第十八章 勾股定理全章测试
人教版八年级下第十八章勾股定理测验
(第2题图)八年级下数学第18章勾股定理单元测验班别________ 姓名________ 成绩__________一、细心填一填,相信你填得又快又准!(每题4分,共20分)1、有一个三角形的两条边长分别为3、4,要使三角形为直角三角形,则第三边为________2、如图,三个正方形围成一个直角三角形,81、400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是3、若正方形的面积为18cm 2,则正方形对角线长为__________。
4、等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为____________。
5.在Rt △ABC 中,已知其两直角边长a=1,b=3,那么斜边c 的长为__________二、精心选一选,相信你一定能选对!(每题4分,共20分)6.下列各组线段中,能够组成直角三角形的是( ).A .6,7,8B .5,6,7C .4,5,6D .3,4,57. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A . ①②B . ②③C . ①③D . ③④ 8.下列各命题的逆命题成立的是( ) A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等9、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). A .3cm 2 B .32cm 2 C .33cm 2 D .4cm 2 10. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定三、认真解答,一定要细心哟!(共60分)11,(812、(9分)在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、C ∠的对边(如图)。
初中初二数学八年级下册第十八章勾股定理单元测试章节测试
初中数学-八年级下册-第十八章勾股定理-单元测试-章节测试一、单选题(选择一个正确的选项)1 、,那么直角三角形斜边长是()A、cmB、C、9cmD、27cm2 、如图,△ABC为等腰直角三角形,它的面积为8平方厘米,以它的斜边为边的正方形BCDE 的面积为()平方厘米.A、16B、24C、64D、323 、如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A、5B、10C、6D、84 、在△ABC中,∠C=90°,若AB=5,AC=4,则BC为()A、4B、3CD 、95 、如果两个等腰直角三角形面积的比是1:2,那么它们斜边的比是( )A 、1:1B 、1C 、1:2D 、1:46 、如图,PA 切⊙O 于A ,割线PBC 经过圆心O ,交⊙O 于B 、C 两点,若PA=4,PB=2,则tan ∠P 的值为( )A 、43 B 、34 C 、54 D 、537 、直角三角形周长为12 cm ,斜边长为5cm ,则面积为( )A 、12cm 2B 、6cm 2C 、8cm 2D 、10cm 28 、直角三角形的两直角边的长分别为5和12,则第三边长为( )A 、10B 、13C 、15D 、179 、如图,矩形ABCD 中,AB >AD ,AB=a ,AN 平分∠DAB ,则C 、D 两点到直线AN 的距离之和是( )A 、aB 、45a C a D a10 、如图,已知正方形ABCD中,对角线AC、BD交于O点,AB=1cm,过B作BG∥AC,过A作AE∥CG,且∠ACG:∠G=5:1,以下结论:①;②四边形AEGC是菱形;③S△BDC=S△AEC;④CE=12cm;⑤△CFE为等腰三角形,其中正确的有()A、①③⑤B、②③⑤C、②④⑤D、①②④二、填空题(在空白处填写正确的答案)11 、如图,CD⊥AD于点D,AD=12,AC=13,若在直线CD上取一点B,使AB=15,则△ABC 的周长为_____________.12 、如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为_________cm2.13 、如图,一个正方体盒子的棱长为a厘米,顶点C′处有一只昆虫甲,顶点A处有一只昆虫乙.假设昆虫甲在顶点C′处不动,昆虫乙沿盒壁爬行到昆虫甲的位置C′的最短路径的长是_________厘米.(盒壁的厚度忽略不计)14 、如图,正方形ABCD,E为AB上的动点,(E不与A、B重合)连接DE,作DE的中垂线,交AD于点F.(1)、若E为AB中点,则DFAE=_____________.(2)、若E为AB的n等分点(靠近点A),则DFAE=______________.15 、以等腰直角△ABC的斜边AB所在的直线为对称轴,作这个△ABC的对称图形△ABC′,则所得到的四边形ACBC′一定是____________.三、解答题(在题目下方写出解答过程)16 、如图,在正方形ABCD中,E为AB边上的一点,连接DE,过A作AF⊥DE于F,过C 作CG⊥DE于G.已知AF=1,CG=2,求正方形的边长.17 、如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求∠D的度数.18 、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm,求腰AB 的长.19 、如图,已知⊙O的圆心O在射线PM上,PN切⊙O于Q,PO=20cm,∠P=30°,A、B 两点同时从P点出发,点A以4cm/s的速度沿PM方向移动,点B沿PN方向移动,且直线AB始终垂直PN.设运动时间为t秒,求下列问题.(结果保留根号)(1)、求PQ的长;(2)、当t为何值时直线AB与⊙O相切?(3)、当t为何值时,直线AB与⊙O相交的弦长是16cm?20 、如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连接OD并延长交大圆于点E,连接BE交AC于点F,已知2.参考答案一、单选题答案1. B2. D3. A4. B5. B6. B7. B8. B9. C10. B二、填空题答案11. 3212. 1814. (1)54(2)212nn+15. 正方形三、解答题答案16. 解:∵ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠CDG+∠FDA=90°,∵AF⊥DE,CG⊥DE,∴∠AFD=∠CGD=90°,∴∠FAD+∠FDA=90°,∴∠FAD=∠CDG,∴△ADF≌△DCG,∴FD=CG=2,∴17.解:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.18.解:分圆心在内接三角形内和在内接三角形外两种情况讨论,如图一,假若∠A是锐角,△ABC是锐角三角形,连接OA,∵OD=6,OB=10,∴BD=8,∵OD⊥BC,根据垂径定理和等腰三角形的性质可得,AD⊥BC,∴AD=10+6=16,∴cm;如图二,若∠A是钝角,则△ABC是钝角三角形,和图一解法一样,只是AD=10-6=4cm,∴.19.解:(1)连接OQ ,∵PN 切⊙o 于Q ,∴OQ ⊥PN ,(2分)∵PO=20,∠P=30°,∴OQ=10,4分)(2)作OH ⊥AB 于H ,∵AB ⊥PN ,∴四边形BHOQ 是矩形,当矩形BHOQ 是正方形时,直线AB 与⊙O 相切.