10二项式定理计数概率与统计2016-2018年历年数学联赛真题WORD版分类汇编含详细答案
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析
![【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析](https://img.taocdn.com/s3/m/1b0cae2f52ea551810a68731.png)
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
数论历年数学联赛真题WORD版分类汇编含详细答案
![数论历年数学联赛真题WORD版分类汇编含详细答案](https://img.taocdn.com/s3/m/f0231a0ceefdc8d376ee323a.png)
1,均有 an
M
,而 M
p p p 1 2 12
k 1 k 1
max
1n N /
an
,故
M
不在
an
中出
现,这与假设矛盾!因此,若 m 有 k 个不同的素因子,则 m 一定在数列 an 中出现.
由数学归纳法知,所以正整数均在数列 an 中出现。
2018B 四、(本题满分 50 分)给定整数 a 2 。证明:对任意正整数 n ,存在正整数 k ,使得连续 n 个数 a k 1 , a k 2,, a k n 均是合数。
综上可知,平稳数的个数为 2 6 63 4 75 。
2017B 8、若正整数 a,b, c 满足 2017 10a 100b 1000c ,则数组 (a,b, c) 的个数为
◆答案: 574 ★解析:由条件知 c [ 2017 ] 2 ,当 c 1时,有10 b 20 ,对于每个这样的正整数 b ,由
]
12
3
3
1
1
20
.
8 27 27 64 64
当 n m 时,由对称性可知,亦有 20 个满足条件的等比数列 a1, a2 , a3, a4 .
综上可知,共有 40 个满足条件的有序数组 (a1, a2 , a3 , a4 ) .
2016A 四、(本题满分 50 分)设 p 与 p 2 均是素数, p 3 ,数列 an 定义为 a1 2 ,
2016 年~2018 年全国高中数学联赛二试试题分类汇编 2、数论部分
2018A 四、(本题满分 50 分)数列 an 定义如下: a1 是任意正整数,对整数 n 1, an1 与
1集合-2016-2018年历年数学联赛真题WORD版分类汇编含详细答案
![1集合-2016-2018年历年数学联赛真题WORD版分类汇编含详细答案](https://img.taocdn.com/s3/m/a6cffbdd4afe04a1b071deb1.png)
2016年~2018年全国高中数学联赛一试试题分类汇编1、集合部分2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为◆答案:24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。
2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案:31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 三、(本题满分50分)设集合{}n A ,,2,1 =,Y X ,均为A 的非空子集(允许Y X =).X中的最大元与Y 中的最小元分别记为Y X min ,max .求满足Y X min max >的有序集合对),(Y X 的数目。
★解析:先计算满足Y X min max ≤的有序集合对),(Y X 的数目.对给定的X m max =,集合X 是集合{}1,,2,1-m 的任意一个子集与{}m 的并,故共有12-m 种取法.又Y m min ≤,故Y 是{}n m m m ,,2,1, ++的任意一个非空子集,共有121--+m n 种取法.因此,满足Y X min max ≤的有序集合对),(Y X 的数目是:()[]()12122122111111+⋅-=-=-∑∑∑=-==-+-n nm m n m n n m m n m n 由于有序集合对),(Y X 有()()()2121212-=--n n n 个,于是满足Y X min max >的有序集合对),(Y X 的数目是()()124122122+-=-+⋅--n n n n n n n2017B 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集+N 分拆为。
概率与统计-2016至2018新课标二高考理科数学汇编+Word版含解析
![概率与统计-2016至2018新课标二高考理科数学汇编+Word版含解析](https://img.taocdn.com/s3/m/e18cf8ab6529647d272852ad.png)
十、概率与统计1.(2016 新课标2理数10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n【答案】C2.(2017 新课标2理数13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =____________.【答案】1.96【解析】:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.【考点】 二项分布的期望与方差3. (2018 新课标2理数8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C. 4.(2016 新课标2理数18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(III)求续保人本年度的平均保费与基本保费的比值.解:(I)解法1:设“一续保人本年度的保费高于基本保费”为事件为A则P(A)=1-P(A)=1-(0.3+0.15)=0.55所以该续保人本年度的保费高于基本保费的概率为0.55解法2:由题知:续保人本年度的保费高于基本保费的概率为0.200.200.100.050.55P=+++=(II)由统计表可知:其保费比基本保费高出60%的概率:0.100.050.15P=+=所以在一续保人本年度的保费高于基本保费的条件下; 续保人本年度的保费高于基本保费的概率为:0.1530.5511 P==(III)该续保人的本年平均保费为:0.850.300.15 1.250.20 1.50.20 1.750.10+20.05 1.23a a a a a a a????创=所以该续保人本年度的平均保费与基本保费的比值为:1.231.23aa=5.(2017 新课标2理数18)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:0.01).附:,22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .6. (2018 新课标2理数18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠..【考点】独立事件概率公式、独立性检验原理、频率分布直方图估计中位数。
10二项式定理计数概率与统计1981-2018年历年数学联赛真题分类汇编Word版含答案
![10二项式定理计数概率与统计1981-2018年历年数学联赛真题分类汇编Word版含答案](https://img.taocdn.com/s3/m/70356b4c27d3240c8447ef6f.png)
1981年~2018年全国高中数学联赛一试试题分类汇编10、计数问题、概率与统计部分2018A 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是偶数的概率为 ◆答案:109 ★解析:先考虑def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=,故所求为1091011=-2018B 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是奇数的概率为 ◆答案:101★解析:由def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=。
2017A 6、在平面直角坐标系xOy 中,点集{}1,0,1,|),(-==y x y x K ,在K 中随机取出三个点,则这三个点中存在两点距离为5的概率为 ◆答案:74★解析:由题意得K 有9个点,故从中取出三个点共有8439=C 种。
将K 中的点按右图标记为O A A A ,,,,821 ,其中有8对点之间的距 离为5,由对称性,考虑取41,A A 两点的情况,则余下的一个点有7种取法,这样有5687=⨯个三点组(不考虑顺序)。
对每个i A (8,,2,1 =i ),K 中恰有53,++i i A A 两点与之的距离为5(这里下标按模8可以理解),因而恰有{}53,,++i i i A A A 这8个三点组被计了两次,从而满足条件的三点组个数为48856=-,进而所求的概率为748448=。
⑩竞赛中的二项式定理问题
![⑩竞赛中的二项式定理问题](https://img.taocdn.com/s3/m/dd9d3125bd64783e09122b4e.png)
Y.P.M 数学竞赛讲座 1竞赛中的二项式定理二项式定理是数学竞赛的热点之一.1.常数项[例1]:(2003年全国高中数学联赛安徽初赛试题)在(4x 2-2x-5)(1+21x)5的展开式中,常数项为 .[解析]:[类题]:1.①(2008年全国高中数学联赛贵州初赛试题)(x 2-x1)6的展开式中常数项为 (用数字作答). ②(2009年全国高中数学联赛浙江初赛试题)(x-61x)2009的二项展开式中常数项是 .2.①(2012年全国高中数学联赛四川初赛试题)(x 2+x-x1)6的展开式中的常数项是 (用具体数字作答). ②(1997年全国高中数学联赛上海初赛试题)展开式(1+x+x1)7的常数项是_____. 3.(2010年全国高中数学联赛黑龙江初赛试题)若二项式(a x -x1)6的展开式中的常数项为-160,则⎰-adx x 02)13(= .2.通项公式[例2]:(2000年全国高中数学联赛试题)设a n 是(3-x )n的展开式中x 项的系数(n=2,3,4,…),则∞→n lim (223a +333a +…+ nna 3)= . [解析]:[类题]:1.(2006年全国高中数学联赛江苏初赛试题)(x-3x 2)3的展开式中,x 5的系数为 2.①(1998年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为215,则∞→n lim (x -1+x -2+…+x -n)= . ②(2000年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为5,则∞→n lim (x -1+x -3+…+x -1-2n)= .3.(2010年全国高中数学联赛吉林初赛试题)已知 (ax+1)n=a n x n+a n-1x n-1+…+a 1x+a 0(n ∈N *),点列A i (i,a i )(i=0,1,2…,n)部分图象如图所示, 则实数a 的值为________.3.通项分析[例3]:(2002年全国高中数学联赛试题)将二项式(x +421x)n的展开式按x 的降幂排列,若前三项系数成等差数列,则该展开式中x 的幂指数是整数的项共有__________个.[解析]:[类题]:2 Y.P.M 数学竞赛讲座1.(《中等数学》.2008年第3期.数学奥林匹克高中训练题(106))在(53+35)100的展开式中共有 个项为有理数.2.①(2011年全国高中数学联赛安徽初赛试题)设展开式(5x+1)n=a 0+a 1x+…+a n x n,n ≥2011,若a 2011=max{a 0,a 1,…,a n },则n= .②(2010年全国高中数学联赛浙江初赛试题)若x ∈R +,则(1+2x)15的二项式展开式中系数最大的项为( ) (A)第8项 (B)第9项 (C)第8项和第9项 (D)第11项3.(1988年全国高中数学联赛试题)(x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为_________.4.赋值方法[例4]:(2005年全国高中数学联赛浙江初赛试题)设(1+x+x 2)n =a 0+a 1x+…+a 2n x 2n ,则a 2+a 4+…+a 2n 的值为 . [解析]:[类题]:1.①(2010年全国高中数学联赛辽宁初赛试题)设(3+x+2x 2)n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +)对x ∈R 恒成立,则a 1+a 2+…+a 2n-1= .