背包问题-贪心法和动态规划法求解
数据结构 背包问题
数据结构背包问题背景介绍:数据结构是计算机科学中非常重要的一门学科,它研究的是数据组织、存储和管理的方式。
背包问题是数据结构中的一个经典问题,它涉及到在给定的一组物品中选择一些物品放入背包中,使得背包的总重量或总价值达到最大化。
在本文中,我们将详细介绍背包问题的定义、解决方法和应用领域。
一、问题定义背包问题可以被描述为:给定一个背包,它能容纳一定的重量,再给定一组物品,每个物品有自己的重量和价值。
我们的目标是找到一种方式将物品放入背包中,使得背包的总重量不超过其容量,同时背包中物品的总价值最大化。
二、解决方法1. 贪心算法贪心算法是一种简单而有效的解决背包问题的方法。
它基于贪心的思想,每次选择当前具有最大价值重量比的物品放入背包中。
具体步骤如下:- 计算每个物品的价值重量比,即物品的价值除以其重量。
- 按照价值重量比从大到小对物品进行排序。
- 依次将物品放入背包中,直到背包的总重量达到容量限制或所有物品都放入背包。
贪心算法的优点是简单快速,但它并不能保证一定能找到最优解。
2. 动态规划动态规划是解决背包问题的一种经典方法。
它将问题划分为若干子问题,并通过求解子问题的最优解来求解原问题的最优解。
具体步骤如下:- 定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
- 初始化dp数组的第一行和第一列为0,表示背包容量为0或物品数量为0时的最大价值都为0。
- 逐行填充dp数组,对于每个物品,考虑将其放入背包或不放入背包两种情况,选择价值最大的方案更新dp数组。
- 最终dp数组的最后一个元素dp[n][m]即为问题的最优解,其中n为物品数量,m为背包容量。
动态规划方法能够保证找到最优解,但其时间复杂度较高,对于大规模的问题可能会耗费较长的计算时间。
三、应用领域背包问题在实际生活和工程领域中有着广泛的应用,以下是一些常见的应用领域:1. 物流配送在物流配送中,背包问题可以用来优化货车的装载方案,使得货车的装载量最大化,从而减少运输成本。
0-1背包问题的多种解法
问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。
首先说明一下 0-1 背包问题拥有最优解。
假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。
因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。
如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
0_1背包问题的多种解法
一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+ni iiW yw x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
【优质】背包问题实验报告-范文word版 (13页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。
三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。
动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。
0-1背包问题具有最优子结构性质。
假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。
i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。
浅谈0-1背包问题的常用算法
2 0 1 3年 1 0月下 C o n s u me r E l e c t r o n i c s Ma g a z i n e 技 术 交 流
浅谈 0 - 1 背包问题的常用算法
汤赫 男
( 吉林工商学院信息工程学院,长春 1 3 0 0 6 2) 摘 要 :0 -1 背 包问题是典型的 NP ~完全问题 ,无论从 理论 上还是 实践上都有一定的研究意义。本文综述 了几 种0 — 1背包问题的 常用算法 ,分析算法的优劣 ,预 测 0 - 1背包问题的发展方向。 关键 词 :0 — 1背包问题 ;动 态规划法 ;贪心法 ;分支界限法
一
、
∑w ,
l {
㈠ { “ } m a x ∑
{ j
二 、常用 的 0 - 1 背 包问题算法 ( 一) 蛮力法。 蛮 力法又称穷举法或枚举法,是一种简单、 直接、有效的方法,是初学者入 门的方法 。蛮力法要求遍历所 有可能情 况一次且仅一次 ,筛选 出符合要求 的解。应用蛮力法 求解 0 - 1 背包 问题, 需要考虑给定的 n 个物品集合的所有子集, 找出所有总重量不超过背包容量的子集 ,计算每个可能子集的 总价值,然后找 出价值最大的子集 。对于一个具有 n个元素的 集合 ,其子集数量是 2 “,所 以,不论生成子集 的算法效率有 多高 ,蛮力法求解 0 - 1 背包 问题都会导致一个 Q ( 2 n )的算法 。 ( 二 )动 态规划法。动态规划 法是一种通用 的算 法设计 技术用来求解 多阶段决策最优 化问题。这类 问题都满 足最优 性原理,即原 问题 的最优 性包含着子 问题 的最优性 。 应用 动态规划法 求解 0 - 1 背包 问题 ,可 以将 0 — 1背包 问 题看 作一个 多阶段决策最 优化 问题 。n个物 品集合 的所 有子 集可 以看 作该 问题 的所有 可行解;这些可行解 都是满足约束 条件 的,可行解可能不止一个,通过 目标 函数找到最优解 。 动态 规划 法求解 0 - 1 背包 问题 的算法描述 : 设V ( n , C )表 示将 n个 物 品装入 容量 为 C的背 包获 得 的 最大价值 。 初 始 状 态 :V ( i , 0 ) = V ( 0 , j ) = 0 , 0≤ i ≤n , 0≤ j≤ C 则V ( i , j )表示 将前 i 个 物 品装入 容量 为 j的背 包获 得
