实验拉伸与压缩验

合集下载

§2—1拉伸与压缩实验

§2—1拉伸与压缩实验
1 2 3 4 5 6
7
1.主机
2.手动操作盒
3.EDC 控制器
4.功率放大器
5.计算机显示器
6.打印机
7.计算机主机
图 1-ቤተ መጻሕፍቲ ባይዱ 电子万能试验机布局图
(1) 主机部分
电子万能试验机主机由负荷机架、传动系统、夹持系统和位置保护装置等四部分组成。
如图 1-4。
1) 负荷机架
负荷机架由四立柱支承上横梁与工作台板构成门式框架,两丝杠穿过动横梁两端并安装
只受到沿轴线方向的单向力,并使该力准确地传递给负荷传感器。但是 500kN 规格的电子
万能试验机的夹具不用万向连轴节,而是通过连杆直接与夹具刚性连接。对于双空间结构的
电子万能试验机(如 100kN 和 200kN 规格的试验机),下夹头安装在动横梁上。对于单空间
3.万向联轴节 6.立柱 9.活动横梁 12.弯曲试台 15.圆弧齿形带 18.导向节
图 1-4 电子式万能试验机主机结构图
3) 夹持系统
对于 100kN 和 200kN 规格的电子万能试验机,在拉伸夹具的上夹头均安装有万向连轴
节,它的作用是消除由于上、下拉伸夹具的不同轴度误差带来的影响,使试样在拉伸过程中
一、 实验目的
1、 通过对低碳钢和铸铁这两种不同性能的材料在拉伸、压缩破坏过程的观察和对试验 数据、断口特征的分析,了解它们的力学性能特点。
2、 了解电子万能试验机的构造、原理和操作。 3、 测定低碳钢拉伸时的弹性模量 E、下屈服强度 σ sL 、抗拉强度 σ b 、断后伸长率 δ 5 和 断面收缩率ψ ①;测定低碳钢压缩时的屈服强度 σ sc ,以及测定铸铁拉伸时的抗拉强度 σ b 和 压缩时的抗压强度 σ bc ①。

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告
一、前言
拉伸与压缩实验是金属材料力学性能测试中常用的方法之一。

通过实验可以得到金属材料的抗拉强度、屈服强度、延伸率等性能参数。

本实验旨在通过对不同金属材料的拉伸与压缩实验,探索金属材料的力学特性。

二、实验原理
拉伸与压缩实验的原理是将金属样本放入拉力机中,通过施加相应的拉伸或压缩力,在不同的应变下测量样本的力学性能。

应变可以通过求解样本的伸长量与原始长度的比值得到。

三、实验步骤
1. 将金属样本放置在拉力机上,并调整夹具使样本稳固;
2. 开始拉伸实验,慢慢增加加载量,记录下载荷和伸长量;
3. 当样本出现明显的变形时停止拉伸,记录此时的载荷和伸长量;
4. 根据记录数据计算拉力与伸长量之间的比值,得到材料的抗拉强度和延伸率;
5. 进行压缩实验,步骤同拉伸实验;
6. 根据实验数据计算压力与压缩量之间的比值,得到材料的抗压强度和压缩率。

四、实验结果分析
本实验对不同金属材料进行了拉伸与压缩实验。

实验结果表明,不同材料的力学
性能存在较大的差异。

其中,钢材的抗拉强度最高,铝材的延伸率较高。

对于同一材料,在拉伸和压缩实验中得到的结果存在差异,这是由于材料在不同的加载形式下会表现出不同的力学特性。

五、实验总结
拉伸与压缩实验是研究金属材料力学性能的重要手段。

通过实验可以得到材料的抗拉强度、屈服强度、延伸率等性能参数,有助于了解不同材料的应用范围和性能要求。

在实验中需要注意样本的选择和制备,以及试验过程中的操作规范和数据记录精确。

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。

二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。

在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。

2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。

通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。

三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。

2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。

四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。

b. 设置合适的加载速率和采样频率,开始施加拉力。

c. 记录载荷和位移数据,绘制应力-应变曲线。

d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。

2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。

b. 设置合适的加载速率和采样频率,开始施加压力。

c. 记录载荷和位移数据,得到应力-应变关系曲线。

d. 观察试样的变形情况,记录压缩过程中的各阶段特征。

五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。

2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。

六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。

实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。

这些结果为材料的工程应用提供了重要参考。

实验一、二 拉伸和压缩实验

实验一、二  拉伸和压缩实验

实验一 拉伸和压缩实验拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。

工矿企业、研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试验具有工程实际意义。

不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。

低碳钢和铸铁分别是典型的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。

低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。

低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而不能被压断,无法测定其压缩强度极限bc σ值。

因此,一般只对低碳钢材料进行拉伸试验而不进行压缩试验。

铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。

铸铁压缩时有明显的塑性变形,其破坏是由切应力引起的,破坏面是沿45︒~55︒的斜面。

铸铁材料的抗压强度bc σ远远大于抗拉强度b σ。

通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进行比较,可以分析不同应力状态对材料强度、塑性的影响。