②(2008年全国高中数学联赛吉林初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满 足:b 0+b 1+…+b n =26,则正整数n 的一个可能值为 .③(2009年全国高中数学联赛湖南初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满足: b 0+b 1+…+b n =1013,则正整数n 的一个可能值为 .2.①(2006年全国高中数学联赛四川初赛试题)若(2x-1)8=a 8x 8+a 7x 7+…+a 1x+a 0,则a 8+a 6+a 4+a 2= .②(2009年全国高中数学联赛四川初赛试题)设二项式(3x-1)2n=a 2n x 2n+a 2n-1x 2n-1+…+a 2x 2+a 1x+a 0,记T n =a 0+a 2+…+a 2n ,R n =a 1+ a 3+…+a 2n-1,则∞→n limnnR T = . ③(2006年全国高中数学联赛山西初赛试题)若(2x+4)2n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +),则a 2+a 4+…+a 2n 被3除的余数是 .2.①(2009年第20届全国希望杯高二数学邀请赛试题)已知f(x)=x 2-2x-3,f(g(x))=4x 4+4x 3-7x 2-4x,则g(x)的各项系数(包括常数项)的和等于 .②(2006年全国高中数学联赛黑龙江初赛试题)已知f(x)=3x 2-x+4,f(g(x))=3x 4+18x 3+50x 2+69x+48,那么,整系数多项式函数g(x)的各项系数的和等于 .③(2005年全国高中数学联赛试题)将关于x 的多项式f(x)=1-x+x 2-x 3+…-x 19+x 20表为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y=x-4,则a 0+a 1+…+a 20= .④(2006年全国高中数学联赛河南初赛试题)设函数f(x)=x 2+6x+8.如果f(bx+c)=4x 2+16x+15,那么,c-2b= . ⑤(2010年全国高中数学联赛北京初赛试题)满足方程f(x)+(x-2)f(1)+3f(0)=x 3+2(x ∈R)的函数f(x)= .5.微积方法[例5]:(2008年全国高中数学联赛湖北初赛试题)设(x 2+2x-2)6=a 0+a 1(x+2)+a 2(x+2)2+...+a 12(x+2)12,其中a i (i=1,2, (12)为实常数,则a 0+a 1+2a 2+…+12a 12= .[解析]:[类题]:1.①(2008年全国高中数学联赛陕西初赛试题)若x 5+3x 3+1=a 0+a 1(x-1)+a 2(x-1)2+ ⋯+a 5(x-1)5对任意实数x 都成立,则a 3的 值是 (用数字作答).②(2008年全国高中数学联赛上海初赛试题)已知恒等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4,则用a 1、a 2、a 3、a 4来表示b 3有b 3=_______________________.③(2003年湖南高中数学夏令营试题)由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+2)4+b 1(x+2)3+b 2(x+2)2+b 3(x+2)+b 4,定义映射 f:(a 1,a 2,a 3,a 4)→(b 1,b 2,b 3,b 4),则f[(10,30,38,21)]= .2.①(2011年全国高中数学联赛辽宁初赛试题)设(1+x-x 2)10=a 0+a 1x+a 2x 2+…+a 20x 20,则a 0+a 1+2a 2+3a 3+…+20a 20= .Y.P.M 数学竞赛讲座 3②(《中等数学》.2010年第4期.数学奥林匹克高中训练题(128))设(2+x-2x 2)1005=a 0+a 1x+a 2x 2+…+a 2010x 2010,则a 1+3a 3+5a 5+…+2009a 2009= .3.(1998年全国高中数学联赛上海初赛试题)计算:1011C +2111C +3211C +…+121111C = .6.多截公式[例6]:(2001年全国高中数学联赛试题)若(1+x+x 2)100的展开式为a 0+a 1x+a 2x 2+a 3x 3+…+a 2000x 2000,则a 0+a 3+a 6+a 9+…+a 1998的值为 .[解析]:[类题]:1.(2007年全国高中数学联赛甘肃初赛试题)设(1+x+x 2)n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +),则a 0+a 3a 6+…+]32[[3n a 的值为 (其中,[x]表示不超过x 的最大整数).2.①(《中等数学》.2005年第4期.数学奥林匹克高中训练题(75))C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004= .解:在(1+x)2004=C 20040+xC 20041+x 2C 20042+…+x2004C 20042004中,令x=i 得:(1+i)2004=(C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004)+i(C 20041-C 20043+C 20045-C 20047+…+C 20042001-C 20042003).又(1+i)2004=(2i)1002=-21002⇒C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004=-21002.②(1990年全国高中数学联赛试题)设n=1990,则n21(1-3C n 2+32C n 4-33C n 6+…+3994C n 1988-3995C n1990)= .3.(《中等数学》.2010年第7期.数学奥林匹克高中训练题(75))设f(x)=(x+231i -)2010=∑=20100k k a x k +i ∑=2010k k b x k,其中,a k ,b k∈R,k=0,1,2,…,2010,则)(367003k k k b a +∑== .7.计数思想[例7]:(2009年全国高中数学联赛福建初赛试题)集合{1,2,3,…,2009}的元素和为奇数的非空子集的个数为 . [解析]:[类题]:1.(2005年全国高中数学联赛安徽初赛试题)在(x 2+3x+2)5的展开式中,含x 项的系数是 . 2.(《中等数学》.2011年第7期.P3例题)在(x+1)(x+2)…(x+n)的展开式中,含x n-2项的系数是 . 3.(2008年全国高中数学联赛湖南初赛试题)多项式(1+x+x 2+…+x 100)3的展开式在合并同类项后,x 150的系数为 (用数字作答).8.对偶思想[例8]:(2009年全国高中数学联赛吉林初赛试题)(2+3)2010的小数点后一位数字是 .[解析]:[类题]:1.(2010年全国高中数学联赛河南初赛试题)记M=(5+24)2n (n ∈N *),N 是M 的小数部分,则M(1-N)的值是 . 2.(2011年全国高中数学联赛四川初赛试题)已知(1+3)n=a n +b n 3,其中a n ,b n 是整数,则∞→n limnnb a = . 3.①(2009年全国高中数学联赛新疆初赛试题)数(3+8)2n (n ∈N *),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是 .②(2006年第七届北方数学奥林匹克邀请赛试题)数(3+2)4022(n ∈N +)的整数部分的个位数字是 .9.二项应用4 Y.P.M 数学竞赛讲座 [例9]:(2003年江苏省数学夏令营数学竞赛试题)x 10+1除以(x-1)2的余式是 . [解析]:[类题]:1.(1986年全国高中数学联赛上海初赛试题)21000除以13的余数是 .2.(《中等数学》.2011年第12期.数学奥林匹克高中训练题(148))整数列{a n }定义如下:a 0=0,a 1=1,a n =2a n-1+a n-2(n>1).则满足22012|a n 的最小正整数n 为 .10.逆向应用[例10]:(2006年全国高中数学联赛试题)数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数20063212a a a a ⋅⋅⋅的个数为 .[解析]:[类题]:1.(2005年全国高中数学联赛山东初赛试题)611+C 111610+C 11269+…+C 11106-1被8除所得余数是 .2.(2003年全国高中数学联赛湖南初赛试题)已知n 为自然数,多项式P(x)=∑=nh hn C 0x n-h(x-1)h可展开成x 的升幂排列a 0+a 1x+a 2x 2+…+a n x n,则|a 0|+|a 1|+|a 2|+…+|a n |= .3.(2010年全国高中数学联赛上海初赛试题)满足0<a 1<a 2<…<a n (n ≥2,n ∈N +)的2n-1位十进制正整数121121a a a a a a a n n n ⋅⋅⋅⋅⋅⋅-- 共有 个(用数值作答).11.组合等式[例11]:(2006年全国高中数学联赛安徽初赛试题)2∑=n k k 13C n k-3n ∑=nk k 12C n k +n 2∑=nk k 1C n k = .[解析]: [类题]:1.(1989年全国高中数学联赛上海初赛试题)计算∑=-121111k k k C = .2.(2009年全国高中数学联赛湖南初赛试题)对于n ∈N +,计算C 4n+11+C 4n+15+…+C 4n+14n+1= .12.质数指数勒让德(Legendre)定理:n !中含质数p 的指数k=[p n]+[2p n ]+[3pn ]+…. 推论:在C n 0,C n 1,C n 2,…,C n n中,奇数个数是)(2n S ,其中S(n)是n 的二进制数玛的和.[例12]:(2011年全国高中数学联赛试题)已知a n =C 200n (36)200-n (21)n(n=1,2,…,95),则数列{a n }中整数项的个数为 .[解析]:[类题]:1.(2008年安徽高考试题)设(1+x)8=a 0+a 1x+…+a 8x 8,则a 0,a 1…,a 8中奇数的个数为 . 2.(2008年全国高中数学联赛安徽初赛试题)(1+x)2008=a 0+a 1x+…+a 2008x 2008,则a 0,a 1…,a 2008中奇数的个数为 .3.(1991年日本数学奥林匹克试题)满足0≤r ≤n ≤63的全部数组(n,r)中,二项式系数C n r为偶数的个数是 .Y.P.M 数学竞赛讲座 1竞赛中的二项式定理高中联赛中的向量问题具有纯粹性,着重于对向量本质特征--“数形二重性”的考察,需要充分挖掘蕴含的几何本质. 二项式定理的应用有三个方面:一是通项公式T k+1=C n k a n-k b k的应用,如求某一指定的项、或其系数、常数项、有理项、系数为有理数.T k+1最大⇔T k ≤T k+1且T k+2≤T k+1等;二是赋值法,在二项式的展开式中,通常通过赋值1,0,-1,可求a 0,a n ,a 0+a 1+…+a n ,a 0+a 2+…,a 1+a 3+…;特殊情况下,求某一项的系数,我们还可以通过逐次求导,再赋值于零,来求解;三是组合数的性质.一、知识结构1.三角形的四心表示:⑴静态形式:二、典型问题1.常数项[例1]:(2003年全国高中数学联赛安徽初赛试题)在(4x 2-2x-5)(1+21x)5的展开式中,常数项为 .[解析]:(1+21x)5展开式的通项T k+1=C 5k x -2k⇒[类题]:(2009年全国高中数学联赛浙江初赛试题)(x-61x)2009的二项展开式中常数项是 .(2008年全国高中数学联赛贵州初赛试题)(x 2-x1)6的展开式中常数项为 (用数字作答). 1.(2012年全国高中数学联赛四川初赛试题)(x 2+x-x1)6的展开式中的常数项是 (用具体数字作答). -51.(1997年全国高中数学联赛上海初赛试题)展开式(1+x+x1)7的常数项是_____. 1.(2010年全国高中数学联赛黑龙江初赛试题)若二项式(a x -x1)6的展开式中的常数项为-160,则⎰-adx x 02)13(= .2.通项公式[例2]:(2000年全国高中数学联赛试题)设a n 是(3-x )n的展开式中x 项的系数(n=2,3,4,…),则∞→n lim (223a +333a +…+ nna 3)= . [解析]:[类题]:1.