用蛮力法、动态规划法和贪心法求解0 1背包问题
printf("\n");
}
}
以下要依次判断每个子集的可行性,找出可行解:
voidpanduan(inta[][4],intcw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0
{
int i,j;
int n=16;
int sw,sv;
for(i=0;i<16;i++)
用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法:void force(int a[][4])//蛮力法产生4个物品的子集
{
int i,j;
int n=16;
int m,t;
for(i=0;i<16;i++)
{t=i;
for(j=3;j>=0;j--)
{
m=t%2;
a[i][j]=m;
t=t/2;
}
}
for(i=0;i<16;i++)//输出保存子集的二维数组
{
for(j=0;j<4;j++)
{
printf("%d",a[i][j]);
i++;
}
return maxprice;
}
#include<stdio.h>
#include<stdlib.h>
ACM背包问题
背包问题
如果给你一个背包,要你从许多东西里选择一些装进来,只要这个包装得下,你就可 以将包里的东西全部拿走了,那么你会如何选择物品呢?这里你需要考虑的是背包的体积 和承重限制,当然最重要的是你拿走的东西的总价值最大。这样的问题就是背包问题,许 多问题都可以转化为背包问题来考虑。背包问题是一个在运筹学领域里常见的典型 NP-C 难题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有一定的意义。
while (goods[0].flag<goods[i].flag) {
goods[i+1]=goods[i]; i--; } goods[i+1]=goods[0]; } ///////////////////////////////////////////
·78·
第 4 章 背包问题
cout<<"最优解为:"<<endl; for(i=1;i<=n;i++) {
4.3.1 〖案例 2〗0/1 背包
需对容量为 c 的背包进行装载。从 n 个物品中选取装入背包的物品,每件物品 i 的重 量为 wi,价值为 pi。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最 佳装载是指所装入的物品价值最高。限制:每个物品不能被分割,要不被装载,要不不被 装载。
第一行物品个数,接下来分别为物品价值,再接下来分别为物品的价值。再接下来分 别为物品的重量,最后为背包的容量。
数据结构与算法: 不需要特殊的数据结构 算法采用贪婪法 首先输入物品信息和背包容量,然后每次选比重最大的装载。
struct goodinfo
{ float p; float w; float X; int flag;
0-1背包问题-贪心法和动态规划法求解
实验四“0-1”背包问题一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题1.“0-1”背包问题的贪心算法2.“0-1”背包问题的动态规划算法说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。
五、实验程序// 贪心法求解#include<iostream>#include"iomanip"using namespace std;//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);int main(){float w[7]={2,3,5,7,1,4,1}; //物品重量数组float p[7]={10,5,15,7,6,18,3}; //物品收益数组float avgp[7]={0}; //单位毒品的收益数组float x[7]={0}; //最后装载物品的最优解数组const float M=15; //背包所能的载重float ben=0; //最后的收益AvgBenefitsSort(avgp,p,w);ben=GetBestBenifit(p,w,x,M);cout<<endl<<ben<<endl; //输出最后的收益system("pause");return 0;}//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {//求出物品的单位收益for(int i=0;i<7;i++){arry_avgp[i]=arry_p[i]/arry_w[i];}cout<<endl;//把求出的单位收益排序,冒泡排序法int exchange=7;int bound=0;float