一、 实验目的1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。

2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分析力与变形之间的关系,即P —L ∆曲线的特征。

3.掌握材料试验机等实验设备和工具的使用方法。

二、 实验设备和工具1. 液压摆式万能材料试验机。

2. 游标卡尺(0.02mm)。

三、 拉伸和压缩试件材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此,必须把所测试的材料加工成能被拉伸或压缩的试件。

试验表明,试件的尺寸和形状对试验结果有一定影响。

为了减少这种影响和便于使各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB /T7314—1987《金属压缩试验方法》进行加工。

拉伸压缩实验

拉伸压缩实验

4)加载:缓慢加载,国标规定: 应力速率(弹性阶段):3 ~ 30MPa/sec
2、低碳钢拉伸时的力学性质
低碳钢:含碳量低于0.3﹪
1)拉伸图
2) 应力-应变图(σ-ε图)
克服拉伸图的尺寸效应

e s b p
强化阶段
颈缩阶段
σ= P/A0 名义应力 ε=⊿l / l0 名义应变
A0——初始横截面面积; l 0——原长
再进入计算页面,点击【计算】键,软 件自动计算并显示计算【结果】。 再次【保存】本试验。 19、打印报告:选择需打印的实验结果,打 印实验报告。
思考题 1、低碳钢拉伸图可分为几个阶段?每一阶段,力与 变形有何关系?出现什么现象?
2、低碳钢和铸铁在拉伸时可测得哪些力学性能指
标?
3、 金属材料的压缩实验能测得哪些力学性能指标?
下横梁
试验机三大部分: 1 加力——电机带动丝杠使下横梁移动;
压缩空间
2 测量——力传感器、横梁位移传感器、变形引伸计; 3 控制与计算——计算机、实验软件、信号采集系统。
6、拉伸实验软件简介
负荷传感器 引伸计传感器 下横梁位移传感器
下横梁操作界面
下横梁调速
下横梁动作按钮
实验报告打印选项
试验钮
曲 线 到 此处 可 以 摘除引伸计
4、 压缩实验时,为何要在试件两端面涂油?压缩试 件为何规定1< 坏?为什么? 5、 低碳钢压缩后为什么成鼓形?铸铁压缩时如何破
h <3? d
深入思考的问题—— 1. 为什么国标对拉伸压缩试样尺寸有要求?不同的 尺寸规格如:l =10d , l = 5d(圆),影响那个力 学指标? 2. 拉伸实验中为什么要控制应力、应变速率?对哪 些力学性能指标有影响?在何种阶段分别控制什 么速率?为什么? 3. 真应力、真应变的含义?什么力学概念?如何得 到? 4. 颈缩阶段中应力应变曲线下降的原因?应力真的 下降了吗?

材料拉伸与压缩实验报告参考

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验一、实验目的1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ;2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图P-ΔL 曲线; 二、实验设备微机控制电子万能材料试验机、直尺、游标卡尺; 三、实验试祥1.为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示:图1用于测量拉伸变形的试件中段长度标距L 0与试件直径d;必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ52、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内:1≤d h≤3为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑; 四、实验原理图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS,即得屈服极限:图2屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断;以试样的初始横截面面积A;除P b 得强度极限为延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率:铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂;没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限;图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致的,而且s P 也基本相同,所以说,低碳钢材料在压缩时的E 和s σ都与拉伸时大致相同,低碳钢的塑性好,由于泊松效应,试件越压越粗,不会破坏,横向膨胀在试件两端受到试件与承垫之间巨大摩擦力的约束,试件被压成鼓形,进一步压缩,会压成圆饼状,低碳钢试件压不坏,所以没有强度极限;图5为铸铁试件压缩图,P-ΔL 比同材料的拉伸图要高4-5倍,当达到最大载荷b P 时铸铁试件会突然破裂,断裂面法线与试件轴线大致成045~055的倾角;这表面,铸铁压缩破坏主要是由剪应力引起的; 五、实验步骤低碳钢拉伸试验步骤:图4图51、测量试样尺寸测定试样初始横截面面积Aο时,在标距Lο的两端及中部三个位置上,沿两个互相垂直的方向,测量试样直径,以其平均值计算各横截面面积,取三个横截面面积中的最小值为Aο;2、检查试验机的夹具是否安装好,各种限位是否在实验状态下就位;3、安装试件;安装时仅将试件上端夹紧,下端悬空,然后再试件上夹持引伸计;4、启动下降按钮将试件移下,停止安装好试件,进行调零,回到试验初始状态;5、根据实验设定,启动实验开关进行加载,注意观察试验中的试件及计算机上的曲线变化;6、实验完成,保存记录数据;7、试件破坏后非破坏性试验应先卸载,断开控制器并关闭,关闭动力系统及计算机系统,清理还原;铸铁压缩试验步骤:1、测量试样尺寸,测量试样两端及中间等三处截面的直径,取三处中最小一处的平均直径0d作为计算原截面积0A之用;2、调整试验机,选择测力度盘,调整指针对准零点,并调整自动绘图器;电子万能试验机按软件操作指南步骤进行;3、安装试样,将试样两端面涂上润滑油,然后准确地放在试验机活动台支承垫的中心上;4、检查及试车液压试验机试车时将试验机活动台上升,试件亦随之上升,当试件上端面接近承垫时应减慢活动台上升速度,避免突然接触引起剧烈加载,当试件与上承垫刚接触时,将自动绘图笔调整好,使它处于工作状态,用慢速预加少量载荷;然后卸载近零点,以检查试验机工作是否正常;5、进行试验铸铁试件,缓慢而均匀地加载,同时使用自动绘图装置绘出P-L∆曲线,直到试件破裂为止,记下破坏载荷b P;6、结束工作打开回油间,将载荷卸掉,取下试件,使试验机复原;六、数据处理低碳钢拉伸:试样直径d断面收缩率:灰铸铁直径d :、,平均值 铸铁的强度极限:=3,110^-4mm=A P b b01×100%=210^-4-10^-5/210^-4=72%%=105-80/80=% 100 00 1l l l。