(2006年全国高中数学联赛江苏初赛试题)(x-3x 2)3的展开式中,x 5的系数为 (1998年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为215,则∞→n lim (x -1+x -2+…+x -n)= . (2000年全国高中数学联赛湖南初赛试题)若(x x -x 1)6展开式中第5项的值为5,则∞→n lim (x -1+x -3+…+x -1-2n)= .3.(2010年全国高中数学联赛吉林初赛试题)已知 (ax+1)n=a n x n+a n-1x n-1+…+a 1x+a 0(n ∈N *),点列A i (i,a i )(i=0,1,2…,n)部分图象如图所示, 则实数a 的值为________.3.通项分析[例3]:(2002年全国高中数学联赛试题)将二项式(x +421x)n的展开式按x 的降幂排列,若前三项系数成等差数列,则该展开式中x 的幂指数是整数的项共有__________个.[解析]:[类题]:1.(《中等数学》.2008年第3期.数学奥林匹克高中训练题(106))在(53+35)100的展开式中共有 个项为有理数.解:T k+1=C 100k 3)100(5153k k -为有理数⇔5|(100-k),3|k ⇔5|k,3|k ⇔15|k(0≤k ≤100)⇔k=0×15,1×15,2×15,…,6×15,计7个.3.(1988年全国高中数学联赛试题)(x +2)2n+1的展开式中,x 的整数次幂的各项系数之和为_________.解:(2011年全国高中数学联赛安徽初赛试题)设展开式(5x+1)n=a 0+a 1x+…+a n x n,n ≥2011,若a 2011=max{a 0,a 1,…,a n },则n= .1.(2010年全国高中数学联赛浙江初赛试题)若x ∈R +,则(1+2x)15的二项式展开式中系数最大的项为( ) (A)第8项 (B)第9项 (C)第8项和第9项 (D)第11项4.赋值方法[例4]:(2005年全国高中数学联赛浙江初赛试题)设(1+x+x 2)n =a 0+a 1x+…+a 2n x 2n ,则a 2+a 4+…+a 2n 的值为 . [解析]:[类题]:1.(2006年全国高中数学联赛四川初赛试题)若(2x-1)8=a 8x 8+a 7x 7+…+a 1x+a 0,则a 8+a 6+a 4+a 2= .1.(2010年全国高中数学联赛辽宁初赛试题)设(3+x+2x 2)n =a 0+a 1x+a 2x 2+…+a 2n x 2n (n ∈N +)对x ∈R 恒成立,则a 1+a 2+…+a 2n-1= . 1.(2009年全国高中数学联赛四川初赛试题)设二项式(3x-1)2n=a 2n x 2n+a 2n-1x 2n-1+…+a 2x 2+a 1x+a 0,记T n =a 0+a 2+…+a 2n ,R n =a 1+a 3+ …+a 2n-1,则∞→n lim nnR T = .1.(2008年全国高中数学联赛吉林初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满足:b 0+ b 1+…+b n =26,则正整数n 的一个可能值为 .(2009年全国高中数学联赛湖南初赛试题)已知多项式(1+x)+(1+x)2+(1+x)3+…+(1+x)n=b 0+b 1x+b 2x 2+…+b n x n,且满 足:b 0+b 1+…+b n =1013,则正整数n 的一个可能值为 .1.(2006年全国高中数学联赛山西初赛试题)若(2x+4)2n =a 0+a 1x+a 2x 2+…+a 2n x 2n (n ∈N +),则a 2+a 4+…+a 2n 被3除的余数是 . 解:a 0=42n,a 0+a 2+a 4+…+a 2n =21[(2+4)2n +(-2+4)2n ]=21[62n +22n ]⇒a 2+a 4+…+a 2n =21(62n +22n )-42n =22n-1(32n +1)-(3+1)2n(mod3)≡(3-1)2n-1-1(mod3)≡(-1)2n-1-1(mod3)≡-2(mod3)≡1(mod3).(2005年全国高中数学联赛试题)将关于x 的多项式f(x)=1-x+x 2-x 3+…-x 19+x 20表为关于y 的多项式g(y)=a 0+a 1y +a 2y 2+…+a 19y 19+a 20y 20,其中y=x-4,则a 0+a 1+…+a 20= .解:由题设知,f(x)和式中的各项构成首项为1,公比为-x 的等比数列,由等比数列的求和公式,得:f(x)=1((1)(21----x x = 1121++x x ,令x=y+2,得g(y)=51)4(21+++y y ,取y=1,有a 0+a 1+…+a 20=g(1)=61521+. 1.(2010年全国高中数学联赛北京初赛试题)满足方程f(x)+(x-2)f(1)+3f(0)=x 3+2(x ∈R)的函数f(x)= . 解:令x=0,1:4f(0)-2f(1)=2,3f(0)=3⇒f(0)=1,f(1)=1⇒f(x)=x 3-x+1.2.①(2009年第20届全国希望杯高二数学邀请赛试题)已知f(x)=x 2-2x-3,f(g(x))=4x 4+4x 3-7x 2-4x,则g(x)的各项系数(包括常数项)的和等于 .0或2②(2006年全国高中数学联赛黑龙江初赛试题)已知f(x)=3x 2-x+4,f(g(x))=3x 4+18x 3+50x 2+69x+48,那么,整系数多项式函数g(x)的各项系数的和等于 . 8 解:3.(2006年全国高中数学联赛河南初赛试题)设函数f(x)=x 2+6x+8.如果f(bx+c)=4x 2+16x+15,那么,c-2b= . 解:取x=-2,有f(c-2b)=16-16×2+15=-1.而当x 2+6x+8=-1时,有x=-3.所以,c-2b=-3.5.微积方法[例5]:(2008年全国高中数学联赛湖北初赛试题)设(x 2+2x-2)6=a 0+a 1(x+2)+a 2(x+2)2+...+a 12(x+2)12,其中a i (i=1,2, (12)为实常数,则a 0+a 1+2a 2+…+12a 12= .[解析]:[类题]:(2003年湖南高中数学夏令营试题)由等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+2)4+b 1(x+2)3+b 2(x+2)2+b 3(x+2)+b 4,定义映射f:(a 1,a 2, a 3,a 4)→(b 1,b 2,b 3,b 4),则f[(10,30,38,21)]= .解:x 4+10x 3+30x 2+38x+21=(x+2)4+b 1(x+2)3+b 2(x+2)2+b 3(x+2)+b 4,令x=-2⇒b 4=1,4x 3+30x 2+60x+38=4(x+2)3+3b 1(x+2)2+2b 2(x +2)+b 3⇒b 3=6,12x 2+60x+60=12(x+2)2+6b 1(x+2)+2b 2⇒b 2=1.(2008年全国高中数学联赛陕西初赛试题)若x 5+3x 3+1=a 0+a 1(x-1)+a 2(x-1)2+ ⋯+a 5(x-1)5对任意实数x 都成立,则a 3的值是 (用数字作答).在x 5+3x 3+1=[(x-1)+1]5+3[(x-1)+1]3+1的展开式中,(x-1)3项的系数为C 52+3=13.1.(2008年全国高中数学联赛上海初赛试题)已知恒等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4,则用a 1、a 2、a 3、a 4来表示b 3有b 3=_______________________.1.(2011年全国高中数学联赛辽宁初赛试题)设(1+x-x 2)10=a 0+a 1x+a 2x 2+…+a 20x 20,则a 0+a 1+2a 2+3a 3+…+20a 20= . 1.(《中等数学》.2010年第4期.数学奥林匹克高中训练题(128))设(2+x-2x 2)1005=a 0+a 1x+a 2x 2+…+a 2010x 2010,则a 1+3a 3+5a 5+…+2009a 2009= .解:(2+x-2x 2)1005=a 0+a 1x+a 2x 2+…+a 2010x 2010⇒1005(2+x-2x 2)1004(1-4x)=a 1+2a 2x+3a 3x 2+…+a 2010x 2009.令x=1⇒a 1+2a 2+3a 3+…+2010a 2010=1005(-3);令x=1⇒a 1-2a 2+3a 3+…-2010a 2010=1005×5⇒a 1+3a 3+5a 5+…+2009a 2009=1005.1.(1998年全国高中数学联赛上海初赛试题)计算:1011C +2111C +3211C +…+121111C = .解:由(1+x)n=1+xC n 1+x 2C n 2+…+x nC n n⇒⎰+10)1(nx =)1(2211nn n n n C x C x xC +⋯+++⎰,注意到f(x)=x k的原函数F(x)=k+11x k+1⇒ F(1)-F(0)=k +11⇒10n C +21n C +32n C +…+1+n C nn =11+n ×2n+1-11+n . 6.多截公式[例6]:(2001年全国高中数学联赛试题)若(1+x+x 2)100的展开式为a 0+a 1x+a 2x 2+a 3x 3+…+a 2000x 2000,则a 0+a 3+a 6+a 9+…+a 1998的值为 .[解析]:[类题]:1.(2007年全国高中数学联赛甘肃初赛试题)设(1+x+x 2)n=a 0+a 1x+a 2x 2+…+a 2n x 2n(n ∈N +),则a 0+a 3a 6+…+]32[[3n a 的值为 (其中,[x]表示不超过x 的最大整数).2.(《中等数学》.2005年第4期.数学奥林匹克高中训练题(75))C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004= .解:在(1+x)2004=C 20040+xC 20041+x 2C 20042+…+x2004C 20042004中,令x=i 得:(1+i)2004=(C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004)+i(C 20041-C 20043+C 20045-C 20047+…+C 20042001-C 20042003).又(1+i)2004=(2i)1002=-21002⇒C 20040-C 20042+C 20044-C 20046+…-C 20042002+C 20042004=-21002.3.(1990年全国高中数学联赛试题)设n=1990,则n21(1-3C n 2+32C n 4-33C n 6+…+3994C n 1988-3995C n1990)= .1.(《中等数学》.2010年第7期.数学奥林匹克高中训练题(75))设f(x)=(x+231i -)2010=∑=20100k k a x k +i ∑=2010k k b x k,其中,a k ,b k∈R,k=0,1,2,…,2010,则)(367003k k k b a +∑== .解:f(x)=(x+231i -)2010=(x-ω)2010=(-ω)2010(1-ωx)2010=(1-ωx)2010=∑=-201002010)(k k k k x C ϖ=-∑=670332010i i ix C -ω136690132010+=+∑i i i x C +ω2236690232010+=+∑i i i xC ⇒∑=6703k k b =0,∑=67003k k a =-∑=67032010i iC .令g(x)=(1+x)2010=C 20100+xC 20101+x 2C 20102+x 3C 20103+…+x 2010C 20102010⇒g(1)=C 20100+C 20101+C 20102+C 20103+…+C 20102010,g(ω)=C 20100+ωC 20101+ω2C 20102+ω3C 20103+…+ω2010C 20102010,g(ω2)=C 20100+ω2C 20101+ω4C 20102+ω6C 20103+…+ω4020C 20102010⇒g(1)+g(ω)+g(ω2)=3∑=670032010i iC ,g(1)+g(ω)+g(ω2)=22010+(1+ω)2010+(1+ω2)2010=22010+(-ω2)2010+(-ω)2010=22010+2.7.计数思想[例7]:(2009年全国高中数学联赛福建初赛试题)集合{1,2,3,…,2009}的元素和为奇数的非空子集的个数为 . [解析]:令f(x)=(1+x)(1+x 2)(1+x 3)…(1+x 2009),则问题中要求的答案为f(x)的展开式中x 的奇次项的系数和.故所求的答案为21[f(1)-f(-1)]=22008. [类题]:1.(2005年全国高中数学联赛安徽初赛试题)在(x 2+3x+2)5的展开式中,含x 项的系数是 . 2.