有理数的乘法与除法

合集下载

有理数乘除法运算

有理数乘除法运算

有理数乘除法运算有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数。

有理数乘除法运算是基于有理数的乘法和除法进行的运算。

乘法是指将两个有理数相乘,而除法是指将一个有理数除以另一个有理数。

本文将详细介绍有理数乘除法运算的定义、性质和应用。

一、有理数乘法运算有理数乘法运算的定义是:对于任意两个有理数a和b,它们的乘积记作a×b,满足以下性质:1. 乘法交换律:a×b=b×a,对于任意的有理数a和b,它们的乘积与次序无关。

2. 乘法结合律:(a×b)×c=a×(b×c),对于任意的有理数a、b和c,它们的乘积满足结合律。

3. 乘法分配律:a×(b+c)=a×b+a×c,对于任意的有理数a、b和c,乘法对加法满足分配律。

有理数乘法运算的应用非常广泛。

例如,在分数的乘法中,我们可以将分子与分子相乘,分母与分母相乘,然后将得到的积化简为最简分数。

又如,在计算小数的乘法时,我们可以直接对小数进行乘法运算,注意小数点的位置即可。

二、有理数除法运算有理数除法运算的定义是:对于任意两个有理数a和b(b≠0),它们的商记作a÷b,满足以下性质:1. 除法的定义:a÷b=c,当且仅当a=b×c,即a除以b得到商c。

2. 除法分配律:(a+b)÷c=(a÷c)+(b÷c),对于任意的有理数a、b 和c(c≠0),除法对加法满足分配律。

在有理数除法运算中,需要注意除数不能为0,否则将出现除数为0的错误。

若除数为0,则除法运算没有意义。

有理数乘除法运算的应用非常广泛,尤其在实际生活和工作中。

例如,在购物时,我们常常需要计算商品的价格与数量的乘积,从而得到总价;在工程计算中,我们需要计算材料的价格与用量的乘积,从而得到总成本。

除法运算也同样重要,例如,在分配任务时,我们需要将总工作量按人数进行平均分配,这就涉及到除法运算。

有理数的乘法与除法

有理数的乘法与除法

有理数的乘法与除法一、有理数的定义与性质有理数是指可以表示为两个整数的比值的数,包括正整数、负整数和零。

有理数的乘法与除法是数学中重要的基本运算,它们有一些特殊的性质。

1. 有理数的定义有理数是整数和分数的统称,它们可以表示为两个整数的比值。

整数是没有小数部分的数,包括正整数、负整数和零;分数是整数与整数的比值,其中分母不为零。

2. 有理数的性质有理数的乘法和除法满足以下性质:•乘法的封闭性:两个有理数的乘积仍然是有理数。

•乘法的交换律:两个有理数的乘积与它们的顺序无关。

•乘法的结合律:三个有理数相乘的结果与先后顺序无关。

•乘法的分配律:有理数的乘法对加法具有分配性质。

•除法的定义:有理数a除以非零有理数b的商是一个有理数c,满足a = b * c。

•除法的乘法逆元:有理数a除以非零有理数b的商是有理数c,那么a等于b乘以c的结果。

二、有理数的乘法有理数的乘法是指两个有理数相乘的运算。

有理数的乘法可以通过以下步骤进行:1.将两个有理数的绝对值相乘,得到结果的绝对值。

2.判断两个有理数的符号,如果符号相同,则结果为正数;如果符号不同,则结果为负数。

有理数的乘法可以通过以下示例来说明:示例1:计算(-3/4) * (2/3)步骤1:计算绝对值的乘积:(3/4) * (2/3) = 6/12步骤2:判断符号,由于两个有理数的符号不同,结果为负数。

所以,(-3/4) * (2/3) = -6/12三、有理数的除法有理数的除法是指一个有理数除以另一个非零有理数的运算。

有理数的除法可以通过以下步骤进行:1.将除数的倒数乘以被除数,得到商的绝对值。

2.判断商的符号,如果除数与被除数的符号相同,则商为正数;如果符号不同,则商为负数。

有理数的除法可以通过以下示例来说明:示例2:计算(-3/4) / (2/3)步骤1:计算倒数的乘积:(-3/4) * (3/2) = -9/8步骤2:判断符号,由于两个有理数的符号相同,结果为正数。