拉伸与压缩实验报告

拉伸与压缩实验报告

拉伸与压缩实验报告拉伸与压缩实验报告引言:拉伸与压缩是材料力学中常用的实验方法,用于研究材料在外力作用下的变形行为。

本次实验旨在通过拉伸与压缩实验,探究不同材料在不同加载条件下的力学性能和变形特点。

通过实验结果的分析,可以为工程设计和材料选择提供参考依据。

实验目的:1. 了解材料在拉伸和压缩过程中的变形特点;2. 掌握拉伸和压缩实验的基本操作方法;3. 分析不同材料的力学性能。

实验仪器与材料:1. 万能材料试验机2. 不同材料的试样(如金属、塑料、橡胶等)实验步骤:1. 准备不同材料的试样,并测量其初始长度和直径;2. 将试样装夹在试验机上,确保试样的纵轴与试验机的纵轴一致;3. 根据实验要求,选择拉伸或压缩实验模式,并设置加载速率;4. 开始实验,记录试样的载荷-位移曲线;5. 当试样发生断裂或达到预设的位移时,停止实验并记录结果;6. 对实验结果进行分析和讨论。

实验结果与讨论:1. 弹性阶段:在拉伸过程中,试样受到外力作用后会发生弹性变形,即在去除外力后能恢复到初始形状。

根据载荷-位移曲线,可以确定试样的弹性模量,即材料的刚度。

不同材料的弹性模量会有所差异,金属材料通常具有较高的弹性模量,而塑料和橡胶等材料的弹性模量较低。

2. 屈服阶段:在拉伸过程中,当试样受到一定载荷后,会出现屈服现象,即试样开始发生塑性变形。

屈服点是指试样开始发生塑性变形的载荷值。

不同材料的屈服点不同,这与材料的组织结构和力学性能有关。

3. 破坏阶段:在拉伸过程中,当试样承受的载荷超过其极限强度时,试样会发生破坏。

破坏形式有拉断、断裂等。

通过观察破坏形式,可以对材料的韧性和脆性进行初步判断。

金属材料通常具有较高的韧性,而塑料和橡胶等材料则更容易发生断裂。

4. 压缩过程:与拉伸过程类似,压缩实验也可以得到类似的结果。

在压缩过程中,试样会发生压缩变形,即试样的长度减小。

通过载荷-位移曲线,可以得到试样的压缩弹性模量和压缩强度等参数。

拉伸和压缩实验.

拉伸和压缩实验.

拉伸和压缩实验拉伸和压缩试验是建筑材料力学性能试验中最基本和最普通的实验,它对于评定材料的基本力学性能关系最密切。

对于大多数建筑材料是使用其拉伸强度还是压缩强度,基本上取决于材料的工作条件,而工作条件又取决于材料本身的结构性能,即:根据材料的性能,决定材料的工作条件——受拉或受压等。

或根据受力特点——受拉或受压,选择结构材料。

例如:金属材料具有较高的抗拉强度,同时也具有较高的抗压强度,而用做受拉力作用的材料则更为有效,而用作受压杆(若为细长杆)容易失稳,为此,需增加杆件的截面积,而材料的强度值未能充分得以利用。

因此,按材料的性能进行设计时,钢结构中的杆件应尽可能设计为受拉杆件。

又如:大多数无机非金属材料如:混凝土、砖、砂浆等,都具有较大的脆性,其抗拉强度与抗压强度相比很低,因此常用于抵抗压力的作用,因此其抗压试验的作用和意义与拉伸试验相比就显得很重要。

而这类材料用于承受拉力荷载显然是不适合的,当然象砖砌件这类结构其破坏又是由于砖的折(拉)断而开始的。

总之,材料受拉力和压力的作用,是材料受力的两个最基本形式,此外材料还可能受到弯、剪、扭等力的作用,材料抗拉强度与抗压强度之间有一定关系(材料不一样关系不一样),抗压强度与抗弯、抗剪和抗扭之间也有一定的关系,这些关系难有准确的表达式,而拉、压强度是材料使用得最为广泛的两个强度值。

(建筑结构中,柱墙主要承受压力,梁、板主要承受弯曲应力,屋架中的拉杆承受拉力)第一节拉伸实验一、对试件的要求(对试件总的要求是,对试验结果影响大的应消除)1、试件形式,有园柱形,如钢,平板形,如钢板等,8字形,如砂浆等,受拉截面一般为园形、正方形或长方形。