∵PA=4t ,∴AB=2t ,故(6分)当PQ-PB=OQ 时,直线AB 第一次与⊙O 相切,∴t=10解得:t=5-53当PB-PQ=OQ 时,直线AB 第二次与⊙O 相切,,解得:t=5+53∴当t=t=5±53时,直线AB 与⊙O 相切.(8分)(3)当直线AB 与⊙O 相交于EF 时,ER=8,EO=10,∴OR=6,∴PB=PQ±6时,EF 的长都是16cm .(10分)∵点A 的速度是4cm/s ,∴点B 的速度是cm/s ,∴t 15=t 25=+∴当16cm .(12分)20. 解:(1)∵AD 是小圆的切线,D 为切点,∴OD ⊥AD ,在Rt △AOD 中,AD=12,OD=OE-2=OA-2,∴OA 2=AD 2+OD 22+(OA-2)2,解关于OA 的方程得:OA=3.所以大圆的半径为3.(2)连接BC ,AE ,∵OD ⊥AC ,∴ AE EC =,∴∠ACE=∠EBC ,又∵∠BEC=∠CEF ,∴△EBC ∽△ECF ,∴EC 2=EF•EB .在Rt △CDE 中,CD=12,DE=2,∴EC 2)2+22=12=AE 2.∵AB 是直径,∴∠AEB=90°.∴BE 2=AB 2-AE 2=36-12=24,∴.∵EC 2=BE•EF ,∴-BF ),解得:.(3)证明:如图:设过B,F,C三点的圆的圆心为O′,∵AB是⊙O的直径,∴∠ACB=90°,∴BF是⊙O′的直径,连接BC,O′C,则∠O′FC=∠O′CF又∵∠CBF=∠FCE,∴∠O′CE=∠O′CF+∠FCE=∠O′FC+∠CBF=90°∴O′C⊥EC.故EC是⊙O′的切线.点击查看更多试题详细解析:/index/list/9/1648#list。
人教版八年级下第十八章勾股定理测试题
第3题图HC第4题图人教版八年级下第十八章勾股定理测试题(时限:100分钟 总分值100分)一、选择题(本大题共12小题,每题2分,共24分)1.以下说法正确的选项是( )A.若a 、b 、c 是△ABC 的三边,那么a 2+b 2=c 2B.若a 、b 、c 是Rt △ABC 的三边,那么a 2+b 2=c 2C.若a 、b 、c 是Rt △ABC 的三边,∠A =90°,则a 2+b 2=c 2D.若a 、b 、c 是Rt △ABC 的三边,∠C =90°,那么a 2+b 2=c 22.以下各命题的逆命题不成立的是( )A.两直线平行,同旁内角互补B.假设两个数的绝对值相等,那么这两个数也相等C.等边三角形每一个内角都等于60°D.若是a =b 那么a 2=b 23.如图,在单位正方形组成的网格图中标有四条线段,其中能组成一个直角三角形三边的线段是( ) A. CD ,EF ,GH B. AB ,EF ,GH C. AB ,CD ,GH D. AB ,CD ,EF第5题图4.在一个由16个小正方形组成的正方形网格中,阴影部份面积与正方形ABCD 面积的比是( )A. 3︰4B. 5︰8C. 9︰16D. 1︰2 5.如图是一株漂亮的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.假设正方形A 、B 、C 、D 的边长别离为3、5、正方形E 的面积是( )A. 13B. 26C. 47D. 946.别离以以下四组数为一个三角形的边长:①3,4,5;②5,12,13;③8,15,17;④4,5,6. 其中能够 组成直角三角形的有( )A. 4组B. 3组C. 2组D. 1组 7.三角形的三边长别离为a 2+b 2、2ab 、a 2-b 2 (a 、b 都是正整数),那么那个三角形是( ) A. 直角三角形 B. 钝角三角形 C. 锐角三角形 D. 不能确信 8.等腰直角三角形三边长度之比为( )A. 1︰1︰2 ︰1︰√2 C. 1︰2︰√3 D. 不能确信9.三角形的三边长a 、b 、c 知足(a +b )2=c 2+2ab ,那么那个三角形是( )第10题图DCBA第12题图A64100A. 等边三角形B. 钝角三角形C. 锐角三角形D. 直角三角形 10.一块木板如下图,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A. 60B. 30C. 24D. 12 11.已知三角形的三边长为a 、b 、c ,若是(a -9)2+|b −12|+(c -15)2=0,那么△ABC 是( ) A. 以a 为斜边的直角三角形 B. 以b 为斜边的直角三角形 B. 以c 为斜边的直角三角形 D. 不是直角三角形 12.三个正方形的面积如图立,正方形A 的边长为( ) A. 8 B. 36 C. 64 D. 6 二、填空题(本大题分8小题,每题3分,共24分)13.在直角三角形中,假设两直角边的长别离为1cm ,2cm ,那么斜 边长为 .14.已知直角三角形的两边长为3、5,那么另一边长是 . 15.假设一个三角形的三边之比为5︰12︰13,那么它为 三角形.16.在△ABC 中,假设a 2+b 2=25,a 2-b 2=7,c =5,那么△ABC 为 三角形.17.一个长方形土地面积为48m 2,对角线长为10m ,那么此长方形的周长为 .第18题图EDCBA第19题图18.如下图,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且BE ︰AE =12︰5,那么河堤的高BE 为 米.19.如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,别离以AB ,BC ,AC 为直径作三个半圆,那么阴影部份的面积为 .20.直角三角形的一条边直角边为11,另两边均为自然数,那么周长是 . 三、解答题(本大题共52分)21.(此题分2个小题,每题3分共6分)(1)假设△ABC 的三边a 、b 、c ,知足a ︰b ︰c =1︰1︰√2,试判定△ABC 的形状.(2)假设△ABC 的三边a 、b 、c ,知足(a -b )(a 2+b 2-c 2)=0,试判定△ABC 的形状22.(10分)如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,第22题图DCB A第23题图ON MPBA第24题图cbaCBA 第25题图DCBA求四边形ABCD 的面积.23.(10分)如图,∠AOB =60°,P 为∠AOB 内一点,P 到OA 、OB 的距离PM 、PN 别离为2和11,求OP 的长.24.(10分)在△ABC 中,∠C =135°,a =√2,b =2,求c 的长.25.(10分)如图,四边形ABCD 中,AB =AD =8,∠A =60°,∠D =150°, 四边形的周长为32,求BC 和CD 的长.图图②①cccbacbaE 图④c cccb bbba aaa图③c c bb aa DCBA四、阅读与证明(6分)26. 如图①是用硬纸片做成的两个全等的直角三角形,两直角边别离为a 和b ,斜边为c ,图②是以c 为直角边的等腰直角三角形,将它们拼成一个能证明勾股定理的图形.⑴ 将图①、图②拼成一个直角梯形,如图③. ⑵ 假设图①中直角三角形有假设干个,可拼成边长为(a +b )的正方形.如图④证明⑴.由图③可得S梯形ABCD=(AB +CD )×BC2=(a +b)22S梯形ABCD =S Rt △ABE +S Rt △CDE +S Rt △AED =ab2+ab2+c 22∴(a +b)22=ab 2+ab 2+c 22∴ a 2+b 2=c 2由图④你能验证勾股定理吗试一试:参考答案: 一、;;;;;;;;;;;;二、13.√5;14. 4或√34;15.直角;16.直角;17. 28cm ;18. 12;; 20. 132. 解:设所求直角三角形的斜边为x ,另一直角边为y ,那么: X 2-y 2=112,∴(x +y )(x -y )=121∵x >y ,∴x +y >x -y ,且x +y 、x -y 都为自然数,∴{x +y=121x −y=1 解之 {y=60x=61 ∴直角三角形三边长为11、60、61.∴直角三角形的周长为132. 三、21.略;22.连接AC ,其他略;23.延长NP 交OB 于C ,其他略;24.作BD ⊥AC 交AC 的延长线于点D ,其他略;25.连接BD,其他略;26.略.。