有理数的乘法与除法

有理数的乘法与除法

有理数的乘法与除法有理数是数学中的一个重要概念,指的是可以用两个整数的比表示的数,包括正整数、负整数和零。

有理数的乘法和除法是数学中的基本运算,本文将对有理数的乘法和除法进行详细讨论。

一、有理数的乘法有理数的乘法遵循以下几个基本原则:1. 正数相乘,结果为正数;负数相乘,结果为负数。

例如,2乘以3的结果是6,而-2乘以-3的结果也是6。

2. 正数与负数相乘,结果为负数。

例如,2乘以-3的结果是-6,而-2乘以3的结果也是-6。

3. 0与任何数相乘,结果为0。

无论是正数、负数还是0,与0相乘的结果都是0。

在进行有理数的乘法运算时,我们可以将分数用分子和分母表示,并将乘法运算转化为分子和分母的乘法运算。

比如,2/3乘以4/5可以转化为2乘以4除以3乘以5,最后得到的结果是8/15。

二、有理数的除法有理数的除法同样遵循一些基本原则:1. 正数除以正数,结果为正数;负数除以负数,结果为正数。

例如,6除以2的结果是3,而-6除以-2的结果也是3。

2. 正数除以负数,结果为负数;负数除以正数,结果为负数。

例如,6除以-2的结果是-3,而-6除以2的结果也是-3。

3. 任何数除以0都是没有定义的。

在数学中,0不能作为除数。

在进行有理数的除法运算时,我们可以将除法转化为乘法的逆运算。

例如,我们要计算2/3除以4/5,可以将其转化为2/3乘以5/4,最终得到的结果是10/12,可以约分为5/6。

三、有理数的乘法与除法综合运算当有理数的乘法和除法同时存在时,我们需要按照运算的优先级进行计算。

一般来说,先进行乘法运算,然后再进行除法运算。

如果存在多个乘法和除法,需要按照从左到右的顺序依次进行计算。

例如,计算2/3乘以4/5再除以6/7,我们可以先计算2/3乘以4/5得到8/15,然后再将8/15除以6/7,最终得到的结果是56/90。

四、有理数的乘法与除法的应用有理数的乘法和除法在实际生活中有着广泛的应用。

例如,在购物中,我们可以使用有理数的乘法来计算折扣和打折后的价格;在分配任务时,我们可以使用有理数的除法来确定每个人的工作量;在计算速度和距离时,我们可以使用有理数的乘法和除法来计算平均速度和总的距离。

有理数的乘法与除法(3种题型)-2023年新七年级数学(苏科版)(解析版)

有理数的乘法与除法(3种题型)-2023年新七年级数学(苏科版)(解析版)