temp=0;while(exchange){bound=exchange;exchange=0;for(int i=0;i<bound;i++){if(arry_avgp[i]<arry_avgp[i+1]){//交换单位收益数组temp=arry_avgp[i];arry_avgp[i]=arry_avgp[i+1];arry_avgp[i+1]=temp;//交换收益数组temp=arry_p[i];arry_p[i]=arry_p[i+1];arry_p[i+1]=temp;//交换重量数组temp=arry_w[i];arry_w[i]=arry_w[i+1];arry_w[i+1]=temp;exchange=i;}}}}//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {int i=0; //循环变量ifloat benifit=0; //最后收益while(i<7){if(u-arry_w[i]>0){arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组benifit+=arry_p[i]; //收益增加当前物品收益u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解}i++;}return benifit; //返回最后收益}//动态规划法求解#include<stdio.h>#include<math.h>#define n 6void DKNAP(int p[],int w[],int M,const int m); void main(){int p[n+1],w[n+1];int M,i,j;int m=1;for(i=1;i<=n;i++){m=m*2;printf("\nin put the weight and the p:");scanf("%d %d",&w[i],&p[i]);}printf("%d",m);printf("\n in put the max weight M:");scanf("%d",&M);DKNAP(p,w,M,m);}void DKNAP(int p[],int w[],int M,const int m) {int p2[m],w2[m],pp,ww,px;int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];F[0]=1;p2[1]=w2[1]=0;l=h=1;F[1]=next=2;for(i=1;i<n;i++){k=l;max=0;u=l;for(q=l;q<=h;q++)if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i]){u=q;max=w2[q]+w[i];}for(j=l;j<=u;j++){pp=p2[j]+p[i];ww=w2[j]+w[i];while(k<=h&&w2[k]<ww){p2[next]=p2[k];w2[next]=w2[k];next++;k++;}if(k<=h&&w2[k]==ww){if(pp<=p2[k])pp=p2[k];k++;}else if(pp>p2[next-1]){p2[next]=pp;w2[next]=ww;next++;}while(k<=h&&p2[k]<=p2[next-1])k++;}while(k<=h){p2[next]=p2[k];w2[next]=w2[k];next=next+1;k++;}l=h+1;h=next-1;F[i+1]=next;}for(i=1;i<next;i++)printf("%2d%2d ",p2[i],w2[i]);for(i=n;i>0;i--){next=F[i];next--;pp=pk=p2[next];ww=w2[next];while(ww+w[i]>M&&next>F[i-1]){next=next-1;pp=p2[next];ww=w2[next];}if(ww+w[i]<=M&&next>F[i-1])px=pp+p[i];if(px>pk&&ww+w[i]<=M){s[i]=1;M=M-w[i];printf("M=%d ",M);}else s[i]=0;}for(i=1;i<=n;i++)printf("%2d ",s[i]);}六、实验结果1、贪心法截图:七、实验分析。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
背包问题的贪心算法
Wi Xi
16.5 20 20 20
Vi X i
24.25 28.2 31 31.5
先检验这四个为可行解*,即满足约束条件(4.2.2),(4.2.3).再比 较目标函数值,∑vixi .知④组解效益值最大.该组解是背包问题的最 优解。(见定理4.2)
6
例4.4 n=3,c=20, (V1,V2,V3) (25, 24,15) (W1,W2,W3) (18,15,10)
7
,且物品2的24/15 = v2/w2 较物品3的15/10= v3/w3效益值高。按 此选择策略,得②即(1, 2/15, 0),∑vixi=28.2 .此解是一个次优解。 显然,按物品效益值的非增次序装包不能得最优解。
原因:背包可用容量消耗过快。
(2)以容量作为量度。即按物品重量的非降次序将物
—选取最优的量度标准实为用贪心方法求解问题的核心.