八年级下册第18章勾股定理整章水平测试
八年级下册第18章勾股定理整章水平测试 姓名 分数一、耐心填一填.(每小题4分,共40分)1.Rt △ABC 中,∠C=90°,AC=8㎝,AB=10㎝,则△ABC 的面积为________, 最长边上的高等于_______.2.如图1,已知△ABC 中,∠ACB=90°,以△ABC 的各边为边向外作正方形,321S ,S ,S 分别表示这三个正方形的面积,,25S ,4S 31==则=2S ________.3.如图2,P 是正方形ABCD 内一点,将△ABP 移到△CBP ′位置,若BP=3, 则PP ′的长为________.4.“亡羊补牢,为时不晚”.丁丁爸爸要在高0.9米,宽1.2米的栅栏门的相对角顶点加固一个木板,这条木板需________米长.5. 如图3,直线L 过正方形ABCD 的顶点B,点A 、C 到直线L 的距离分别是1和2, 则正方形的边长是_______.6. 如图4,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米, 则梯顶离路灯______米。
7. 一张直角三角形的纸片,像图5那样折叠,使两个锐角顶点A 、B 重合,若∠B=30°,AC=3, 折痕DE 的长等于________.8. 图6中的螺旋形由一系列直角三角形 组成,则第n 个三角形的面积为________.9. 已知Rt △ABC 的周长为4+23,斜边AB 的长为23,则Rt △ABC•的面积为_____。
10.已知m >n,以2222n m ,mn 2,n m +-为边的三角形是_______三角形.二、精心选一选.(每小题3分,共30分)11.三角形的各边(从小到大)长度的平方比为下列各组数据,其中不是直角三角形的是 ( ) A.1:1:2 B.1:3:4 C.9:25:36 D.25:144:169A BC(B)ED 图5 A 0OA 1 A 2A 3图611 11S 1 S 2 S 3ABC 图1AB C DPP ′图2A B MN CD图3L图412. 若等边△ABC 的边长为2㎝,那么△ABC 的面积为 ( ) A .3cm 2 B .23c m 2 C .33cm 2 D .4cm 213.如图7,以数轴的单位长为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画圆弧,交数轴正半轴于点A,则点A 表示的数是 ( )A.112 B.1.4 C.3 D.214.在△ABC 中,AC=5,BC=12,则AB 边的长是 ( ) A.13 B.119 C.13或119 D.无法确定15. 下面是勾股数的为 ( ) (A )1.5,2.5,2 (B )2,2,2 (C )12,16,20 (D )0.5,1.2,1.3 16.已知一个三角形的三内角的比是1:2:1,则它的三条对应边之比是 ( )A.1:2:1B.1:1:2C.1:2:1D.1:2:317. 如果等腰三角形的底角为30°,腰长为6㎝,那么这个三角形的面积为 ( ) A.4.5cm 2 B.2cm 39 C.2cm 318 D.2cm 36 18.一棵大树被台风刮断,如图18所示,若树离地面3米处折断, 树顶端落在离树底部4米处,则树折断之前有( )A.5米B.7米C.8米D.10米19.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm , 10分钟之后两只小鼹鼠相距 ( ) A. 50cm B. 100cm C. 140cm D. 80cm20. 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成一个大正方形(如图20所示),如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边是a,较长直角边是b,那么(a+b)2的值为( )A.13B.19C.25D.169三、用心解一解:21.(10分)在△ABC 中,AB=13㎝,BC=10㎝,BC 边上的中线AD=12㎝.求AC.O 1 2 -1 图7图18图20 A C B D21题图22.(10分)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
勾股定理全章测试
八年级第十八章《勾股定理》检测题一一.选择题:(每题3分,共30分)1.在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ).A .3B .4C .5D .72.在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ).A .5B .10C .25D .53、一艘小船早晨8:00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,上午10:00两小船相距( )海里. A 、15 B 、12 C 、13 D 、204.如图,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形。
如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短直角边为a,较长直角边为b ,那么(a+b)2的值为( )A.13B.19C.25D.1695.把直角三角形两条直角边同时扩大为原来的2倍,则其斜边扩大为原来的( ) A.2 倍 B.4倍 C.2倍 D.不能确定6.如图1,中字母A 所代表的正方形的面积为( )A. 4B. 8C. 16D. 64 7、下列叙述中,错误的是( ) A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形. 8. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③;25,24,7===c b a ④.4,2,2===c b a A. 2个 B. 3个 C. 4个 D. 5个9.在Rt △ABC 中,∠C =90°,若a +b =3cm ,c =7cm , 则Rt △ABC 的面积是( )A.1cm 2B.2cm 2C.21cm 2 D. 5cm 2 10、如图,ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.非以上答案 二.填空题:(每题3分,共30分)1.请写出三组勾股数:____________,_____________,_____________.2.直角三角形有两条边长分别为8 cm ,17cm ,第三边长是__________3.△ABC 的三边长a,b,c 满足03018)602(2=-+-+-+c b b a ,△ABC 是 _三角形. 4.等边三角形的边长是8cm ,它一边上的高是 .5.有只鸟在一棵高4米的树梢上,它的伙伴在离该树12米,高20米的一棵大树的树梢上,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟_____秒才能到达大树. 6、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 7、如图3,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度是为h cm ,则h 的取值范围是 。