为了使断裂面发生在试件中长度的中部试件总是制成在长度中间的横截面小于两端的横截面,在这个断面上的应力不受夹具装置的影响。

2、试件的端部形状,应适合于试验材料本身的性能和试验机夹具装置。

可做成平滑的、阶梯形、螺纹形或锥形等。

端部的直径或宽度与中间偏袄截面直径或宽度之比与材料性能有关,如钢材为1.5:1,材料1.7—3.75:1,对脆性材料端部的制作特别重要,由于受夹具作用应力的影响,避免在端部破坏,应做得大一些。

实验一 拉伸与压缩实验

实验一  拉伸与压缩实验

实验一 拉伸与压缩实验拉伸实验是对试件施加轴向拉力,以测定材料在常温静荷载作用下的力学性能的实验。

它是材料力学最基本、最重要的实验之一。

拉伸实验简单、直观、技术成熟、数据可比性强,它是最常用的实验手段。

由此测定的材料力学性能指标,成为考核材料的强度、塑性和变形能力的最基本的依据,被广泛、直接地用于工程设计、产品检验、工艺评定等方面。

而有些材料的受压力学性能和受拉力学性能不同,所以,要对其施加轴向压力,以考核其受压性能,这就是压缩实验。

一、实验目的1.通过对低碳钢和铸铁这两种不同性能的典型材料的拉伸、压缩破坏过程的观察和对实验数据、断口特征的分析,了解它们的力学性能特点。

2.了解电子万能试验机的构造、原理和操作。

3.测定典型材料的强度指标及塑性指标,低碳钢拉伸时的屈服极限S σ,(或下屈服极限SL σ),强度极限b σ,延伸率δ,截面收缩率ψ,压缩时的压缩屈服极限SC σ,铸铁拉伸、压缩时的强度极限b σ、bC σ。

二.实验设备及试件1. 电子万能试验机:试验机结构与原理――材料力学基本实验设备是静态万能材料试验机, 能进行轴向拉伸、轴向压缩和三点弯曲等基本实验。

试验机主要由机械加载、控制系统、测量系统等部分组成。

当前试验机主要的机型是电子万能试验机,其加载是由伺服电机带动丝杠转动而使活动横梁上下移动而实现的。

在活动横梁和上横梁(或工作台上)安装一对拉伸夹具或压缩弯曲的附件,就组成了加载空间。

伺服控制系统则控制伺服电机在给定速度下匀速转动,实现不同速度下横梁移动或对被测试件加载。

活动横梁的移动速度范围是0.05~500毫米/每分钟。

图1-1 万能材料试验机结构图图1—2 拉伸圆试件 测量系统包括负荷测量、试件变形测量和横梁位移测量。

负荷和变形测量都是利用电测传感技术,通过传感器将机械信号转变为电信号。

负荷传感器安装在活动横梁上,通过万向联轴节和夹具与试件联在一起,测量变形的传感器一般称作引伸计安装在试件上。

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告一、引言在工程力学实验中,拉伸与压缩实验是非常重要的一部分。

通过对材料在拉伸与压缩过程中的力学性质进行测试与分析,能够帮助我们更好地了解材料的强度、刚度等特性。

本实验旨在通过拉伸与压缩实验,探究材料在不同加载条件下的性能表现,以及分析材料的应力-应变关系等相关问题。

二、实验设备与方法2.1 实验设备在本实验中,我们使用的设备主要有: - 拉伸试验机 - 压缩试验机 - 拉伸与压缩试验样品2.2 实验方法1.拉伸实验方法:–准备拉伸试验样品。