16
4.3 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以 通过一系列局部最优的选择,即贪心选择来达到。这 是贪心算法可行的第一个基本要素,也是贪心算法与 动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问 题,而贪心算法则通常以自顶向下的方式进行,以迭 代的方式作出相继的贪心选择,每作一次贪心选择就 将所求问题简化为规模更小的子问题。
品装包。如例4.4中的解③(让背包尽可能慢被消耗)
排序 : (w3,w2,w1)= (10,15,18)
(V3,V2,V1) (15, 24, 25)
V3=15,x3=1,w3=10,背包剩余C-10=10;物品2有次大重量(w2=15), 但包装不下。使用x2=2/3,刚好装满背包且物品2装入2/3与物品1 装入5/9的容量均为10个单位。但前者的效益值24×2/3=16 >后者
组合优化中的背包问题
组合优化中的背包问题背景介绍:组合优化是一种数学领域的研究,它主要关注如何在给定的限制条件下,找到最佳的组合方式。
背包问题是组合优化中的经典问题之一,它在实际生活和工业领域中都有广泛的应用。
本文将重点探讨组合优化中的背包问题。
一、问题描述:背包问题是指在给定的一组物品中,选择一部分放入背包中,使得所选物品的总价值最大化,同时不超过背包的容量限制。
背包问题通常包括两种类型:0-1背包和分数背包。
1. 0-1背包问题:0-1背包问题是指每个物品要么完全装入背包,要么完全不装入背包。
每个物品的重量和价值可能不同,背包的容量限制固定。
2. 分数背包问题:分数背包问题允许物品被分割成若干部分,可以选择物品的一部分放入背包,以满足容量的限制。
每个物品的重量和价值可能不同,背包的容量限制也可能不同。
二、解决方法:1. 动态规划:动态规划是解决背包问题最常用的方法之一。
通过构建一个二维数组,其中行表示物品的选择,列表示背包的容量限制,数组中的每个元素表示当前状态下的最优解。
通过迭代计算,找到最优解并记录在数组中。
2. 贪心算法:贪心算法是另一种解决背包问题的方法。
贪心算法的基本思想是每次选择当前状态下最优的物品放入背包中,直到达到容量限制或者所有物品都被选择。
贪心算法可能并不一定能得到全局最优解,但在某些情况下可以得到较好的结果。
三、应用领域:背包问题在实际生活和工业领域中有广泛的应用,如以下几个例子:1. 物流配送问题:在物流配送中,背包问题可以用来决定每个物流车辆应该运输哪些货物,以最大化运输总价值,同时不超过车辆的运载能力。
2. 投资组合优化问题:在金融领域中,背包问题可以用来优化投资组合,选择哪些证券或资产应该包括在投资组合中,以最大化组合的收益,同时控制总投资金额。
3. 选课问题:在学校选课系统中,背包问题可以用来确定学生应该选择哪些课程,以满足学分要求,并尽可能选择喜欢的课程。
结论:以上是关于组合优化中的背包问题的介绍。
背包问题问题实验报告(3篇)
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
背包问题
背包问题常州一中林厚从背包问题是信息学奥赛中的经典问题。
背包问题可以分为0-1背包和部分背包两种类型,0-1背包还可以再分为有限背包和无限背包(完全背包)。
背包问题的求解涉及到贪心、递归、递推、动态规划、搜索等多种算法。
熟练掌握各种背包问题及其变形试题的解法,是信息学奥赛选手从入门走向提高的必经之路。
先简单归纳一下涉及到的这几种重要算法:1、贪心:贪心法可以归纳为“每步取优”。
假设你的程序要走1~n共n步,则你只要保证在第i步(i=1..n)时走出的这一步是最优的。
所以,贪心法不是穷举,而只是一种每步都取优的走法。
但由于目光短浅,不考虑整体和全局,所以“步步最优”并不能保证最后的结果最优。
比如经典的“两头取数”问题、“n个整数连接成最大数”问题、“删数”问题等。
2、递归:递归算法可以归纳为将问题“由大化小”。
也就是将一个大问题分解为若干个“性质相同”的子问题,求解的的过程,一般是通过“函数的递归调用”,不断将大问题逐步细化、直至元问题(边界情况),最后通过递归函数的自动返回得到问题的解。
递归算法的关键是递归函数的构造,它的效率往往比较低,原因在于大量的“冗余”计算。
比如经典的“斐波那挈数列”问题,在递归实现时效率极低,存在着大量的冗余计算,可以采用“记忆化”的方法优化。
3、递推:递推问题往往有一个“递推公式”,其实和“递归公式”差不多,但是出发点不一样,递归的思想是“要想求什么就要先求出什么”。
而递推是从问题的边界情况(初始状态)出发,一步步往下走,直到走完n步,判断最后的解。
由于其中的每一步并不知道当前一步的哪一个值对后面的步骤有用,所以只能把所有情况(一步的所有走法)全部计算出来,也造成了很多的“冗余计算”。
时间上往往没有太多的优化余地,但空间上经常利用“滚动数组”等方式,把空间复杂度由O(n2)降到O(2n)。
比如经典的“杨辉三角形”问题、“判断n是否是斐波那挈数”问题等。
4、动态规划:本质上是一种克服了“冗余”的“递归”算法。