第十八章《勾股定理》单元测试题全套
第十八章《勾股定理》单元测试题文档资料可直接使用,可编辑,欢迎下载第十八章《勾股定理》单元测试题(时间:45分钟 总分:100分)班级: 姓名:一、选择题(每小题4分,共32分,答案填写到表格里,题目中选答无效)1.在Rt △ABC 中,∠B =90°,a =6,b =8,则c 的长为( C ).A .47B .10C .27D .22在以下列线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( D )A 、a=9 b=41 c=40B 、a=b=5 c=52C 、a :b :c=3:4:5D 、a=11 b=12 c=153、如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( A )(A )321S S S =+ (B )232221S S S =+(C )321S S S >+ (D ) 321S S S <+4、若△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( C )A.14B.4C.14或4D.以上都不是5、点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是( C )(A ) 40 cm (B ) 220 cm (C ) 20 cm (D )210 cm6、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为( C )(A ) 4 (B ) 8 (C ) 10 (D ) 127、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( A ).(A )3cm 2 (B )32cm 2 (C )33cm 2 (D )4cm 2 8、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( A )(A )96cm 2 (B) 120cm 2 (C) 160cm 2 (D) 200cm2 二、填空题(每小题5分,共35分)1、等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为__10__________。
完整版沪科版八年级下册数学第18章 勾股定理含答案
沪科版八年级下册数学第18章勾股定理含答案一、单选题(共15题,共计45分)1、如图:某港口P位于东西方向的海中线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“选航”寻每小时航行15海里,“海天”号每小时流行12海里。
它们离开港口一个半小时后分别位于A,B处,至程距30海里。
如来知道“远航”号沿东北方向航行,那么∠BPN=()度。
A.60B.45C.30D.无法确定2、已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A.5B.6C.7D.3、如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则DE的长度为()A. B. C.3 D.4、如图,在正方OABC中,点B的坐标是(4,4),点E、F分别在边BC,BA 上,.若,则点F的纵坐标是()A.1B.C.2D.5、如图,矩形中,,,在数轴上,若以点A为圆心,对角线的长为半径作弧交数轴于点M,则点M表示的数为()A. B. C. D.6、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.4C.D.5或7、如图,在正方形中,,点在边上,且,将沿折叠得到,延长交边于点,则的长为()A.2B.C.3D.8、下列四组线段中,可以构成直角三角形的是A.2,3,4B.3,4,5C.4,5,6D.7,8,99、下列各组数,可以作为直角三角形的三边长的是()A.2,3,4B.7,24,25C.8,12,20D.5,13,1510、三个正方形按图示位置摆放,S表示面积,则S的大小为 ( )A.10B.500C.300D.3011、如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A.1B.C.D.12、三角形的三边分别为a、b、c,由下列条件不能判断它是直角三角形的是()A. ,,B.C.D.13、在直角三角形中,两边长分别为3和4,则最长边的长度为()A.5B.4C.5或D.5或414、以下列各组数据为三角形的三边,能构成直角三角形的是()A.1cm,2cm,3cmB.2cm,2cm,2cmC.4cm,2cm,2cmD.cm,cm,1cm15、如图,PO是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24 cm,则⊙O的周长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是________.17、若抛物线y=x2﹣6x+c的顶点与原点的距离为5,则c的值为________.18、如图,x=________.19、一架长的梯子斜靠在一竖直的墙上,这时梯足距离墙底,如果梯子的顶端沿墙下滑,那么梯足将滑________ :20、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,点B、C的对应点分别为点B'、C′,AB′与BC相交于点D,当B′C′∥AB时,则CD=________.21、如图,长方体中, , , ,一只蚂蚁从点A出发,以4m/秒的速度沿长方体表面爬行到点C',至少需要________ 分钟.22、如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD =2,BD=3,则AC的长为________.23、四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为2的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM =4 EF,则正方形ABCD的面积为________24、在Rt△ABC中,AC=9,BC=12,则AB=________.25、如图,先有一张矩形纸片,,,点,分别在矩形的边,上,将矩形纸片沿直线折叠,使点落在矩形的边上,记为点,点落在处,连接,交于点,连接.下列结论:① ;②四边形是菱形;③ ,重合时,;④ 的面积的取值范围是.其中正确的________;(把正确结论的序号都填上).三、解答题(共5题,共计25分)26、在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路:作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,列出方程求出x→再求出AD的长,从而计算三角形的面积.请你按照他们的解题思路完成解答过程.28、如图,在△ABC中,∠B 90°,AB 4,BC 2,以AC为边作△ACE,∠ACE 90°,AC=CE,延长BC至点D,使CD 5,连接DE.求证:△ABC∽△CED.29、在平面直角坐标系中,若△ABC的三个顶点的坐标分别为A(﹣4,1),B (﹣1,3),C(﹣4,3),求sinB的值.30、如图,将长AB=5cm,宽AD=3cm的长方形纸片ABCD折叠,使点A与C重合,折痕为EF,则AE长是多少?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、C6、D7、C8、B9、B10、D11、D13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第18章《勾股定理》单元综合测试题(含解析重庆开县)