(《中等数学》.2011年第7期.P3例题)在(x+1)(x+2)…(x+n)的展开式中,含x n-2项的系数是 .解:(x+1)(x+2)…(x+n)的展开式中,含x n-2项的系数A ⇔1,2,…,n 中任意两数积的和,由(1+2+…+n)2=12+22+…+n 2+2A ⇒ A=241(n-1)n(n+1)(3n+2). 3.(2008年全国高中数学联赛湖南初赛试题)多项式(1+x+x 2+…+x 100)3的展开式在合并同类项后,x 150的系数为 (用数字作答).解:由多项式乘法法则可知,可将问题转化为求方程s+t+r=150 ①的不超过100的自然数解的组数.显然,方程①的自然数解的组数为C 1522.下面求方程①的超过100自然数解的组数.因其和为150,故只能有一个数超过100,不妨设s>100.将方程①化为(s-101)+t+r=49.记x=s-101,则方程x+s+t=49的自然数解的组数为C 512.因此,x 150的系数为C 1522-C 31C 512=7651.8.对偶思想[例8]:(2009年全国高中数学联赛吉林初赛试题)(2+3)2010的小数点后一位数字是 .[解析]:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<0.008300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.[类题]:1.(2010年全国高中数学联赛河南初赛试题)记M=(5+24)2n (n ∈N *),N 是M 的小数部分,则M(1-N)的值是 . 解:因(5+24)2n +(5-24)2n 是整数,且0<(5-24)2n <1⇒N=1-(5-24)2n ⇒M(1-N)=(5+24)2n (5-24)2n=1. 2.(2011年全国高中数学联赛四川初赛试题)已知(1+3)n=a n +b n 3,其中a n ,b n 是整数,则∞→n limnnb a = . 解:由(1+3)n =a n +b n 3⇒(1-3)n=a n -b n 3⇒a n =21[(1+3)n +(1-3)n ],b n =321[(1+3)n +(1-3)n]⇒∞→n lim n n b a = 3.3.(2009年全国高中数学联赛新疆初赛试题)数(3+8)2n (n ∈N *),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是 .(2006年第七届北方数学奥林匹克邀请赛试题)数(3+2)4022(n ∈N +)的整数部分的个位数字是 .解:(3+2)2n =(5+26)n ,令a n =(5+26)n +(5-26)n ,由5+26,5-26是方程x 2=10x-1的根⇒a n+2=10a n+1-a n ,a 1=10⇒ a 2n+1为10的倍数,又0<(5-26)n <1⇒(3+2)4022=a 2011-(3-2)4022的个位数字是9.9.二项应用[例9]:(2003年江苏省数学夏令营数学竞赛试题)x 10+1除以(x-1)2的余式是 . [解析]:x 10+1=[(x-1)+1]10+1=[类题]:1.(1986年全国高中数学联赛上海初赛试题)21000除以13的余数是 .3.(《中等数学》.2011年第12期.数学奥林匹克高中训练题(148))整数列{a n }定义如下:a 0=0,a 1=1,a n =2a n-1+a n-2(n>1).则满足22012|a n 的最小正整数n 为 .解:由a 0=0,a 1=1,a n =2a n-1+a n-2⇒a 2=2,a 3=5,a 4=12,a 5=29,a 6=70,a 7=169,a 8=408,猜测2k|k a 2.用数学归纳法证明:①2|a 2,即n=1时,2k|k a 2;②假设2k|k a 2.由a n =42[(1+2)n -(1-2)n ]⇒a 2n =42[(1+2)2n -(1-2)2n ]=[(1+2)n +(1-2)n] 42[(1+2)n -(1-2)n ]=[(1+2)n +(1-2)n ]a n =2(C n 0+2C n 2+…)a n ⇒2k+1|12+k a ,且C n 0+2C n 2+…为奇数⇒最小正整数n 为22012.10.逆向应用[例10]:(2006年全国高中数学联赛试题)数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数20063212a a a a ⋅⋅⋅的个数为 .[解析]:出现奇数个9的十进制数个数有C 2006192005+C 2006392003+…+C 200620059.又由于(9+1)2006=∑=200602006k kC 92006-k ,以及(9-1)2006=∑=200602006k kC (-1)k 92006-k,从而得C 2006192005+C 2006392003+…+C 200620059=21(102006-82006).[类题]:1.(2005年全国高中数学联赛山东初赛试题)611+C 111610+C 11269+…+C 11106-1被8除所得余数是 . 解:2.(2003年全国高中数学联赛湖南初赛试题)已知n 为自然数,多项式P(x)=∑=nh hn C 0x n-h(x-1)h可展开成x 的升幂排列a 0+a 1x+a 2x 2+…+a n x n,则|a 0|+|a 1|+|a 2|+…+|a n |= .解:P(x)=∑=n h h n C 0x n-h(x-1)h=(2x-1)n=∑=n k k n C 0(2x)k(-1)n-k⇒|a 0|+|a 1|+|a 2|+…+|a n |=∑=nk k n C 02k=3n.3.(2010年全国高中数学联赛上海初赛试题)满足0<a 1<a 2<…<a n (n ≥2,n ∈N +)的2n-1位十进制正整数121121a a a a a a a n n n ⋅⋅⋅⋅⋅⋅-- 共有 个(用数值作答).解:因n ≤9,满足0<a 1<a 2<…<a n (n ≥2,n ∈N +)的2n-1位十进制正整数有C 9n,共有C 92+C 93+…+C 99=(1+1)9-(C 90+C 91)=29-10=502.11.组合等式[例11]:(2006年全国高中数学联赛安徽初赛试题)2∑=n k k 13C n k-3n ∑=nk k 12C n k +n 2∑=nk k 1C n k = .[解析]:因(1+x)n =C n 0+xC n 1+x 2C n 2+…+x k C n k +…+x n C n n ⇒n(1+x)n-1=C n 1+2xC n 2+…+kx k-1C n k +…+nx n-1C n n ⇒n(n-1)(1+x)n-2=2C n 2+…+k(k-x k-2C n k+…+n(n-1)x n-2C n n⇒C n 1+2C n 2+…+kC n k+…+nC n n=n ×2n-1,2×(2-1)C n 2+…+k(k-1)C n k+…+n(n-1)C n n=n(n-1)×2n-2⇒ 12C n 1+22C n 2+…+k 2C n k+…+n 2C n n=n(n-1)×2n-2+n ×2n-1=n(n+1)×2n-2.2∑=n k k 13C n k=2∑=n k k 12nC n-1k-1=2n ∑=n k k 12C n-1k-1=2n[∑=-n k k 12)1(C n-1k-1+∑=-nk k 1)12(C n-1k-1]=2n[(n-1)n ×2n-3+2×(n-1)2n-2-2n-1]=2n 2(n+3)×2n-3.所以,2∑=nk k 13C n k-3n ∑=nk k 12C nk+n2∑=nk k 1Cn k =2n 2(n+3)×2n-3-3n ×n(n+1)×2n-2+n 2×n ×2n-1=0.[类题]:1.(1989年全国高中数学联赛上海初赛试题)计算∑=-121111k k k C = . 解: (2009年全国高中数学联赛湖南初赛试题)对于n ∈N +,计算C 4n+11+C 4n+15+…+C 4n+14n+1= . 解:24n-1-(-1)n 22n-1.12.质数指数勒让德(Legendre)定理:n !中含质数p 的指数k=[p n ]+[2p n ]+[3p n ]+…. 推论:在C n 0,C n 1,C n 2,…,C n n 中,奇数个数是)(2n S ,其中S(n)是n 的二进制数玛的和.[例12]:(2011年全国高中数学联赛试题)已知a n =C 200n (36)200-n (21)n(n=1,2,…,95),则数列{a n }中整数项的个数为 . [解析]:[类题]: 1.(2008年安徽高考试题)设(1+x)8=a 0+a 1x+…+a 8x 8,则a 0,a 1…,a 8中奇数的个数为 . 解:因8=(1000)2⇒S(8)=1,所以a i 中,共有21=2个奇数.3.(1991年日本数学奥林匹克试题)满足0≤r ≤n ≤63的全部数组(n,r)中,二项式系数C n r 为偶数的个数是 . 解:满足0≤r ≤n ≤63的二项式系数C n r 的个数是1+2+3+…+64=2080.因63=(111111)2⇒S(63)=6⇒0≤S(n)≤6,其中, S(n)=k(k=0,1,2,3,4,5,6),有C 6k 种(如k=2:(000011)2→n=3;(000101)2→n=5;(001001)→n=9;(010001)2→n=17;…,有C 62种)⇒奇数的个数为∑=6062k k k C =(1+2)6=729⇒偶数的个数是2080-729=1351.。
2016年高考数学全国卷复习16二项式word含答案
![2016年高考数学全国卷复习16二项式word含答案](https://img.taocdn.com/s3/m/bdb413e9a216147916112880.png)
考点一 通项公式及其应用典题导入(1)(2013·全国卷)(1+x )8(1+y )4的展开式中x 2y 2的系数是________.解析 (1)∵(1+x )8的通项为C k 8x k ,(1+y )4的通项为C t 4y t ,∴(1+x )8(1+y )4的通项为C k 8C k 4x k y t ,令k =2,t =2,得x 2y 2的系数为C 28C 24=168.(2) (2013·全国Ⅱ卷)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于( ). A .-4 B .-3 C .-2 D .-1解析 (1) (1+ax )(1+x )5=(1+x )5+ax (1+x )5,又(1+x )5中含有x 与x 2的项为T 2=C 15x ,T 3=C 25x 2.∴展开式中x 2的系数为C 25+a ·C 15=5,∴a =-1.答案 (1) D(3)【2015全国1卷理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C. 【答案】C(4)(2016广调理15)102a x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为180,则a = .答案:2或-2由题悟法(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.以题试法1.(2014全国Ⅰ卷)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案) 2.(2014全国Ⅱ卷)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)3.【2015全国2卷理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.4、(2016广适理10).62)21(x x -的展开式中,常数项是( ) A .45- B .45 C .1615- D .16155、(2016广一理15)()422x x --的展开式中,3x 的系数为 . (用数字填写答案)6、(2016广二理6)使231(2nx n x ⎛⎫+∈ ⎪⎝⎭N *)展开式中含有常数项的n 的最小值是(A) 3 (B) 4 (C) 5 (D) 6考点二 二项式系数的性质与各项系数和典题导入(1)(2014·青岛)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( ). A .15x 2 B .20x 3 C .21x 3 D .35x 3(2)若⎝⎛⎭⎫x +1x n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________. 审题路线 (1)先赋值求a 0及各项系数和,进而求得n 值,再运用二项式系数性质与通项公式求解. (2)根据二项式系数性质,由C 2n =C 6n ,确定n 的值,求出1x 2的系数. 