运筹学背包问题例题
运筹学背包问题例题
运筹学中的背包问题是一个经典的组合优化问题,通常分为0-1背包问题和分数背包问题。
这个问题可以用来描述一个背包有限的容量,以及一系列物品,每个物品都有自己的重量和价值。
问题的目标是找到一个组合,使得放入背包的物品总重量不超过背包容量,同时使得这些物品的总价值最大化。
举一个例子来说明背包问题:假设有一个背包容量为10kg,现有以下物品:
物品A,重量3kg,价值150元。
物品B,重量4kg,价值300元。
物品C,重量5kg,价值200元。
针对这个例子,我们可以用动态规划或者贪心算法来解决背包问题。
在0-1背包问题中,每个物品只能选择放或者不放,不能进行分割。
而在分数背包问题中,物品可以进行分割放入背包。
解决背包问题的关键是建立递推关系和状态转移方程,以确定
如何选择物品放入背包以达到最优解。
动态规划是解决背包问题的
常用方法,通过填写一个二维的状态转移表格来逐步求解最优解。
贪心算法则是通过每一步选择当前最优的策略,不断迭代直至达到
最优解。
除了动态规划和贪心算法,还有其他方法可以解决背包问题,
比如分支限界法、回溯法等。
每种方法都有其适用的场景和局限性。
总的来说,背包问题是运筹学中的一个经典问题,有着广泛的
应用。
通过合适的算法和方法,我们可以有效地解决背包问题,找
到最优的放置方案,这对于资源分配、生产调度等实际问题有着重
要的意义。
背包问题的解决算法
背包问题的解决算法在日常生活中,我们常常会遇到背包问题。
比如说,你需要出门远足,但是又不想背太多的东西,怎么办?这时候,你就需要一种背包算法,用以帮助你选出最好的装备。
当然,背包算法不仅仅局限于这种场景,还可以应用于计算机科学等领域。
背包问题可以定义为:在限定容量下,找到能够装下最大价值物品的选择方案。
在计算机科学中,背包问题又分为0/1背包和无限背包两种类型。
0/1背包指的是在数量有限的情况下,每种物品只能选择一次;无限背包则意味着每种物品可以重复选择。
现在,我们来讨论一下几种常见的背包算法。
1. 贪心算法贪心算法是一种常见的解决背包问题的方法。
首先,根据每个物品的价值大小来求解。
然后,将每个物品按照其价值排序。
按照顺序,从价值最高的开始选择,在能够装下的情况下,尽量选择多的物品。
这种方法容易理解,但是它并不一定能够获得最优解。
2. 动态规划算法动态规划是解决背包问题最常用的算法。
它将问题分解成多个子问题,并且利用已经求解过的子问题来递推求解更大的问题。
具体来说,动态规划算法需要在每个状态中维护当前已经选择的物品,以及它们的价值和总重量。
然后,根据每个物品的价值,计算出在当前重量下选择这个物品的最大价值,同时比较这个价值和不选择这个物品的价值大小,最终得出最优解。
3. 回溯算法回溯算法也是一种解决背包问题的方法。
它的基本思想是,从初始状态开始,考虑每种可能的选择,最终找到最优解。
相比其他算法,回溯算法需要考虑所有可能的解,因此在问题较大的时候,它的时间复杂度可能较高。
但是,回溯算法通常能够得到最优解。
4. 分支定界算法分支定界算法也是一种解决背包问题的方法。
它通过确定每种物品能否被选择,来缩小解空间并加速搜索。
具体来说,它会根据价值和重量来对物品进行排序,并尝试从价值最高的物品开始选择。
然后,将剩余的物品按选择顺序进行排序,并对每个物品进行深度优先搜索,直到搜索到了可行解或者不可行解为止。
在实际应用中,以上几种算法都有其优缺点。
《程序设计创新》分支限界法解决01背包问题
《程序设计创新》分支限界法解决01背包问题一、引言分枝限界法通常以广度优先或最小成本(最大收益)优先搜索问题的解空间树。
在分枝限界方法中,每个活动节点只有一次成为扩展节点的机会。
当活动节点成为扩展节点时,将同时生成所有子节点。
这些子节点将丢弃不可执行或非最优解的子节点,并将剩余的子节点添加到活动节点表中。
然后,从活动节点表中选择节点作为当前扩展节点,然后重复上述节点扩展过程。
此过程将持续到所需的解决方案或节点表为空。
二、研究背景在生活或企业活动中,我们常常会遇到一些装在问题。
例如在生活中我们要出去旅游,背包的容量是有限的而要装物品可能很多,但是每个物品的装载优先级肯定是不一样的,那么怎么装更合适一些呢。
在企业活动中,比如轮船集装箱装载问题,集装箱是有限的,那么怎么装载这些货物才能每次都是装载最多的,只有这样企业利润才能最大化。
三、相关技术介绍上述问题就是我们算法中会遇到的背包问题。
而背包问题又分许多。
如背包问题,通常用贪心法解决。
如01背包问题通常用动态规划或者分支限界法解决。
本次我们考虑使用分支限界法来解决01背包问题四、应用示例在01背包问题中,假设有四个物品。
重量W(4,7,5,3),价值V(40,42,25,12),背包重量W为10,试求出最佳装载方案。