第18章《勾股定理》单元综合测试题(含解析重庆开县)第18章《勾股定理》单元综合测试题(含解析重庆开县)(测试时间90分钟,测试总分100分)一、选择题(每题3分,共30分)题号12345678910答案1.下列说法不能推出△ABC是直角三角形的是()A.B.C.∠A=∠B=∠CD.∠A=2∠B=2∠C2.如图1,图中有一个正方形,此正方形的面积是()A.16B.8C.4D.23.如图2所示:是一段楼梯,高BC是3,斜边AB是5,如果在楼梯上铺地毯,那么至少需要地毯()A.5B.6C.7D.84.放学以后,小红和小颖分手,分别沿着东南方向和西南方向回家,若两人行走的速度都是40m/min,小红用15min到家,小颖用20min到家,则小红和小颖家的距离为()A.600mB.800mC.100mD.不能确定5.已知x,y为正数,且如果以x,y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5B.25C.7D.156.如图3,在底面周长为12,高为8的圆柱体上有A,B两点,则AB之间的最短距离是()A.10B.8C.5D.47.知△ABC中,AB=17cm,BC=30cm,BC上的中线AD=8cm,则△ABC为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形8.直角三角形斜边的平方等于两直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45°D.75°9.五根小木棒,其长度分别为7,15,20,24,25,现想把它们摆成两个直角三角形,图中正确的是().10.如图4,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GHB.AB、EF、GHC.AB、CD、GHD.AB、CD、EF二、填空题(每题3分,共18分)11.直角三角形两直角边长分别为6和8,则它斜边上的高为______.12.在Rt△ABC中,斜边AB=2cm,则=______.13.△ABC中,如果AC=3,BC=4,AB=5,那么,△ABC一定是_____角三角形,•并且可以判定∠_____是直角,如果AC,BC的长度不变,而AB的长度由5增大到5.1,•那么原来的∠C被“撑成”的角是______角.14.如图5,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.15.三角形的三边a,b,c满足,则这个三角形是______三角形.16.若一个三角形的三边长的平方分别为:若此三角形为直角三角形,则=_______.三、解答题(17题6分,18题~19题每题7分,20题~23题8分,共52分)17.如图6,为修通铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB=5km,BC=4km,若每天开凿隧道0.3km,试计算需要几天才能把隧道AC凿通?18.如图7,四边形ABCD中,.试判断的形状,并说明理由.19.某工厂的大门如图8所示,其中四边形ABCD是长方形,上部是以AB为直径的半圆,其中AD=2.3米,AB=2米,现有一辆装满货物的卡车,高2.5米,宽1.6米,问这辆车能否通过厂门?说明理由.20.如图9,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?21.在一次探险活动中,某小组从A点出发,先向东走8km,又往北走2km,遇到障碍物后又往西走3km,再折向北走6km后往东一拐,仅走1km即到达目的地B,问:出发点A到目的地B的最短距离是多少?22.为了丰富少年儿童的业余文化生活,某社区在如图10所示AB所在的直线上建一图书阅览室,本社区有两所学校所在的位置在点C和D 处.CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,试问:阅览室E应建在距A多少㎞处,才能使它到C、D两所学校的距离相等?23.如图11,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D 恰好落在对角线AC上的点F处.⑴求EF的长;⑵求梯形ABCE的面积.第18章勾股定理一、选择题CDDCCABCCB二、填空题11.4.8;12.8;13.直C钝;14.8;15.直角;16.25或7。
勾股定理全章练习题含答案
第十八章勾股定理测试1 勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC 的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km . 3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.3题图4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .4题图二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ).5题图(A)5m (B)7m (C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).6题图(A)212 (B)310 (C)56(D)58三、解答题7.在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为____ __米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______( 取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A 、B 在河CD 的同侧,A 、B 两村到河的距离分别为AC =1千米,BD=3千米,CD =3千米.现要在河边CD 上建造一水厂,向A 、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W .测试3 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为62,斜边为2,则该三角形的面积是( ).(A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)7(B)7或41(C)24或74(D)2三、解答题8.如图,在Rt△ABC中,∠C=90°,D、E分别为BC和AC的中点,AD=5,BE=102求AB的长.9.