有理数的乘法与除法(3种题型)1.理解有理数的乘法与除法法则;2.能利用有理数的乘法与除法法则进行简单的有理数乘法运算;(重点)3.会利用有理数的乘法与除法解决实际问题.(难点)一.倒数(1)倒数:乘积是1的两数互为倒数.一般地,a• 1 (a≠0),就说a(a≠0)的倒数是.(2)方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.注意:0没有倒数.二.有理数的乘法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.三.有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•(b≠0)(2)方法指引:(1)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.(2)有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.一.倒数(共7小题)1.(2023•泗洪县三模)﹣2023的倒数是()A.﹣2023B.2023C.﹣D.【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:﹣2023的倒数是﹣.故选:C.【点评】本题考查倒数,关键是掌握倒数的定义.2.(2021秋•启东市校级期中)若a的相反数等于2,则a的倒数是()A.﹣B.﹣2C.D.2【分析】根据相反数、倒数的定义解答即可.倒数:乘积是1的两数互为倒数;相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:∵a的相反数等于2,∴a=﹣2,∴a的倒数是.故选:A.【点评】本题主要考查的是倒数的定义,掌握相关的定义是解题的关键.3.(2022秋•大丰区期末)若m,n互为倒数,则|mn﹣2|=.【分析】根据乘积为1的两个数互为倒数结合有理数减法以及绝对值进行求解即可.【解答】解:∵m,n互为倒数,∴mn=1,∴|mn﹣2|=|1﹣2|=|﹣1|=1,故答案为:1.【点评】本题考查了倒数的定义,有理数减法运算,求一个数的绝对值,熟练掌握以上知识是解本题的关键.4.(2023春•邗江区月考)2023的____是﹣2023,则横线上可填写的数学概念名词是()A.倒数B.平方C.绝对值D.相反数【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:2023的相反数是﹣2023.故选:D.【点评】本题考查相反数,关键是掌握相反数的定义.5.(2023•南京模拟)的相反数是,的倒数是.【分析】乘积是1的两数互为倒数,只有符号不同的两个数互为相反数,由此即可得到答案.【解答】解:﹣相反数是,的倒数是﹣2.故答案为:,﹣2.【点评】本题考查倒数,相反数,关键是掌握倒数、相反数的定义.6.(2022秋•邗江区期末)若a、b是互为倒数,则2ab﹣5=.【分析】互为倒数的两数之积为1,从而代入运算即可.【解答】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.【点评】本题考查了倒数的定义,属于基础题,注意互为倒数的两数之积为1.7.(2020秋•射阳县校级月考)|﹣3|的倒数是.【分析】先计算|﹣3|,再求|﹣3|的倒数.【解答】解:∵|﹣3|=3,∴|﹣3|的倒数是.故答案为.【点评】本题是基础题,考查了倒数、绝对值的概念,要熟练掌握.二.有理数的乘法(共15小题)8.(2015•苏州模拟)计算(﹣2)×5的结果是()A.10B.5C.﹣5D.﹣10【分析】根据有理数的乘方运算法则直接求出即可.【解答】解:(﹣2)×5=﹣10.故选:D.【点评】此题主要考查了有理数乘法运算,正确把握运算法则是解题关键.9.(2022秋•邗江区校级月考)计算﹣×=.【分析】根据有理数的乘法法则计算可得.【解答】解:﹣×=﹣,故答案为:﹣.【点评】本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则.10.(2022秋•泰州月考)计算(﹣2)×(﹣3)的结果等于()A.﹣5B.5C.﹣6D.6【分析】根据有理数乘法法则进行计算即可.【解答】解:根据有理数乘法法则:负负得正,(﹣2)×(﹣3)=6.故选:D.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.11.(2022秋•铜山区校级月考)已知|x|=3,|y|=6.若xy<0,求x+y的值.【分析】先根据绝对值的定义可求出x=±3,y=±6,再根据xy<0进行分类讨论即可求解.