–将试样夹入拉伸试验机,并进行初始调节。

–增加载荷,开始进行拉伸实验。

–记录载荷和伸长量,并绘制应力-应变曲线。

–根据实验结果分析材料的强度和韧性等性能指标。

2.压缩实验方法:–准备压缩试验样品。

–将试样夹入压缩试验机,并进行初始调节。

–增加载荷,开始进行压缩实验。

–记录载荷和压缩量,并绘制应力-应变曲线。

–根据实验结果分析材料的强度和刚度等性能指标。

三、实验结果与分析3.1 拉伸实验结果与分析在拉伸实验中,我们对不同材料进行了拉伸测试并记录了载荷和伸长量的数据。

通过计算这些数据,我们得到了对应的应力和应变值,并绘制了应力-应变曲线。

根据曲线的形状,我们可以分析材料的力学性能。

3.2 压缩实验结果与分析在压缩实验中,我们对不同材料进行了压缩测试并记录了载荷和压缩量的数据。

通过计算这些数据,我们得到了对应的应力和应变值,并绘制了应力-应变曲线。

根据曲线的形状,我们可以分析材料的力学性能。

四、结论通过本次拉伸与压缩实验,我们得到了不同材料在拉伸与压缩过程中的应力-应变曲线。

通过分析曲线特征,我们可以得出以下结论: 1. 不同材料具有不同的强度和刚度,应力-应变曲线的斜率可以反映材料的刚度。

2. 在拉伸过程中,材料会表现出一定的塑性变形,这可以通过应力-应变曲线的非线性段来观察。

3. 拉伸实验中断裂点的载荷值可以反映材料的抗拉强度。

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告

金属材料拉伸与压缩实验报告金属材料拉伸与压缩实验报告引言:金属材料是工程领域中广泛应用的一类材料。

了解金属材料的力学性能对于设计和制造具有高强度和高可靠性的结构件至关重要。

本实验旨在通过拉伸和压缩实验,研究金属材料的力学性能,并分析其应力-应变曲线、屈服强度和延伸率等参数。

实验方法:1. 拉伸实验:首先,选择一块金属试样,将其夹紧在拉伸试验机上。

逐渐施加拉力,记录下拉伸过程中的应变和应力数据。

当试样断裂时,停止拉力施加,记录下断裂点的应变和应力。

2. 压缩实验:选择一块金属试样,将其夹紧在压缩试验机上。

逐渐施加压力,记录下压缩过程中的应变和应力数据。

当试样发生破坏时,停止压力施加,记录下破坏点的应变和应力。

实验结果与分析:通过拉伸实验得到的应力-应变曲线表明,金属材料在拉伸过程中呈现出弹性阶段、屈服阶段和断裂阶段。

在弹性阶段,应变与应力成正比,材料能够恢复原状。

在屈服阶段,应变增加速度减慢,材料开始发生塑性变形。

在断裂阶段,应变急剧增加,材料发生断裂。

通过测量屈服点的应力和应变,可以计算出材料的屈服强度。

通过压缩实验得到的应力-应变曲线与拉伸实验类似,也呈现出弹性阶段、屈服阶段和断裂阶段。

然而,与拉伸实验相比,压缩实验中的屈服点通常较难确定。

这是因为在压缩过程中,试样受到的应力分布不均匀,可能会导致试样的局部塑性变形和失稳。

根据实验数据计算得到的屈服强度和延伸率等参数可以用来评估金属材料的机械性能。

屈服强度是材料在发生塑性变形之前能够承受的最大应力。

延伸率是材料在拉伸过程中能够延展的程度,通常以百分比表示。

这些参数对于工程设计和材料选择非常重要,可以帮助工程师确定合适的金属材料以满足特定的应用需求。

结论:通过拉伸和压缩实验,我们可以获得金属材料的应力-应变曲线,并计算出屈服强度和延伸率等参数。

这些参数对于评估金属材料的力学性能至关重要。

在工程设计和材料选择过程中,我们应该根据特定应用的需求,选择具有适当力学性能的金属材料,以确保结构的安全性和可靠性。

材料的拉伸与压缩实验报告

材料的拉伸与压缩实验报告

材料的拉伸与压缩实验报告材料的拉伸与压缩实验报告引言:材料的力学性质是工程设计和材料科学研究中的重要参数,而材料的拉伸与压缩实验是了解材料力学性能的常用手段之一。

本实验通过对不同材料在拉伸与压缩过程中的行为进行观察与分析,旨在揭示材料的力学特性,为工程应用提供参考。

实验目的:1. 了解材料在拉伸与压缩加载下的力学行为;2. 掌握拉伸与压缩实验的基本操作方法;3. 分析材料的应力-应变曲线,计算其力学参数。

实验步骤:1. 实验前准备:a. 准备实验所需材料,如金属样品或塑料样品;b. 根据实验要求,制备所需的试样;c. 检查实验设备,确保其正常工作。

2. 拉伸实验:a. 将试样固定在拉伸试验机上,并调整好试验机的参数;b. 逐渐增加拉伸力,记录拉伸力和试样的位移;c. 根据记录的数据,绘制应力-应变曲线;d. 分析曲线的特点,计算材料的屈服强度、抗拉强度等力学参数。

3. 压缩实验:a. 将试样固定在压缩试验机上,并调整好试验机的参数;b. 逐渐增加压缩力,记录压缩力和试样的位移;c. 根据记录的数据,绘制应力-应变曲线;d. 分析曲线的特点,计算材料的屈服强度、抗压强度等力学参数。