解析 (1)∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,令x =0,得a 0=1. 令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6,答案 (1)B又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3.(2)由题意知,C 2n =C 6n ,∴n =8.∴T r +1=C r 8·x 8-r ·⎝⎛⎭⎫1x r =C r 8·x 8-2r , 当8-2r =-2时,r =5,∴1x2的系数为C 58=C 38=56.答案 (2)56 由题悟法(1)第(1)小题求解的关键在于赋值,求出a 0与n 的值;第(2)小题在求解过程中,常因把n 的等量关系表示为C 3n =C 7n,而求错n 的值. (2)求解这类问题要注意:①区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;②根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为1,-1.【训练2】 (1)二项式⎝⎛⎭⎫x +2x 2n 的展开式中只有第6项的二项式系数最大,则展开式中常数项是( ). A .180 B .90 C .45 D .360(2)若(1-2x )2014=a 0+a 1x +a 2x 2+…+a 2014x 2014(x ∈R ),则a 12+a 222+a 323+…+a 201422014的值为________.(3)(2013全国Ⅰ卷9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6考点三二项式定理的应用典题导入(2012·湖北卷)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a=( ).A.0 B.1 C.11 D.12解析512 012+a=(52-1)2 012+a=C02 012·522 012-C12 012·522 011+…+C2 0112 012×52·(-1)2 011+C2 0122 012·(-1)2 012+a,∵C02 012·522 012-C12 012·522 011+…+C2 0112 012×52·(-1)2 011能被13整除.且512 012+a能被13整除,∴C2 0122 012·(-1)2 012+a=1+a也能被13整除.因此a可取值12.答案 D【例4】S=C127+C227+…+C2727除以9的余数为________.解析S=C127+C227+…+C2727=227-1=89-1=(9-1)9-1=C09×99-C19×98+…+C89×9-C99-1=9(C09×98-C19×97+…+C89)-2.∵C09×98-C19×97+…+C89是整数,∴S被9除的余数为7.答案7由题悟法(1)本题求解的关键在于将512 012变形为(52-1)2 012,使得展开式中的每一项与除数13建立联系.(2)用二项式定理处理整除问题,通常把底数写成除数(或与余数密切相关联的数)与某数的和或差的形式,再用二项式定理展开,但要注意两点:一是余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,切记余数不能为负,二是二项式定理的逆用.以题试法【训练3】(1)1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数是( ).A.-1 B.1 C.-87 D.87(2)求证:1+2+22+…+25n-1(n∈N*)能被31整除.参考答案(1)1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数是( ).A.-1 B.1 C.-87 D.87答案 B 解析1-90C110+902C210+…+(-1)k90k C k10+…+9010C1010=(1-90)10=8910=(88+1)10=8810+C110889+…+C91088+1,∵前10项均能被88整除,∴余数是1.(2)求证:1+2+22+…+25n-1(n∈N*)能被31整除.证明∵1+2+22+…+25n-1=25n-1 2-1=25n-1=32n-1=(31+1)n-1=C0n×31n+C1n×31n-1+…+C n-1n×31+C n n-1=31(C0n×31n-1+C1n×31n-2+…+C n-1n),显然C0n×31n-1+C1n×31n-2+…+C n-1n为整数,∴原式能被31整除.1.二项展开式的通项T k+1=C k n a n-k b k是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.课后作业教师课后赏识。
三年高考(2016-2018)数学(理)真题分项专题26 排列组合、二项式定理(含解析)
![三年高考(2016-2018)数学(理)真题分项专题26 排列组合、二项式定理(含解析)](https://img.taocdn.com/s3/m/d066b4c3f705cc17552709f6.png)
专题26 排列组合、二项式定理考纲解读明方向两个原理的区别在于一个与分类有关,一个与分步有关,这两个原理是最基本也是最重要的原理,是解答排列与组合问题,尤其是解答较复杂的排列与组合问题的基础.2.理解排列、组合及排列数与组合数公式,排列与组合的综合是高频考点.本节在高考中单独考查时,以选择题、填空题的形式出现,分值约为5分,属中档题;本节内容还经常与概率、分布列问题相结合,出现在解答题的第一问中,难度中等或中等偏上.分析解读 1.掌握二项式定理和二项展开式的性质.2.会用二项式定理的知识解决系数和、常数项、整除、近似值、最大值等相关问题.3.二项展开式的通项公式是高考热点.本节在高考中一般以选择题或填空题形式出现,分值约为5分,属容易题.2018年高考全景展示1.【2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C故选C。
点睛:本题主要考查二项式定理,属于基础题。
2.【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.3.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数的值,再由通项写出第项,由特定项得出值,最后求出特定项的系数.4.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.【2018年理新课标I卷】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到至多至少问题时多采用间接法,总体方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.2017年高考全景展示1.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.2.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为 A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-, 由()52x y - 展开式的通项公式:()()5152rrrr T C x y -+=- 可得:当3r = 时,()52x x y - 展开式中33x y 的系数为()33252140C ⨯⨯-=- , 当2r = 时,()52y x y - 展开式中33x y 的系数为()22352180C ⨯⨯-= ,则33x y 的系数为804040-= . 故选C .【考点】 二项式展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【考点】 排列与组合;分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步。
2018高考数学考点突破——计数原理、概率与统计:二项式定理 Word版含解析
![2018高考数学考点突破——计数原理、概率与统计:二项式定理 Word版含解析](https://img.taocdn.com/s3/m/bdec8f2187c24028915fc380.png)
二项式定理【考点梳理】1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *); (2)通项公式:T r +1=C r n an -r b r ,它表示第r +1项; (3)二项式系数:二项展开式中各项的系数C 0n ,C 1n ,…,C n n .2.二项式系数的性质(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 【考点突破】考点一、求展开式中的特定项或特定项的系数【例1】已知在⎝ ⎛⎭⎪⎪⎫3x -123x n的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. [解析] (1)通项公式为T k +1=C k n xn -k3⎝ ⎛⎭⎪⎫-12k x -k 3=C k n ⎝ ⎛⎭⎪⎫-12k x n -2k 3.因为第6项为常数项,所以k =5时,n -2×53=0,即n =10. (2)令10-2k3=2,得k =2,故含x 2的项的系数是C 210⎝⎛⎭⎪⎫-122=454.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k 3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项, 它们分别为454x 2,-638,45256x -2. 【类题通法】1. 二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求的项.2.求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.【对点训练】1.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10 B.20C.30D.60[答案] C[解析] 法一 (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.法二 (x 2+x +y )5表示5个x 2+x +y 之积.∴x 5y 2可从其中5个因式中选两个因式取y ,两个取x 2,一个取x .因此x 5y 2的系数为C 25C 23C 11=30.2.(2x +x )5的展开式中,x 3的系数是________(用数字作答). [答案] 10[解析] 由(2x +x )5得T r +1=C r 5(2x )5-r(x )r = 25-r C r 5x 5-r 2,令5-r2=3得r =4,此时系数为10.考点二、二项式系数的和与各项的系数和问题【例2】在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和;解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,①令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102. 【类题通法】1. “赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.2.若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【对点训练】1.若二项式⎝ ⎛⎭⎪⎫3x 2-1x n的展开式中各项系数的和是512,则展开式中的常数项为( )A.-27C 39B.27C 39C.-9C 49D.9C 49[答案] B[解析] 令x =1得2n=512,所以n =9,故⎝ ⎛⎭⎪⎫3x 2-1x 9的展开式的通项为T r +1=C r 9(3x 2)9-r ⎝⎛⎭⎪⎫-1x r=(-1)r C r 9·39-r x 18-3r,令18-3r =0得r =6,所以常数项为T 7=(-1)6C 69·33=27C 39.2.(1-3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,求|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=( )A.1 024B.243C.32D.24[答案] A[解析]令x =-1得a 0-a 1+a 2-a 3+a 4-a 5=|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=[1-(-3)]5=45=1 024.