在数轴上画出表示10及13的点.综合、运用、诊断10.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.12.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE 为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.5.若△ABC中,(b-a)(b+a)=c2,则∠B=____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是______三角形.7.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.8.△ABC的两边a,b分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a=6,b=8,c=10 (B)3ba=c,1=,2=(C)43,1,45===c b a (D)6,3,2===c b a10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26 (D)25∶144∶169 11.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ). (A)一定是等边三角形 (B)一定是等腰三角形(C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案第十八章 勾股定理测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2.3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..310 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米.9.⋅310 10.25. 11..2232- 12.7米,420元.13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+km9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5. 11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-ABAF,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3.13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB15.128,2n-1.测试4 勾股定理的逆定理1.直角,逆定理.2.互逆命题,逆命题.3.(1)(2)(3).4.①锐角;②直角;③钝角.5.90°.6.直角.7.24.提示:7<a<9,∴a=8.8.13,直角三角形.提示:7<c<17.9.D.10.C.11.C.12.CD=9.13..5114.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)第十八章勾股定理全章测试一、填空题1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.2.若等边三角形的边长为2,则它的面积为______.3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.3题图4.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC =60米,则点A到岸边BC的距离是______米.4题图5.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于______cm.5题图6.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.6题图7.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.8.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.8题图二、选择题9.下列三角形中,是直角三角形的是( )(A)三角形的三边满足关系a+b=c(B)三角形的三边比为1∶2∶3(C)三角形的一边等于另一边的一半(D)三角形的三边为9,40,4110.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ).10题图(A)450a元(B)225a元(C)150a元(D)300a元11.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( ).(A)2 (B)3(C)222(D)312.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则AC+BC等于( ).(A)5 (B)135(C)1313(D)59三、解答题13.已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD 的长.14.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD =10m,求这块草地的面积.15.△ABC中,AB=AC=4,点P在BC边上运动,猜想AP2+PB·PC的值是否随点P位置的变化而变化,并证明你的猜想.16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要多长?18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.图1 图2 图3(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.19.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案第十八章 勾股定理全章测试1.8. 2..3 3..10 4.30. 5.2.6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6, CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 7.26或.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △. 9.D . 10.C 11.C . 12.B 13..2172 提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长.14.150m 2.提示:延长BC ,AD 交于E . 15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH ) =AH 2+PH 2+BH 2-PH 2 =AH 2+BH 2=AB 2=16. 16.14或4.17.10; .16922n +18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++ 19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+.③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3由勾股定理得:325x ,得△ABD 的周长为.m 380。