定义限界函数: ub = v + (W-w)×(Vi+1/W+1)画出状态空间树的搜索图步骤:①在根结点1,没有将任何物品装入背包,因此,背包的重量和获得的价值均为0,根据限界函数计算结点1的目标函数值为10×10=100;②在结点2,将物品1装入背包,因此,背包的重量为4,获得的价值为40,目标函数值为40 + (10-4)×6=76,将结点2加入待处理结点表PT中;在结点3,没有将物品1装入背包,因此,背包的重量和获得的价值仍为0,目标函数值为10×6=60,将结点3加入表PT 中;③在表PT中选取目标函数值取得极大的结点2优先进行搜索;④在结点4,将物品2装入背包,因此,背包的重量为11,不满足约束条件,将结点4丢弃;在结点5,没有将物品2装入背包,因此,背包的重量和获得的价值与结点2相同,目标函数值为40 + (10-4)×5=70,将结点5加入表PT中;⑤在表PT中选取目标函数值取得极大的结点5优先进行搜索;⑥在结点6,将物品3装入背包,因此,背包的重量为9,获得的价值为65,目标函数值为65 + (10-9)×4=69,将结点6加入表PT中;在结点7,没有将物品3装入背包,因此,背包的重量和获得的价值与结点5相同,目标函数值为40 + (10-4)×4=64,将结点6加入表PT中;⑦在表PT中选取目标函数值取得极大的结点6优先进行搜索;⑧在结点8,将物品4装入背包,因此,背包的重量为12,不满足约束条件,将结点8丢弃;在结点9,没有将物品4装入背包,因此,背包的重量和获得的价值与结点6相同,目标函数值为65;⑨由于结点9是叶子结点,同时结点9的目标函数值是表PT中的极大值,所以,结点9对应的解即是问题的最优解,搜索结束。
背包问题的各种求解方法
背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。
因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。
则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。
如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。
这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。
1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。
则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。
由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。
因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。
贪心算法与背包问题的求解策略
贪心算法与背包问题的求解策略贪心算法(Greedy Algorithm)是一种常用的算法策略,用于求解最优化问题。
背包问题(Knapsack Problem)则是一个经典的组合优化问题,涉及在限制条件下如何选择物品以最大化价值。
本文将探讨贪心算法在解决背包问题时的应用与求解策略。
一、背包问题简介背包问题是一个常见的动态规划问题,其基本形式为:有一个背包,容量为C(常为非负整数),有n个物品,每个物品的重量为w[i],价值为v[i]。
现在需要从这些物品中选择一部分装入背包,使得在满足背包容量的限制下,所装入物品的总价值最大化。
二、贪心算法的基本思想贪心算法的基本思想是,每一步都选择当前情况下的最优解,希望通过每一步的最优解最终达到全局最优解。
然而,贪心算法并不是适用于所有问题的通用解决方法,它适用于一些特定的问题,如背包问题。
三、贪心算法在背包问题中的应用在背包问题中,常见的贪心策略有两种:按价值密度排序和按重量排序。
下面将分别介绍这两种贪心策略的具体应用。
1. 按价值密度排序按价值密度排序是指将物品按照单位重量的价值从大到小进行排序。
具体操作步骤如下:(1)计算每个物品的价值密度,即v[i]/w[i]。
(2)按照价值密度从大到小的顺序对物品进行排序。
(3)从价值密度最高的物品开始,依次将物品放入背包,直至背包容量达到上限或无物品可放。
2. 按重量排序按重量排序是指将物品按照重量从小到大进行排序。
具体操作步骤如下:(1)按照物品的重量从小到大进行排序。
(2)从重量最小的物品开始,依次将物品放入背包,直至背包容量达到上限或无物品可放。
四、贪心算法的优缺点贪心算法相比其他算法具有简单、高效的特点。
然而,贪心算法并不是万能的,它在某些情况下可能无法得到最优解。
例如,在背包问题中,贪心算法按照价值密度排序的策略并不能保证一定能得到最优解,因为可能存在某些物品的价值密度很高,但重量也很大,无法放入背包。
五、贪心算法的应用场景贪心算法常被应用于一些特定的问题领域,如最小生成树、调度问题、图着色等。
[C++]贪心算法之活动安排、背包问题
[C++]贪⼼算法之活动安排、背包问题⼀、贪⼼算法的基本思想 在求解过程中,依据某种贪⼼标准,从问题的初始状态出发,直接去求每⼀步的最优解,通过若⼲次的贪⼼选择,最终得出整个问题的最优解。
从贪⼼算法的定义可以看出,贪⼼算法不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,⽽由问题⾃⾝的特性决定了该题运⽤贪⼼算法可以得到最优解。