实验结果与分析:通过拉伸与压缩实验,我们得到了不同材料在加载过程中的应力-应变曲线。

根据曲线的特点,我们可以看出材料在拉伸与压缩过程中的行为有很大的差异。

在拉伸实验中,材料的应力随着应变的增加而逐渐增加,直到达到最大值。

此后,应力开始下降,直到材料发生断裂。

根据应力-应变曲线,我们可以计算出材料的屈服强度、抗拉强度等参数,这些参数可以用来评估材料的强度和韧性。

在压缩实验中,材料的应力随着应变的增加而逐渐增加,直到达到最大值。

与拉伸实验不同的是,材料在压缩过程中不会发生断裂,而是发生塑性变形。

根据应力-应变曲线,我们可以计算出材料的屈服强度、抗压强度等参数,这些参数可以用来评估材料的稳定性和可塑性。

结论:通过本次实验,我们对材料的拉伸与压缩行为有了更深入的了解。

金属的压缩与拉伸实验原理

金属的压缩与拉伸实验原理

金属的压缩与拉伸实验原理
金属的压缩与拉伸实验是一种用来研究金属材料力学性质的常见方法。

其原理基于材料的弹性变形和塑性变形。

1. 压缩实验原理:
在金属压缩实验中,一块金属样品被置于压力加载机械设备中。

由于外部加载的作用力,金属样品会受到压缩力,导致其体积减小。

这种压缩力会使原子间的距离减小,从而引起金属晶格的弹性变形。

当外部力撤离时,金属样品会恢复到其原始形状,这是因为金属具有弹性特性,即当外部力移除时,金属会通过恢复原始晶格结构的方式恢复到原始形态。

2. 拉伸实验原理:
在金属拉伸实验中,一块金属样品被置于拉伸加载机械设备中。

加载设备会施加拉力,导致金属样品逐渐变长、变细。

这种拉伸力会引起金属晶格的弹性和塑性变形。

当外部力撤离时,在金属线性范围内,金属会恢复到其原始形状,表现出弹性变形。

然而,当所施加的拉力超过金属的弹性限度时,金属会发生塑性变形,此时金属无法完全恢复到原始形态。

通过测量金属样品在不同应力下的变形情况,可以得到应力-应变曲线,该曲线
可以反映出金属的力学性质,如屈服强度、延伸率和断裂强度等。

总结来说,金属的压缩与拉伸实验原理是基于金属材料的弹性和塑性变形,通过施加外部力对金属样品进行压缩或拉伸,以研究其力学性质。

拉伸与压缩实验报告

拉伸与压缩实验报告

拉伸与压缩实验报告一、 实验目的1、 观察实验过程中的各种现象,画出应力—应变曲线;2、 测定低碳钢拉伸时的屈服极限s σ、抗拉强度b σ、断后伸长率δ和断面收缩率ψ3、 测定铸铁的抗拉强度和抗压强度;二、 实验设备万能实验机游标卡尺钢板尺两脚规三、 试样本实验所用塑性材料试样用低碳钢按国家标准规定制成,脆性材料试样由铸铁按国家标准规定制成。

1、试件简图2、实验前试件尺寸(1)拉伸试件:低碳钢mm d mm L 56.15,3.7500==; 铸铁 mm d mm L 13.15,3.7500==;(2)压缩试件:低碳钢mm d mm L 85.14,3000==; 铸铁mm d mm L 86.14,3000==四、 实验结果 1、应力—应变曲线(εσ—曲线)(1) 低碳钢拉伸曲线;(2)铸铁拉伸和压缩曲线2、强度指标(1)拉伸:低碳钢MPa MPa b s 3.402,4.296==σσ;铸铁MPa b 8.155=σ (2)压缩:低碳钢 MPa s 8.305=σ;铸铁 MPa b 424=σ3、实验后试件尺寸和塑性指标低碳钢:==δ伸长率,9.1031mm L ,断裂处最小直径mm d 19.91=断面收缩率=ψ五、 回答问题1、 低碳钢拉伸时的四个阶段是什么?2、 如何区分塑性材料和脆性材料?(δ>5%为塑性材料,δ<5%为脆性材料=3、 表征材料的强度指标和塑性指标分别是什么?(强度指标是屈服极限和强度极限,塑性指标是伸长率和断面收缩率)4、 低碳钢拉伸时的滑移线是什么原因所致?铸铁压缩时为什么沿与轴线成 45角方向断裂?(滑移线是最大切应力所致,铸铁压缩时最大切应力发生在45角斜截面上,断裂是由该最大切应力造成的,铸铁抗压不抗剪。

)。

拉伸压缩实验报告

拉伸压缩实验报告

拉伸压缩实验报告拉伸压缩实验报告引言:拉伸压缩实验是材料力学实验中的一种重要实验方法,通过对材料在受力下的变形和破坏行为进行观察和分析,可以揭示材料的力学性能和力学行为规律。