考点三、二项式定理的应用【例3】(1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除; (2)设复数x =2i 1-i(i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x 2 017=( )A.iB.-iC.-1+iD.-1-i[答案] (2) C[解析] (1)证明 ∵1+2+22+…+25n -1=25n-12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除. (2) x =2i1-i =2i (1+i )(1-i )(1+i )=-1+i ,C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x2 017=(1+x)2 017-1=i2 017-1=i-1.【类题通法】1. 整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项.而求近似值则应关注展开式的前几项.2.二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.【对点训练】1.设a∈Z,且0≤a<13,若512 016+a能被13整除,则a=()A.0B.1C.11D.12[答案] D[解析]∵512 016+a=(52-1)2 016+a=C02 016·522 016-C12 016·522 015+C22 016·522 014+…-C2 015·52+1+a能被13整除,且0≤a<13,∴1+a能被13整除,故a2 016=12.2.已知C0n+2C1n+22C2n+23C3n+…+2n C n n=729,则C1n+C2n+C3n+…+C n n等于()A.63B.64C.31D.32[答案] A[解析] 逆用二项式定理得C0n+2C1n+22C2n+23C3n+…+2n C n n=(1+2)n=3n=729,即3n=36,所以n=6,所以C1n+C2n+C3n+…+C n n=26-C0n=64-1=63.故选A.。
专题10 二项式定理-2018年高考数学母题题源系列(天津专版)
![专题10 二项式定理-2018年高考数学母题题源系列(天津专版)](https://img.taocdn.com/s3/m/80b2e521f18583d0496459b0.png)
母题十 二项式定理【母题原题1】【2018天津,理10】在5x ⎛ ⎝的展开式中,2x 的系数为 . 【答案】52【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即,n r 均为非负整数,且n r ≥,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.【母题原题2】【2016天津,理10】281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56-【解析】展开式通项为281631881()()(1)rr r r r r r T C x C x x--+=-=-,令1637r -=,3r =,所以7x 的338(1)56C -=-.故答案为56-.【母题原题3】【2015天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【命题意图】本类题主要考查二项式定理及其应用,意在考查学生的逻辑推理能力和基本计算能力. 【命题规律】高考对二项式定理的考查主要考查利用二项展开式的通项求展开式中的特定项、特定项的系数、二项式系数等,同时考查赋值法与整体法的应用,题型多以选择题、填空题的形式考查.【答题模板】解答本类题目,以2018年高考题为例,一般考虑如下三步: 第一步:首先求出二项展开式的通项展开式通项为355215512rrr rrr r T C x C x --+⎛⎛⎫==-⎪ ⎝⎭⎝; 第二步:根据已知求r 令3522r -=可得:2r =, 第三步:得出结论2x 的系数为:22511510242C ⎛⎫-=⨯= ⎪⎝⎭.【方法总结】1.熟记二项式定理及通项5x ⎛⎝(1)定理公式)()(*11N n b C b a C b a C a C b a nn n k k n k n n n nn n∈+⋅⋅⋅++⋅⋅⋅++=+--叫做二项式定理.(2)通项kk n k n k b a C T -+=1为展开式的第1+k 项.2.活用二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即mn n m n C C -=.(2)增减性与最大值:二项式系数kn C ,当21+<n k 时,二项式系数是递增的;当21+≥n k 时,二项式系数是递减的.当n 是偶数时,中间一项的二项式系数取得最大值.当n 是奇数时,中间两项的二项式系数相等,且同时取得最大值. (3)各二项式系数的和n b a )(+的展开式的各个二项式系数的和等于n 2,即n nn n n n C C C C 2210=+⋅⋅⋅+++.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C .3.求展开式系数最大项:如求),()(R b a bx a n∈+的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为121,,,+⋅⋅⋅n A A A ,且第k 项系数最大,应用⎩⎨⎧≥≥+-11k k k k A A A A 从而解出k 来,即得.4.“赋值法”普遍适用于恒等式,是一种重要的方法,对形如()nb ax +、),,()(2R c b a c bx ax n∈++的式子求其展开式的各项系数之和,常用赋值法,只需令1=x 即可;对形如()nby ax +的式子求其展开式各项系数之和,只需令1==y x 即可.5.若nn x a x a x a a x f +⋅⋅⋅+++=2210)(,则:)(x f 展开式中各项系数之和为)1(f ,奇数项系数之和为2)1()1(420-+=⋅⋅⋅+++f f a a a ,偶数项系数之和为2)1()1(531--=⋅⋅⋅+++f f a a a .6.某一项的系数是指该项中字母前面的常数值(包括正负符号),它与b a ,的取值有关,而二项式系数与b a ,的取值无关.1.【2018天津耀华一模】在100+展开式所得的x 的多项式中,系数为有理数的项有( )A .16项B .17项C .24项D .50项 【答案】B【解析】100+展开式的通项为5010032110032r rrr r T C x --+=,其中r=0,1,2…100,要使系数为有理数则需要r 是6的倍数, ∴r=0,6,16,18,…96共17个值, 故系数为有理数的项有17项. 本题选择B 选项.【名师点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 2.【2018江西六校联考】已知数列为等差数列,且满足.若展开式中项的系数等于数列的第三项,则的值为( ) A .6 B .8 C .9 D .10 【答案】D3.【2018北京海淀模拟】二项式62)x x-(的展开式的第二项是 A .46x B .46x - C .412x D .412x - 【答案】D【解析】根据展开式通项可得: 1514262=C ()12T x x x-=-4.【2018广东阳揭二模】已知()511x ax x ⎛⎫+- ⎪⎝⎭的展开式中常数项为40-,则a 的值为A .2B .2-C .2±D .4 【答案】C【解析】分析:首先写出51ax x ⎛⎫- ⎪⎝⎭展开式的通项公式,然后结合题意得到关于实数a 的方程,解方程即可求得最终结果.详解: 51ax x ⎛⎫- ⎪⎝⎭展开式的通项公式为: ()()555215511rr r rr r r r T C ax a C x x ---+⎛⎫=-=- ⎪⎝⎭, 令521r -=-可得: 3r =,结合题意可得: ()35335140a C --=-,即21040,2a a =∴=±.本题选择C 选项. 【名师点睛】本题主要考查二项式定理的通项公式及其应用等知识,意在考查学生的转化能力和计算求解能力. 5.【2018华大新高考联盟4月卷】展开式中除—次项外的各项系数的和为( )A .121B .C .61D .【答案】B 【解析】因为展开式中—次项系数为所以展开式中除—次项外的各项系数的和为,选B .【名师点睛】 “赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法, 只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.6.【2018河北衡水信息卷三】已知,,若,则在的展开式中,含项的系数为( ) A .B .C .D .【答案】B7.【2018湖北荆州三模】已知,若,则A .−5B .−20C .15D .35 【答案】A 【解析】在中,令得,∴.∴.又展开式的通项为,∴.选A .8.【2018全国名校联盟(五)】已知)22nx的展开式的系数和比()31n x -的展开式系数和大992,则()212nx -的展开式中含有5x 的项为( )A .532xB .532x -C .5992x -D .58064x - 【答案】D【解析】取1x =则)22nx 的展开式的系数和为22n ,同理,在()31n x -的展开式中令1x =,则()31nx -的展开式系数和为2n ,故()()222992,2322310,232,5n n n n n n -=∴-+=∴=∴=,则()212nx -的展开式中含有5x 的项是第六项: ()()555510218064C x x -=-,故选D .9.【2018天津三模】设,则__________.【答案】211【名师点睛】本题考查二项式定理、赋值法等知识,意在考查学生的逻辑思维能力和基本计算能力.10.【2018天津市十二校二模】若(其中),则的展开式中的系数为__________.【答案】280【解析】分析:利用微积分基本定理,求得,可得二项展开式通项为令得进而可得结果.详解:因为,所以,展开式的通项为令得所以,的展开式中的系数为,故答案为.【名师点睛】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.11.【2018天津部分区期末考试】在612x x ⎛⎫- ⎪⎝⎭的展开式中2x 的系数为__________.(用数字作答)【答案】24012.【2018天津一中模拟三】()61212x x x ⎛⎫-+ ⎪⎝⎭的展开式中含7x 的项的系数是__________.【答案】128【解析】∵612x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式是()626166122rrr r rr r T C x C x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,且[]0,6r ∈,∴[]266,6r -∈-,当6r =时, 6666616264T C x x +=⨯⨯=,∴()61212x x x ⎛⎫-+ ⎪⎝⎭的展开式中含7x 的项的系数是128,故答案为128.13.【2018天津一中模拟五】已知二项式的展开式的二项式系数之和为,则展开式中含项的系数是__________. 【答案】【解析】试题分析:由题意可得:,所以,令,所以展开式中含项的系数是10.14.【2018天津市耀华模拟(三)】二项式6⎛⎝的展开式中的常数项为_________.【答案】-160【解析】二项式6⎛ ⎝的通,项为(()66316612rrr rr r rr T C C x ---+⎛==- ⎝,令30r -=,则3r =,()333612208160C ∴-⨯⨯=-⨯=-,故正确答案为160-.15.【2018河南郑州模拟】若的展开式中的系数为,则实数的值为_______.【答案】.【名师点睛】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.16.【2018天津滨海新区模拟】在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含7x 的项的系数是______【答案】5-【解析】分析:先求得二项展开式的通项公式,再令x 的幂指数等于7,求得r 的值,即可求得含7x 项的系数值.详解:二项式521x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()5210315511rrr rr r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令1037r -=,解得1r =,可得展开式中含7x 项的系数是155C -=-,故答案是-5. 【名师点睛】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x 的指数为7求得r ,再代入系数求出结果,所以解决该题的关键就是通项公式.17.【2018河北衡水金卷调研(五)】已知函数()()()513f x x x =-+,()f x '为()f x 的导函数,则()f x '的展开式中2x 项的系数是__________. 【答案】-540。