如果⼀个问题可以同时⽤⼏种⽅法解决,贪⼼算法应该是最好的选择之⼀。
⼆、贪⼼算法的基本要素 (1)最优⼦结构性质 (2)贪⼼选择性质(局部最优选择)三、贪⼼算法实例 1、活动安排 设有n个活动的集合 E = {1,2,…,n},其中每个活动都要求使⽤同⼀资源,如演讲会场等,⽽在同⼀时间内只有⼀个活动能使⽤这⼀资源。
每个活动 i 都有⼀个要求使⽤该资源的起始时间 s i和⼀个结束时间 f i,且 s i< f i。
如果选择了活动i,则它在半开时间区间 [s i ,f i ) 内占⽤资源。
若区间 [s i , f i )与区间 [s j, f j ) 不相交,则称活动i与活动j是相容的。
当 s i ≥ f j或 s j ≥ f i时,活动 i 与活动 j 相容。
活动安排问题就是在所给的活动集合中选出最⼤的相容活动⼦集合。
例如:1 #include <iostream>2 using namespace std;34 #define NUM 5056 void GreedySelector(int n, int s[], int f[], bool b[])7 {8 b[1]=true; //默认将第⼀个活动先安排9 int j=1; //记录最近⼀次加⼊b中的活动1011 //依次检查活动i是否与当前已选择的活动相容12 for(int i=2;i<=n;i++)13 {14 if (s[i]>=f[j])15 {16 b[i]=true;17 j=i;18 }19 else20 b[i]=false;21 }22 }2324 int main()25 {26 int s[] = {0,1,3,0,5,3,5,6,8,8,2,12}; //存储活动开始时间27 int f[] = {0,4,5,6,7,8,9,10,11,12,13,14}; //存储活动结束时间28 bool b[NUM]; //存储被安排的活动编号29 int n = (sizeof(s) / sizeof(s[0])) - 1;3031 GreedySelector(n, s, f, b);3233 for(int i = 1; i <= n; i++) //输出被安排的活动编号和它的开始时间和结束时间34 {35 if(b[i]) cout << "活动 " << i << " :" << "(" << s[i] << "," << f[i] << ")" <<endl;36 }37 return 0;38 } 2、背包问题 给定⼀个载重量为 M 的背包,考虑 n 个物品,其中第 i 个物品的重量 w i(1 ≤ i ≤ n),价值 v i(1 ≤ i ≤ n),要求把物品装满背包,且使背包内的物品价值最⼤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四“0-1”背包问题
一、实验目的与要求
熟悉C/C++语言的集成开发环境;
通过本实验加深对贪心算法、动态规划算法的理解。
二、实验内容:
掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。
三、实验题
1.“0-1”背包问题的贪心算法
2.“0-1”背包问题的动态规划算法
说明:背包实例采用教材P132习题六的6-1中的描述。
要求每种的算法都给出最大收益和最优解。
设有背包问题实例n=7,M=15,,(w0,w1,。
w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。
,p6)=(10,5,15,7,6,18,3)。
求这一实例的最优解和最大收益。
四、实验步骤
理解算法思想和问题要求;
编程实现题目要求;
上机输入和调试自己所编的程序;
验证分析实验结果;
整理出实验报告。
五、实验程序
// 贪心法求解
#include<iostream>
#include"iomanip"
using namespace std;
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w );
//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);
int main(){
float w[7]={2,3,5,7,1,4,1}; //物品重量数组
float p[7]={10,5,15,7,6,18,3}; //物品收益数组
float avgp[7]={0}; //单位毒品的收益数组
float x[7]={0}; //最后装载物品的最优解数组
const float M=15; //背包所能的载重
float ben=0; //最后的收益
AvgBenefitsSort(avgp,p,w);
ben=GetBestBenifit(p,w,x,M);
cout<<endl<<ben<<endl; //输出最后的收益
system("pause");
return 0;
}
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w )