本实验旨在通过拉伸和压缩两种不同的受力方式,研究材料在不同加载条件下的变形特性和破坏机制。

实验材料和装置:本实验选用了常见的金属材料和塑料材料,包括铝合金、钢材和聚合物等。

实验装置主要包括拉力试验机和压力试验机。

实验步骤和结果:1. 拉伸实验:将金属材料和塑料材料制备成标准的试样,通过夹具固定在拉力试验机上。

逐渐施加拉力,记录不同拉力下的试样长度和载荷。

实验结果显示,材料在拉伸过程中会发生线性弹性阶段、塑性变形阶段和断裂破坏阶段。

在线性弹性阶段,材料的应力与应变呈线性关系,即胡克定律。

而在塑性变形阶段,材料会发生塑性流动,应变呈非线性增加。

最终,在达到材料的极限强度后,试样发生断裂破坏。

2. 压缩实验:将金属材料和塑料材料制备成标准的试样,通过夹具固定在压力试验机上。

逐渐施加压力,记录不同压力下的试样长度和载荷。

实验结果显示,材料在压缩过程中也会经历类似的弹性阶段、塑性变形阶段和破坏阶段。

然而,与拉伸实验相比,材料在压缩过程中的变形和破坏行为具有一定的差异。

在压缩过程中,试样会发生侧向膨胀和弯曲变形,而不是拉伸时的细长形变。

此外,由于试样在压缩过程中受到的约束较大,其破坏形式也不同于拉伸时的断裂破坏,可能表现为局部压扁、脆性破裂或层状剥离。

讨论与分析:通过拉伸压缩实验的结果可以得出以下结论:首先,材料的弹性模量和屈服强度是材料力学性能的重要指标。

通过拉伸实验可以测得材料的弹性模量,从而评估材料的刚度和变形能力。

而通过压缩实验可以测得材料的屈服强度,从而评估材料的抗压能力。

其次,材料的变形和破坏行为与其晶体结构和组织性质密切相关。

金属材料由于晶体结构的存在,具有较好的延展性和塑性,因此在拉伸过程中会发生明显的塑性变形。

而塑料材料由于分子链的存在,具有较好的流动性,因此在拉伸过程中也会表现出较大的塑性变形。

材料拉伸与压缩试验报告

材料拉伸与压缩试验报告

材料拉伸与压缩试验报告一、实验目的1.了解材料在拉伸和压缩状态下的力学性能。

2.通过拉伸试验和压缩试验获取材料的应力-应变曲线。

3.测定材料的屈服点、抗拉强度、断裂强度和弹性模量等力学性能指标。

二、实验仪器和材料1.拉伸试验机。

2.横截面积测量器。

3.试样切割机。

4.金属材料试样。

三、实验步骤1.将待测试样的尺寸测量并记录下来,包括长度、直径等。

2.使用试样切割机将试样切割为适当的长度,并在试样两端做好标记。

3.将试样安装到拉伸试验机上,并设置合适的试验参数,如加载速度、试验时长等。

4.开始拉伸试验,记录试样随时间变化的力和位移数据,并计算出应力和应变值。

5.试验完成后,绘制应力-应变曲线,并通过曲线分析得到屈服点、抗拉强度和断裂强度等力学性能指标。

6.使用横截面积测量器测量试样的横截面积。

7.进行压缩试验,按照相同的步骤测量并记录试样的力和位移数据,计算出应力和应变值。

8.绘制应力-应变曲线,并分析得到压缩材料的力学性能指标。

四、实验结果和分析1.拉伸试验结果:通过该曲线可得到材料的屈服点、抗拉强度和断裂强度等信息,分别对应曲线上的不同点。

屈服点表示材料开始发生塑性变形的特点,抗拉强度表示材料能够承受的最大拉力,而断裂强度表示材料最终断裂的强度。

2.压缩试验结果:通过该曲线同样可以得到材料的力学性能指标。

五、实验结论1.在拉伸状态下,材料发生屈服后,会逐渐进入塑性变形阶段,直至最终断裂。

2.材料的屈服点和抗拉强度等性能指标可以通过应力-应变曲线得到。

3.在压缩状态下,材料同样具有一定的塑性变形能力,并且呈现出与拉伸试验相似的力学行为。

六、实验注意事项1.在进行试验之前,需检查试验设备的工作状态,确保正常运行。

2.选择合适的试样尺寸和试验参数,以获得准确的实验结果。

3.进行试验时需要小心操作,避免试验过程中出现安全事故。

4.在测量数据时,尽量减少误差,确保数据的准确性。

七、实验心得通过本次实验,我深刻认识到材料的拉伸和压缩试验对于研究和了解材料的力学性能非常重要。

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告一、实验目的本次实验旨在通过拉伸与压缩实验,掌握材料的力学性能,了解材料的弹性、塑性及破坏特点,进一步加深对工程力学理论的认识。

二、实验原理拉伸与压缩实验是通过对试样施加拉伸或压缩力来测定材料在不同应变下的应力变化关系,以此来确定材料的力学性能。

其中,应力为单位面积内所受到的外部力大小,应变为物体长度或形状发生改变时相应的比例系数。

三、实验仪器和设备1. 万能试验机2. 计算机3. 试样夹具四、实验步骤1. 准备好试样,并进行标记。

2. 将试样夹入夹具中,并将夹具固定在万能试验机上。

3. 设置测试参数,包括加载速率、加载方式等。

4. 开始测试,并记录下载荷与位移数据。

5. 根据数据计算得出应力-应变曲线,并分析结果。

五、实验结果分析1. 拉伸试验结果分析:根据数据计算得出应力-应变曲线,可以看出随着应变增大,材料的应力也逐渐增大,直到达到极限强度后开始下降。

同时,在材料破坏前,其应变与应力之间呈线性关系,即材料的弹性变形区。

2. 压缩试验结果分析:与拉伸试验相似,随着应变增大,材料的应力也逐渐增大,直到达到极限强度后开始下降。

但是,在压缩试验中容易出现杆件侧向屈曲现象,因此需要注意试样的几何形状和长度。

六、实验注意事项1. 试样的准备需要严格按照要求进行,并进行标记。

2. 夹具固定在万能试验机上时需要保证稳定性。

3. 设置测试参数时需要根据实际情况进行调整。

4. 在测试过程中需要注意记录数据,并及时停止测试避免损坏设备。

七、实验结论通过拉伸与压缩实验可以了解材料的弹性、塑性及破坏特点,并掌握材料的力学性能。

同时,在进行实验时需要注意试样准备、夹具固定、测试参数设置及数据记录等方面的问题。

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的掌握材料在拉伸和压缩下的力学性能;学习使用材料力学拉伸与压缩实验设备;分析材料的应力-应变关系,了解材料的弹性模量、屈服强度等参数。