2016-2018年全国高中数学联合竞赛一试参考答案(A卷)word版含解析
![2016-2018年全国高中数学联合竞赛一试参考答案(A卷)word版含解析](https://img.taocdn.com/s3/m/3d26629202020740be1e9b92.png)
12018 年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分. 1. 设集合 A = {1, 2, 3,, 99}, B = {}2x x A ∈, C ={}2x x A ∈,则 B C 的元素个数为 .答案: 24 .解:由条件知,B C = {2, 4, 6,, 198} {12, 1, 32 ,2,, 992}= {2, 4, 6,, 48} ,故 B C 的元素个数为 24 .2. 设点 P 到平面 α 3 Q 在平面 α 上,使得直线 PQ 与 α 所成 角不小于 30︒ 且不大于 60︒ ,则这样的点 Q 所构成的区域的面积为 .答案:8π .解:设点 P 在平面α上的射影为O .由条件知,3tan [3]OP OPQ OQ =∠∈即OQ ∈ [1, 3] ,故所求的区域面积为 π ⋅ 32 - π ⋅12 = 8π .3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a , b , c , d , e , f ,则 abc + def 是偶数的概率为 答案:910解:先考虑 a bc + def 为奇数的情况,此时 a bc , def 一奇一偶,若 abc 为奇数, 则 a , b , c 为1, 3, 5 的排列,进而 d , e , f 为 2, 4, 6 的排列,这样有 3! × 3! = 36 种情况, 由对称性可知,使 abc + def 为奇数的情况数为 36 × 2 = 72 种.从而 abc + def 为偶 数的概率为72729116!72010-=-= 4. 在平面直角坐标系 xOy 中,椭圆 C :22221x y a b += (a > b > 0) 的左、右焦点分别是 F 1 、F 2 ,椭圆C 的弦 ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已知线段 PU , PS , PV , PT 的长分别为1, 2, 3, 6 ,则∆PF 1F 2 的面积为 .解:由对称性,不妨设 P ( x P , y P ) 在第一象限,则由条件知x =1()2PT PS -= 2, y =1()2PV PU -= 1即 P (2, 1) .进而由 x P =PU = 1, PS = 2 得U (2, 2), S (4, 1) ,代入椭圆C 的方程知111144161a b a b⋅+⋅=⋅+=,解得a 2= 20, b 2 = 5 .从而121212PF F P P S F F y ∆===5. 设 f ( x ) 是定义在 R 上的以 2 为周期的偶函数,在区间[0, 1] 上严格递减, 且满足 f (π) = 1 f (2π) = 2 ,则不等式组121()2x f x ⎧⎨≤≤⎩p p 的解集为 .答案:[π - 2, 8 - 2π] .解:由 f ( x ) 为偶函数及在[0, 1] 上严格递减知, f ( x ) 在[-1, 0] 上严格递增, 再结合 f ( x ) 以 2 为周期可知,[1, 2] 是 f ( x ) 的严格递增区间. 注意到f (π - 2) = f (π) = 1, f (8 - 2π) = f (-2π) = f (2π) = 2 ,所以1 ≤ f ( x ) ≤2 ⇔ f (π - 2) ≤ f ( x ) ≤ f (8 - 2π) ,而1 < π - 2 < 8 - 2π < 2 ,故原不等式组成立当且仅当 x ∈ [π - 2, 8 - 2π] .6. 设复数 z 满足z = 1 ,使得关于 x 的方程 zx 2 + 2 zx + 2 = 0 有实根,则这样 的复数 z 的和为 .答案:32-解:设 z = a + b i (a , b ∈ R , a2 + b 2 = 1) .将原方程改为 (a + b i) x 2 + 2(a - b i) x + 2 = 0 ,分离实部与虚部后等价于ax 2 + 2ax + 2 = 0 , ①bx 2 - 2bx = 0 .②若b = 0 ,则 a 2 = 1 ,但当 a = 1 时,①无实数解,从而 a = -1 ,此时存在实 数 x = -1±3满足①、②,故 z = -1满足条件. 若 b ≠ 0 ,则由②知 x ∈ {0, 2} ,但显然 x = 0 不满足①,故只能是 x = 2 ,代入①解得 a 14=-,进而 b =154±,相应有 z =1154i -± 综上,满足条件的所有复数 z 之和为-1+1154i -++1154i --=32- 7. 设O 为∆ABC 的外心,若AO u u u r = AB u u u r + 2 AC u u u r,则sin ∠BAC 的值为.答案:104解:不失一般性,设∆ABC 的外接圆半径 R = 2 .由条件知, 2 AC u u u r =AO u u u r AB -u u u r ① 故 AC =12BO = 1 . 取 AC 的中点 M ,则 O M ⊥ AC ,结合①知 O M ⊥ BO ,且 B 与 A 位于直线OM 的同侧.于是 c os ∠BOC = cos (90︒ + ∠MOC ) = -sin ∠MOC =-MOOC14=-在∆BOC 中,由余弦定理得BC =222cos OB OC OB OC BOC +-⋅∠10=进而在∆ABC 中,由正弦定理得sin ∠BAC =1024BC R = 8. 设整数数列 a 1 , a 2 , , a 10 满足 a 10 = 3a 1 , a 2 + a 8 = 2a 5 ,且a i +1 ∈ {1+ a i ,2 + a i }, i = 1, 2, , 9 ,则这样的数列的个数为 .答案:80 .解:设b i = a i +1 - a i ∈ {1, 2}(i = 1, 2, , 9) ,则有 2a 1 = a 10 - a 1 = b 1 + b 2 ++ b 9 , ①b 2 + b 3 + b 4 = a 5 - a 2 = a 8 - a 5 = b 5 + b 6 + b 7 . ②用t 表示b 2 , b 3 , b 4 中值为 2 的项数.由②知,t 也是 b 5 , b 6 , b 7 中值为 2 的项数, 其中t ∈ {0, 1, 2, 3} .因此 b 2 , b 3 , , b 7 的取法数为 (03C )2+ (13C ) 2+ (23C ) 2+ (33C )2= 20取定b 2 , b 3 , , b 7 后,任意指定 b 8 , b 9 的值,有 22= 4 种方式. 最后由①知,应取 b 1 ∈ {1, 2} 使得b 1 + b 2 ++ b 9 为偶数,这样的 b 1 的取法是唯一的,并且确定了整数 a 1 的值,进而数列 b 1 , b 2 , , b 9 唯一对应一个满足条 件的 数列 a 1 , a 2 , , a 10 .综上可知,满足条件的数列的个数为 20⨯4 = 80 .二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)已知定义在 R+上的函数 f ( x ) 为3log 109()49x x f x xx ⎧-≤⎪=⎨⎪⎩p f设 a , b , c 是三个互不相同的实数,满足 f (a ) = f (b ) = f (c ) ,求 abc 的取值围. 解:不妨假设 a < b < c .由于 f ( x ) 在 (0, 3] 上严格递减,在[3, 9] 上严格递增, 在[9, +∞) 上严格递减,且 f (3) = 0, f (9) = 1,故结合图像可知a ∈ (0, 3) ,b ∈ (3, 9) ,c ∈ (9, + ∞) ,并且 f (a ) = f (b ) = f (c ) ∈ (0, 1) . …………………4 分 由 f (a ) = f (b ) 得 1- log 3 a = log 3 b -1, 即 l og 3 a + log 3 b = 2 ,因此 a b = 32= 9 .于是 abc = 9c . …………………8 分又0 < f (c ) = 4 c1, …………………12 分 故 c ∈ (9, 16) .进而 abc = 9c ∈ (81, 144) .所以, a bc 的取值范围是 (81, 144) . …………………16 分 注:对任意的 r ∈ (81, 144) ,取09r c =,则0c ∈ (9, 16) ,从而 f (0c ) ∈ (0, 1) .过 点 (c 0 , f (c 0 )) 作平行于 x 轴的直线 l ,则 l 与 f ( x ) 的图像另有两个交点 (a , f (a )) ,(b , f (b )) (其中 a ∈ (0, 3), b ∈ (3, 9) ),满足 f (a ) = f (b ) = f (c ) ,并且 ab = 9 ,从 而 a bc = r .10.(本题满分 20 分)已知实数列 a 1 , a 2 , a 3 , 满足:对任意正整数 n ,有a n (2S n - a n ) = 1 ,其中 S n 表示数列的前 n 项和.证明:(1) 对任意正整数 n ,有 a n <n (2) 对任意正整数 n ,有 a n a n +1 < 1 .证明: (1) 约定 S 0 = 0 .由条件知,对任意正整数 n ,有 1 = a n (2S n -a n ) = (S n - S n -1)(S n + S n -1) = S n 2 - S n -12 , S n = n + S 0 = n ,即 S n =n n = 0 时亦成立). …………………5 分显然, a n = S n - S n -1 n 1n -n 10 分 (2) 仅需考虑 a n , a n +1 同号的情况.不失一般性,可设 a n , a n +均为正(否则 将数列各项同时变为相反数,仍满足条件),则 S n +1 > S n > S n -1 >n 此时从而a n a n +1 <n 1n -1n +n ) <1n +n 1n +n )= 1. …………………20 分11.(本题满分 20 分)在平面直角坐标系 xOy 中,设 AB 是抛物线 y 2 = 4 x 的 过点 F (1, 0) 的弦,∆AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平 分∠APB ,求 PF 的所有可能值.解:设211(,)4y A y ,222(,)4y B y ,233(,)4y P y ,由条件知 y 1 , y 2 , y 3 两两不等且非零.设直线 AB 的方程为 x = ty +1 ,与抛物线方程联立可得 y 2- 4ty - 4 = 0 ,故 y 1 y 2 = -4 . ①注意到∆AOB 的外接圆过点O ,可设该圆的方程为 x 2 + y 2 + dx + ey = 0 ,与x =24y 联立得,42(1)0164y d y ey +++=.该四次方程有 y = y 1 , y 2 , y 3,0 这四个不同的实根,故由韦达定理得 y 1 + y 2 + y 3 + 0 = 0 ,从而y 3 =- ( y 1 + y 2 ) .②…………………5 分因 PF 平分∠APB ,由角平分线定理知,12PA FA y PB FB y ==,结合①、②,有 222312231122322232232()()44()()44y y y y PA y y y y PB y y -+-==-+-222212112222212221[()]16(2)[()]16(2)y y y y y y y y y y +-++=+-++1 2 1 1 2 2 1 1 2 1 2 2 1 2 422142126419264192y y y y +-=+- 即 y 6 + 64 y 2 y 2 -192 y 2 = y 6 + 64 y 2 y 2 -192y 2,故 ( y 2 - y 2 )( y 4 + y 2 y 2 + y 4 -192) = 0 .当 y 1 2 = y 2 2 时, y 1 =- y 2,故 y = 0 ,此时 P 与 O 重合,与条件不符.