k = B k Ak 不一定成立!
A2 − 2A − 3E = (A − 3E)(A + E)
无消去律(矩阵和矩阵相乘)
当 AB = 0 时 ⇒/ A = 0 或 B = 0 由 A ≠ 0 和 AB = 0 ⇒/ B = 0 由 A ≠ 0 时 AB = AC ⇒/ B = C (无左消去律) 特别的 设 A 可逆,则 A 有消去律。
各性质的逆否形式
①如果α1,α 2 ,,α s 无关,则 s ≤ n 。
②如果α1,α 2 ,,α s 有相关的部分组,则它自己一定也相关。
③如果α1 α s 无关,而 β →/ α1,,Biblioteka s ,则α1,,α s β 无关。
⑤如果 β1 βt → α1 α s , β1 βt 无关,则 t ≤ s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
90,所得行列式为
主对角线翻转后(转置),所得行列式为
主副角线翻转后,所得行列式为
n A B
s A ⎪⎪⎪⎭
,则:2
s
A A ;12
1s A A --⎪⎪⎪⎪⎭11A O B --⎛⎫⎪⎭
;(主对角分块)
③、1
11O A O B B O A O ---⎛⎫
⎛⎫
= ⎪ ⎪⎝⎭⎝⎭
;(副对角分块) ④、1
1111A C A A CB O B O
B -----⎛⎫
-⎛⎫= ⎪ ⎪⎝⎭⎝⎭
;(拉普拉斯) ⑤、
11111A O A O C B B CA
B -----⎛⎫⎛⎫
= ⎪ ⎪-⎝⎭⎝⎭
;(拉普拉斯)
3、矩阵的初等变换与线性方程组
1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一
确定的:r
m n
E O
F O O
⨯⎛⎫
= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B
= ⇔ ;
2. 行最简形矩阵:
①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)
①、 若(,)(,)r
A E E X ,则A 可逆,且1
X A -=;
②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1
A B -,即:
1(,)(,)
c
A B E A B - ~ ;
③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)
r
A b E x ,
则A 可逆,且1
x A b -=;
4. 初等矩阵和对角矩阵的概念:
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、
12
n ⎛⎫
⎪
⎪Λ= ⎪ ⎪⎝
⎭
λλλ,左乘矩阵A ,i
λ乘A 的各行元素;右乘,i
λ乘A 的
各列元素;
B,则
、Q可逆,则A r B
(),())
1)(1)123-+n m m Ⅲ、组合的性质:C
③、利用特征值和相似对角化:伴随矩阵: 1211222221122n n n n m m nm n n
a x a x x a x a x
b +++++=;12111212222212n n m m mn m m a a x b a a x b Ax a a a x b ⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪
=⇔=⎪⎪ ⎪⎪⎪ ⎪⎭⎝⎭⎝⎭
个未知数)
③、()121
2
n n x x
a
a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭
(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪
= ⎪ ⎪⎝⎭
);
④、11
2
2
n n a x a x
a x β
++
+=(线性表出)
⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)
4、向量组的线性相关性
1. m 个n 维列向量所组成的向量组A :1
2
,,
,m
ααα构成n m ⨯矩阵1
2
(,,
,)
m A =ααα;
m
个n 维行向量所组成的向量组B :12,,,T
T T
m
β
ββ构成m n ⨯矩阵
12T T T m B βββ⎛⎫ ⎪ ⎪
= ⎪ ⎪ ⎪⎝⎭
;
含有有限个向量的有序向量组与矩阵一一对应;
2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)
②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n
A ⨯与l n
B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101
P 例14) 4. ()()T
r A A r A =;(101
P 例15)
5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;
②、,αβ线性相关
⇔,αβ
坐标成比例或共线(平行);
③、,,αβγ线性相关 ⇔,,αβγ共面;
6. 线性相关与无关的两套定理:
若1
2
,,,s
ααα线性相关,则1
2
1
,,,,s
s αααα+必线性相关;
若1
2
,,
,s
ααα线性无关,则1
2
1
,,
,s ααα-必线性无关;(向量的个数加加减
减,二者为对偶)
若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)
简言之:无关组延长后仍无关,反之,不确定;
7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74
P 定理7);
向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86
P 定理3) 向量组A 能由向量组B 线性表示 AX B ⇔=有解;
()(,)r A r A B ⇔=(85
P 定理2)
向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85
P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵1
2
,,,l
P P P ,使12
l
A P P P =;
①、矩阵行等价:~r
A B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c
A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n
B ⨯:
①、若A 与B 行等价,则A 与B 的行秩相等;
②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;
③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n
A B C ⨯⨯⨯=,则:
①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T
A 为系数矩阵;(转置)
11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;
①、0ABx = 只有零解0Bx ⇒ =只有零解;
②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;
12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110
P 题19结论)
1212(,,,)(,,,)r s
b b b a a a K =(B AK =)
其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)
(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)
,s
α线性相关存在一组不全为,s k ,使得s s
k α+=12,)0
s s x x
x α⎛ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;2,
,)s s
α<,系数矩阵的秩小于未知数的个数;m n ⨯的矩阵A 秩为:()r S n =;*
为Ax ,n r
ξ-为,n r ξ-线性无关;(33结论)、相似矩阵和二次型正交矩阵⇔(定义),性质:、A 的位向1
)i n ;为正交矩阵,则正交阵,则注意:求解正交阵,千万不要忘记施密特正交化和单位化;,)r
a
1
b
21121
2211][,]
[,]
][,]
[,]
r r r r r r b a b a b b b b b b b -------
;
对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;B 等价 ⇔A 经过初等变换得到
B,(合同、相似的约束条件不同,为二次型矩阵;。