{
//求出物品的单位收益
for(int i=0;i<7;i++)
{
arry_avgp[i]=arry_p[i]/arry_w[i];
}
cout<<endl;
//把求出的单位收益排序,冒泡排序法
int exchange=7;
int bound=0;
float temp=0;
while(exchange)
{
bound=exchange;
exchange=0;
for(int i=0;i<bound;i++)
{
if(arry_avgp[i]<arry_avgp[i+1])
{
//交换单位收益数组
temp=arry_avgp[i];
arry_avgp[i]=arry_avgp[i+1];
arry_avgp[i+1]=temp;
//交换收益数组
temp=arry_p[i];
arry_p[i]=arry_p[i+1];
arry_p[i+1]=temp;
//交换重量数组
temp=arry_w[i];
arry_w[i]=arry_w[i+1];
arry_w[i+1]=temp;
exchange=i;
}
}
}
}
//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {
int i=0; //循环变量i
float benifit=0; //最后收益
while(i<7)
{
if(u-arry_w[i]>0)
{
arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组
benifit+=arry_p[i]; //收益增加当前物品收益
u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解
}
i++;
}
return benifit; //返回最后收益
}
//动态规划法求解
#include<>
#include<>
#define n 6
void DKNAP(int p[],int w[],int M,const int m); void main()
{
int p[n+1],w[n+1];
int M,i,j;
int m=1;
for(i=1;i<=n;i++)
{
m=m*2;
printf("\nin put the weight and the p:");
scanf("%d %d",&w[i],&p[i]);
}
printf("%d",m);
printf("\n in put the max weight M:");
scanf("%d",&M);
DKNAP(p,w,M,m);
}
void DKNAP(int p[],int w[],int M,const int m) {
int p2[m],w2[m],pp,ww,px;
int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];
F[0]=1;
p2[1]=w2[1]=0;
l=h=1;
F[1]=next=2;
for(i=1;i<n;i++)
{
k=l;
max=0;
u=l;
for(q=l;q<=h;q++)
if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i])
{
u=q;
max=w2[q]+w[i];
}
for(j=l;j<=u;j++)
{
pp=p2[j]+p[i];
ww=w2[j]+w[i];
while(k<=h&&w2[k]<ww)
{
p2[next]=p2[k];
w2[next]=w2[k];
next++;
k++;
}
if(k<=h&&w2[k]==ww)
{
if(pp<=p2[k])
pp=p2[k];
k++;
}
else if(pp>p2[next-1])
{
p2[next]=pp;
w2[next]=ww;next++;
}
while(k<=h&&p2[k]<=p2[next-1])
k++;
}
while(k<=h)
{
p2[next]=p2[k];
w2[next]=w2[k];
next=next+1;
k++;
}
l=h+1;
h=next-1;
F[i+1]=next;
}
for(i=1;i<next;i++)
printf("%2d%2d ",p2[i],w2[i]);
for(i=n;i>0;i--)
{
next=F[i];
next--;
pp=pk=p2[next];
ww=w2[next];
while(ww+w[i]>M&&next>F[i-1])
{
next=next-1;
pp=p2[next];
ww=w2[next];
}
if(ww+w[i]<=M&&next>F[i-1])
px=pp+p[i];
if(px>pk&&ww+w[i]<=M)
{
s[i]=1;
M=M-w[i];
printf("M=%d ",M);
}
else s[i]=0;
}
for(i=1;i<=n;i++)
printf("%2d ",s[i]);
}
六、实验结果
1、贪心法截图:
七、实验分析。