八年级数学下第18章勾股定理整章测试题人教版
第18章勾股定理测试题一、选择题 (每小题4分,共40分)1、一个直角三角形,两直角边长分别为3和4,下列说法正确的是 ( )2、小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度.3、下列各组数中不能作为直角三角形的三边长的是( ),2,,24,25 C. 6,8,,12,15.4、适合下列条件的△ABC 中,直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450;③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b a5、将直角三角形的三条边长同时扩某某一倍数, 得到的三角形是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形.6、如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A.20cmB.10cmC.14cmD.无法确定.7、已知三角形的三边长为a 、b 、c ,如果()a b c c -+-+-+=51226169022,则△ABC 是( )8、下列叙述中,正确的是( )A 、直角三角形中,两条边的平方和等于第三边的平方B 、如果一个三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形C 、ΔABC 中,∠A 、∠B 、∠C 的对边分别是a ,b ,c ,若a 2+b 2=c 2,则∠A=90°D 、ΔABC 中,∠A 、∠B 、∠C 的对边分别是a ,b ,c ,若c 2-a 2=b 2,那么∠B=90°9、直角三角形有一条直角边的长为11,另外两边的长也是自然数,那么它的周长是( ) A 、132 B 、121 C 、120 D 、以上答案都不对10、如图,ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )二、填空题(每小题4分,共24分)11.如图,64、400分别为所在正方形的面积,则图中 400字母所代表的正方形面积是. A6412.满足222c b a =+的三个正整数,称为.13.三角形的三边长分别是15,36,39,这个三角形是三角形.14.已知甲往东走了4km,乙往南走了3km,这时甲、乙俩人相距.15.如图,直角三角形的两边长分别为6和8,带阴影的正方形面积是.16.直角三角形的周长为12cm,斜边的长为5cm,则其面积为________.三、解答题(共36分)17、(7分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度.18、(7分)如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯多少米?19、(7分)已知△ABC为Rt△,且∠ACB=90°,以三边为直径向形外作三个半圆(如图所示).求证:以斜边为直径的半圆面积等于以两直角边为直径的两个半圆面积之和.20、(7分)探险队的A组由驻地出发,以12公里/时的速度前进,同时,B组也由驻地出发,以9公里/时的速度向另一个方向前进,2小时后同时停下来,这时A、B两组相距30公里,那么A、B两组行驶的方向成直角吗?说明理由.21、(8分)在一根长为24个单位的绳子上,分别标出A、B、C、D四个点,它们将绳子分成长为6个单位、8个单位和10个单位的三条线段。
勾股定理单元测试卷(含答案)
诚信教育学校第18章勾股定理测试题一、选择题(每题3分,共30分)1. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,62.在一个直角三角形中,若斜边长是13,一条直角边长为12,则这个直角三角形的面积是( ) A .30 B .40 C .50 D .603.如图1,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( ) A .0.6米 B .0.7米 C .0.8米 D .0.9米(1)4.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是( ) A .132 B .121 C .120 D .以上答案都不对 5.直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( ) A2d Bd C.2d D.d6. 直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( ) A .61 B .71 C .81 D .917、已知一个直角三角形的两条边长分别为34和,则第三条边长为( )A .5B .25 CD58、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m9、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm 二、填空题(每题3分,共24分)1、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.2、 如图2,以三角形ABC ∆的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.3、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).4、如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.(3) (4) (5)5、如图4,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S =6、如图5,已知,Rt ABC ∆中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5,AD BE ==AB 之长为______.7、如图6,在长方形ABCD 中,5DC cm =,在DC 上存在一点E ,沿直线AE 把AED ∆折叠,使点D 恰好落在BC 边上,设此点为F ,若ABF ∆的面积为230cm ,那么折叠AED ∆的面积为_____.(6) (7) (8)8、如图7,已知:ABC ∆中,2BC =, 这边上的中线长1AD =,1AB AC +=AB AC ⋅为_____.9、一个三角形的三条边长分别为221,2,1m m m -+,则三角形中最大的角是_____.10、在ABC ∆中,=905C AB ︒∠=,则222AB AC BC ++=_____.11、如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 .12、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则x 的长为 厘米。
人教版八年级数学下册第十八章勾股定理测试【精品4套】