当 y 1 4 + y 1 2 y 22 + y 24 -192 = 0 时,注意到①,有 (y 1 2 + y 2 2 )2=192+(y 1 y 2) 2=208y 1 2 + y 2 2 =8 = 212y y ,故满足①以及 y 1 + y 2 =的实数 y 1 , y 2 存在,对应可得满足条件的点 A , B .此时,结合①、②知222231212()4411444y y y y y PF +++-=+==== …………………20 分2017年全国高中数学联合竞赛一试(A 卷)一,填空题:本大题共8小题,每小题8分,共64分1. 设()x f 是定义在R 上的函数,对任意实数x 有()().143-=-⋅+x f x f 又当时70<≤x ,()()x x f -=9log 2,则()100-f 的值为__________.2. 若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是___________.3. 在平面直角坐标系xOy 中,椭圆C 的方程为110922=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积最大值为____________.4. 若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是__________.5. 正三棱锥,,,中21==-AP AB ABC P α的平面过AB 将其体积平分,则棱与平面α所成角的余弦值为________.6. 在平面直角坐标系xOy 中,点集(){}1,0,1,,-==y x y x K 丨.在K 中随机取出三个点,则这三个点中存在两点之间距离为5的概率为_________.7. 在△ABC 中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,△ABC 的面积为3,则AM ⋅的最小值为________.8. 设两个严格递增的正整数数列{}{}2017,1010<=b a b a n n 满足:,对任意整数n,有n n n a a a +=++12,.______,2111的所有可能值为则b a b b n n +=+二,解答题:本大题共三小题,满分56分.解答应写出文字说明,证明过程或演算步骤9. (本题满分16分)设k,m 为实数,不等式[]b a x m kx x ,12∈≤--对所有成立。
历年数学联赛真题及解答[14大专题]分类汇编
![历年数学联赛真题及解答[14大专题]分类汇编](https://img.taocdn.com/s3/m/07a655427e21af45b207a809.png)
2016年~2018年全国高中数学联赛一试试题分类汇编1、集合部分2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为◆答案:24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。
2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 三、(本题满分50分)设集合{}n A ,,2,1 =,Y X ,均为A 的非空子集(允许Y X =).X中的最大元与Y 中的最小元分别记为Y X min ,max .求满足Y X min max >的有序集合对),(Y X 的数目。
★解析:先计算满足Y X min max ≤的有序集合对),(Y X 的数目.对给定的X m max =,集合X 是集合{}1,,2,1-m 的任意一个子集与{}m 的并,故共有12-m 种取法.又Y m min ≤,故Y 是{}n m m m ,,2,1, ++的任意一个非空子集,共有121--+m n 种取法.因此,满足Y X min max ≤的有序集合对),(Y X 的数目是:()[]()12122122111111+⋅-=-=-∑∑∑=-==-+-n nm m n m nnm mn m n由于有序集合对),(Y X 有()()()2121212-=--n n n 个,于是满足Y X min max >的有序集合对),(Y X 的数目是()()124122122+-=-+⋅--n n n n n n n2017B 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集+N 分拆为k 个互不相交的子集k A A A ,,,21 ,每个子集i A 中均不存在4个数d c b a ,,,(可以相同),满足m cd ab =-.★证明:取1k m =+,令{(mod 1),}i A x x i m x N +=≡+∈,1,2,,1i m =+设,,,i a b c d A ∈,则0(mod 1)ab cd i i i i m -≡∙-∙=+,故1m ab cd +-,而1m m +,所以在i A 中不存在4个数,,,a b c d ,满足ab cd m -=2017B 四、(本题满分50分)。
三年高考(2016-2018)高考数学试题分项版解析 专题26 排列组合、二项式定理 理(含解析)
![三年高考(2016-2018)高考数学试题分项版解析 专题26 排列组合、二项式定理 理(含解析)](https://img.taocdn.com/s3/m/171a2b254431b90d6c85c730.png)
专题26 排列组合、二项式定理考纲解读明方向两个原理的区别在于一个与分类有关,一个与分步有关,这两个原理是最基本也是最重要的原理,是解答排列与组合问题,尤其是解答较复杂的排列与组合问题的基础.2.理解排列、组合及排列数与组合数公式,排列与组合的综合是高频考点.本节在高考中单独考查时,以选择题、填空题的形式出现,分值约为5分,属中档题;本节内容还经常与概率、分布列问题相结合,出现在解答题的第一问中,难度中等或中等偏上.分析解读 1.掌握二项式定理和二项展开式的性质.2.会用二项式定理的知识解决系数和、常数项、整除、近似值、最大值等相关问题.3.二项展开式的通项公式是高考热点.本节在高考中一般以选择题或填空题形式出现,分值约为5分,属容易题.2018年高考全景展示1.【2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C点睛:本题主要考查二项式定理,属于基础题。
2.【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.3.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为,令得,故所求的常数项为点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数的值,再由通项写出第项,由特定项得出值,最后求出特定项的系数.4.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.【2018年理新课标I卷】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到至多至少问题时多采用间接法,总体方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.2017年高考全景展示1.【2017课标1,理6】621(1)(1)x x ++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.2.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-,由()52x y - 展开式的通项公式:()()5152rrrr T C x y -+=- 可得:当3r = 时,()52x x y - 展开式中33x y 的系数为()33252140C ⨯⨯-=- , 当2r = 时,()52y x y - 展开式中33x y 的系数为()22352180C ⨯⨯-= ,则33x y 的系数为804040-= . 故选C .【考点】 二项式展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【考点】 排列与组合;分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年~2018年全国高中数学联赛一试试题分类汇编
10、计数问题、概率与统计部分
2018A 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是偶数的概率为 ◆答案:10
9 ★解析:先考虑def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为
101!672=,故所求为10
91011=- 2018B 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是奇数的概率为 ◆答案:10
1 ★解析:由def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为
101!672=。
2017A 6、在平面直角坐标系xOy 中,点集{}1,0,1,|),(-==y x y x K ,在K 中随机取出三个点,则这三个点中存在两点距离为5的概率为 ◆答案: 7
4 ★解析:由题意得K 有9个点,故从中取出三个点共有8439=C 种。
将K 中的点按右图标记为O A A A ,,,,821 ,其中有8对点之间的距 离为5,由对称性,考虑取41,A A 两点的情况,则余下的一个点有
7种取法,
这样有5687=⨯个三点组(不考虑顺序)。
对每个i A (8,,2,1 =i ),K 中恰有53,++i i A A
两点与之的距离为5(这里下标按模8可以理解),因而恰有{}53,,++i i i A A A 这8个三点组被计了两次,从而满足条件的三点组个数为48856=-,进而所求的概率为
748448=。
2017B 6、在平面直角坐标系xOy 中,点集{}1,0,1,|),(-==y x y x K ,在K 中随机取出三个点,则这三个点两两之间距离不超过2的概率为 ◆答案:14
5 ★解析:注意K 中共有9个点,故在K 中随机取出三个点的方式数为3984C =种,
当取出的三点两两之间距离不超过2时,有如下三种情况:
(1)三点在一横线或一纵线上,有6种情况,
(2)三点是边长为4416⨯=种情况,
(32的等腰直角三角形的顶点,其中,直角顶点位于(0,0)的有4个,直角顶点位于(1,0)±,(0,1)±的各有一个,共有8种情况.
综上可知,选出三点两两之间距离不超过2的情况数为616830++=,进而所求概率为
3058414=.
2016A 4、袋子A 中装有2张10元纸币和3张1元纸币,袋子B 中装有4张5元纸币和3张1元纸币,现随机从两个袋子中各取出两张纸币,则A 中剩下的纸币面值之和大于B 中剩下的纸币面值之和的概率为 ◆答案:35
9 ★解析:一种取法符合要求,等价于从A 中取走的两张纸币的总面值a 小于从B 中取走的两张纸币的总面值b ,从而1055=+≤<b a .故只能从A 中国取走两张1元纸币,相应的取法数为323=C .又此时2=>a b ,即从B 中取走的两张纸币不能都是1元纸币,相应有182327=-C C 种取法.因此,所求的概率为
35
92110541832725=⨯=⨯⨯C C .
2016B 5、将红、黄、蓝3个球随机放入5个不同的盒子E D C B A ,,,,中,恰有两个球放在同一盒子的概率为
◆答案:25
12 ★解析:样本空间中有35125=个元素.而满足恰有两个球放在同一盒子的元素个数为
223560.C P ⨯=过所求的概率为6012.12525
p ==
2015A 5、在正方体中随机取3条棱,他们两两异面的概率为 ◆答案:255
★解析:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.
下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为
8222055
=.
2015B 8、正2015边形201521A A A ⋅⋅⋅内接于单位圆O ,任取它的两个不同顶点j i A A ,,
1≥的概率为 ◆答案:
6711007
★解析:因为||||1i j OA OA ==,所以 222||||||22(1cos ,)i j i j i j i j OA OA OA OA OA OA OA OA +=++⋅=+<>.
故1≥的充分必要条件是1cos ,2
i j OA OA <>≥-,即向量,i j OA OA 的夹角不超过
3
2π.对任意给定的向量i OA 1≥的向量可的取法共有: 22
2134232015ππ⎡⎤÷⨯=⎢⎥⎣⎦1≥的概率是:20151342671201520141007p ⨯==⨯.。