二、实验原理拉伸与压缩实验是研究材料力学性能的基本实验之一。

通过该实验,可以了解材料在受到拉伸或压缩力时所表现出的应力-应变关系,从而评估材料的强度、塑性和弹性等性能指标。

三、实验步骤准备试样:选择合适的材料试样,一般为圆形或矩形截面试样,并确保其尺寸和形状符合实验要求;安装试样:将试样放置在实验设备的夹具中,确保夹具的位置正确,试样不会滑动;调整实验设备:调整实验设备的拉伸或压缩装置,确保其处于初始状态;开始实验:对试样施加拉伸或压缩力,记录实验过程中的力和位移数据;数据处理:根据实验数据绘制应力-应变曲线,并计算材料的弹性模量、屈服强度等参数;实验结束:将试样卸载,断开实验设备,整理实验数据和报告。

四、实验结果与分析应力-应变曲线:根据实验数据绘制应力-应变曲线,该曲线反映了材料在受到外力作用时的应力与应变之间的关系。

一般情况下,曲线可分为三个阶段:弹性阶段、屈服阶段和强化阶段;弹性模量:通过应力-应变曲线在弹性阶段的斜率,可以计算出材料的弹性模量。

弹性模量是反映材料抵抗弹性变形能力的重要参数;屈服强度:屈服强度是材料在屈服阶段所承受的最大应力值。

该值反映了材料抵抗塑性变形的能力;实验结果分析:结合实验结果和理论分析,可以对材料的力学性能进行评估,比较不同材料在拉伸与压缩下的性能差异。

五、结论与建议通过本次实验,我们掌握了材料在拉伸和压缩下的力学性能,学会了使用材料力学拉伸与压缩实验设备,并分析了材料的应力-应变关系。

实验结果表明,所选材料的弹性模量和屈服强度均符合要求。

在实际应用中,建议根据具体需求选择合适的材料,并充分考虑材料的力学性能,以确保工程结构的稳定性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验拉伸与压缩验
作者: 日期:
实验五拉伸与压缩实验
一、实验目的
1•观察低碳钢和铸铁的拉伸过程,测定其主要机械性能指标屈服极限S、强度极限b、延伸率和断面收缩率,比较破坏情况。

2•观察、比较低碳钢和铸铁在压缩时的变形和破坏现象,测定低碳钢压缩时屈服极限s和铸铁的强度极限b。

3•绘制拉伸图和压缩图。

二、实验设备、工具与试件
1. CMT530型电子万能试验机
2 •游标卡尺
3.低碳钢、铸铁拉伸件和压缩件
三、实验原理
1.拉伸实验
材料的力学性能屈服极限s、强度极限b、延伸率和断面收缩率是由拉伸破坏试验来确定的。

试验时,利用试验机自动绘制出低碳钢拉伸图和铸铁拉伸图。

图1低碳钢拉伸图图2铸铁拉伸图
对于低碳钢,当应力基本保持不变,而应变显著增加时,称为屈服阶段,第一次下降的最小载荷为屈服载荷P s,继续加载测得最大载荷P b。

试件在达到最大载何前,开始,产生局部伸长和颈缩。

载荷也变小了,直至断裂。

铸铁试件在变形极小时,伸长变形在标距范围内是均匀分布的。

从最大载荷颈缩出现后截面面积迅速减少,继续拉伸所需要的
就达到了最大载荷,而突然断裂,没有屈服和颈缩3
现象。

其强度极限远低于低碳钢的强度极限。

2 •压缩试验
低碳钢在弹性阶段同样具有比例极限和弹性极限,开始进入屈服阶段后只有 很暂短的拐点,该载荷值即为 P s 。

在强化阶段,压缩图的变化是由于试件的长 度不断缩短,横截面不断增大而使试件抗力随之不断增加,得不得极限状态。

所以低碳钢不具有抗压强度极限。

铸铁在拉伸时属于塑性很差的一种脆性材料, 但在受压时,试件在达到最大 载荷P b 前将会产生较大的塑性变形,最后被压成鼓形而断裂。

灰铸铁试件的断 裂有两特点:一是断口为斜断口,二是其抗压强度
b 远比拉伸时咼,大致是拉
伸时的3〜4倍。

式中:P s -屈服载荷;
P b -最大载荷; l i -试件拉断后标距长;
l o -试件拉断前标距长;
A o -试件原始横截面面积;
A i -试件断裂处横截面面积
图3低碳钢压缩图 3 •本次实验所用基本公式
图4铸铁压缩图
P s
A 0
P b A 0 l i l o 1ooO o ; A o A i A o ioo o o
四、实验原始数据
1 .拉伸试验记录
表1-1试件拉伸前尺寸表
表1-2试件断裂后尺寸表
2 •压缩试验记

表1-3压缩实验尺寸表
五、计算结果
1 •拉伸实验数据计算截面面积A0存02
P S
屈服极限
s A
抗拉强度P
b b A o
I:0 I。

伸长率
断面收缩率Y 10000
2 •压缩实验数据计算
P s
低碳钢的屈服极限
s A
铸铁的抗压强度P b
b

六、思考题
1 •从不同的断口形状分析比较低碳钢与铸铁在拉伸与压缩破坏的四种形式并
说明其原因。

2•分别比较低碳钢与铸铁的拉伸图与压缩图的异同。

相关文档
最新文档