勾股定理测试卷(1)一、选择题(每题2分,共30分)1.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组A .1 B. 2 C. 3 D. 4 2.下列说法中, 不正确的是 ( )A . 三边长度之比为5:12:13的三角形是直角三角形 B. 三个角的度数之比为1:3:4的三角形是直角三角形 C. 三个角的度数之比为3:4:5的三角形是直角三角形 D. 三边长度之比为3:4:5的三角形是直角三角形3.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地.B ,在AB 间建一条直水管,则水管的长为( ) A .40cm B .45cm C .50cm D .56cm西南北东4.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30ο夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5.ABC ∆中,90B ο∠=,两直角边7,24AB BC ==,三角形内有一点P 到各边的距离相等,30°则这个距离是( )A .1B .3C .4D .56.已知一直角三角形的木板,三边的平方和为21800cm ,则斜边长为( ). A .80cm B .30cm C .90cm D .120cm.7.若三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A .12 cm B. 10 cm C. 8 cm D. 6 cm 8.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或79.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A .12米 B. 13米 C. 14米 D. 15米10.在直角三角形中,斜边与较小直角边的和.差分别为8,2,则较长直角边长为( ) A .5 B .4 C .3 D .211.ABC ∆的三条边长分别是a b c ,,,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 12.如图,正方形网格中的ABC ∆,若小方格边长为1,则ABC ∆是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对CBA13.如图,小方格都是面积为1的矩形,则图中四边形的面积是 ( ) A .25 B. 12.5 C. 9 D. 8.514.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.B15.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m; B. 2.5m; C. 2.25m; D. 3m.二、填空题(每空3分,共30分)16.已知,如图中字母B.M分别代表的正方形的面积分别为__________.___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章 勾股定理全章测试
班级_________ 姓名___________成绩______________
一、填空题
1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.
2.若等边三角形的边长为2,则它的面积为______. 3题图
3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑
的四个小正方形的面积的和是10cm 2,则其中最大的正方形的边长为______cm .
4.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点
A 到岸边BC 的距离是______米.
4题图
5.已知:如图,△ABC 中,∠C =90°,点O 为△ABC 的三条角平分线的交点,
OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D ,E ,F 分别是垂足,且BC =8cm ,
CA =6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于______cm .
6.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边
AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.
5题图
7.△ABC 中,AB =AC =13,若AB 边上的高CD =5,则BC =______.
8.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.
6题图
8题图
10题图
二、选择题
9.下列三角形中,是直角三角形的是( )
(A)三角形的三边满足关系a +b =c (B)三角形的三边比为1∶2∶3
(C)三角形的一边等于另一边的一半 (D)三角形的三边为9,40,41
10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每
平方米售价a 元,则购买这种草皮至少需要( ).
(A)450a 元 (B)225a 元
(C)150a 元 (D)300a 元
11.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积
为8,则BE =( ).
(A)2 (B)3 (C)22 (D)32
12.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC +BC 等于( ).
(A)5
(B)135 (C)1313 (D)59
三、解答题
13.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长.
14.如图,已知一块四边形草地ABCD ,其中∠A =45°,∠B =∠D =90°,AB =20m ,CD =10m ,求这
块草地的面积.
15.△ABC 中,AB =AC =4,点P 在BC 边上运动,猜想AP 2+PB ·PC 的值是否随点P 位置的变化而变
化,并证明你的猜想.
16.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,求BC .
17.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过四个侧面缠
绕一圈到达点B ,那么所用细线最短需要多长?如果从点A 开始经过四个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长?
18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.
图1 图2 图3
(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼
成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);
(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,
请直接写出三种方法所拼得的平行四边形的面积各是多少;
(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,
请直接写出三种方法所拼得的平行四边形的周长各是多少.
19.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.。