【解答】解:∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,①x=3,y=﹣6,x+y=3+(﹣6)=﹣3,②x=﹣3,y=6,x+y=﹣3+6=3,∴x+y=﹣3或3.【点评】本题主要考查了绝对值和有理数的加法,掌握绝对值的定义及有理数的加法法则是解题的关键.12.(2022秋•泰州月考)用简便方法计算:(1);(2)(﹣99)×999.【分析】(1)原式变形后,利用乘法分配律计算即可求出值;(2)先将题目中的式子变形,然后根据乘法分配律可以解答本题.【解答】解:(1)原式=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣159;(2)原式=(1﹣100)×999=999﹣100×999=999﹣99900=﹣98901.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.13.(2023春•无锡月考)在明代的《算法统宗》一书中将用格子的方法计算两个数相乘称作“铺地锦”,如图1,计算82×34,将乘数82记入上行,乘数34记入右行,然后用乘数82的每位数字乘以乘数34的每位数字,将结果记入相应的格子中,最后按斜行加起来,既得2788.如图,用“铺地锦”的方法表示两个两位数相乘,则的a值是3.【分析】认真仔细理解题意,根据题意可得出10(a﹣2)+(﹣a+5)=4a,计算出a值.【解答】解:根据题意可得,如图所示,且设方格相应的位置为x,y,则有0+a+x=2a﹣2,y+0+1=﹣a+6,那么x=a﹣2,y=﹣a+5,再将其都代入中,得到10(a﹣2)+(﹣a+5)=4a,解得:a=3.故答案为:3.【点评】本题主要考查一元一次方程的应用,以及新概念的快速理解运用能力,解答的关键是根据题意列出相应的方程.14.(2022秋•宿豫区期中)用简便方法计算:.【分析】先把所求的算式变形为,再利用乘法分配律计算即可.【解答】解:=====.【点评】本题考查了有理数的混合运算,掌握有理数混合运算顺序和运算法则是关键.15.(2022秋•姜堰区期中)小明说:“请你任意想一个数,把这个数乘3后加12,然后除以6,再减去你原来所想的那个数的,我都可以知道你计算的结果.”请根据小明的说法进行探索.(1)如果你想的那个数是﹣2,请列式并计算结果;(2)你觉得小明说的话可信吗?请说明你的理由.【分析】(1)根据给定的运算规则可得(﹣2×3+12)÷6﹣,求解即可;(2)设这个数是x,根据题意,得,进一步化简即可.【解答】解:(1)根据题意,得(﹣2×3+12)÷6﹣=6÷6+1=1+1=2;(2)小明说的话可信,理由如下:设这个数是x,根据题意,得==2,∴结果和x无关,是个定值,∴小明说的话可信.【点评】本题考查了有理数的乘法,列代数式求值,能根据题意列出代数式是解题的关键.16.(2022秋•徐州月考)已知|x|=,|b|=7.若xy<0,求x﹣y的值.【分析】根据条件,分别求出符合条件的x,y的值,再进行计算.【解答】解:∵|x|=3,|b|=7,∴x=±3,b=±7,∵xy<0,∴x与y异号,①当x=3时,y=﹣7,x﹣y=3﹣(﹣7)=10;②当x=﹣3,y=7,x﹣y=﹣3﹣7=﹣10.综上所述,x﹣y的值为10或﹣10.【点评】本题考查了有理数的减法运算以及绝对值知识点,综合性较强,难度适中.17.(2022秋•江宁区校级月考)分类讨论思想是数学的重要思想,在学习有理数的过程中,也深有感受!(1)当ab<0时,若b>0,|a|<|b|,则a+b0;(2)当abc<0时,若ab>0,则c0;(3)当a与b都是整数,且|a|+|b|=1,求a+b的值.(写出分类讨论的过程)【分析】(1)根据有理数的乘法法则和加法法则即可确定;(2)根据有理数的乘法法则即可确定;(3)a与b都是整数,且|a|+|b|=1,分情况讨论:①a=1,b=0,②a=0,b=1,③a=﹣1,b=0,④a=0,b=﹣1,分别计算a+b的值即可.【解答】解:(1)∵ab<0,b>0,∴a<0,∵|a|<|b|,∴a+b>0,故答案为:>;(2)∵abc<0,ab>0,∴c<0,故答案为:<;(3)∵a与b都是整数,且|a|+|b|=1,分情况讨论:①a=1,b=0,此时a+b=1;②a=0,b=1,此时a+b=1;③a=﹣1,b=0,此时a+b=﹣1;④a=0,b=﹣1,此时a+b=﹣1,∴a+b的值为±1.【点评】本题考查了有理数的乘法和有理数的加法,熟练掌握有理数的乘法法则和加法法则是解题的关键,注意分情况讨论.18.(2022秋•靖江市校级月考)已知:|a|=2,|b|=5.(1)若ab<0,求a﹣b的值;(2)若|a﹣b|=a﹣b,求ab的值.【分析】根据绝对值的定义可得a=±2,b=±5;(1)根据ab<0,分情况讨论:①a=2,b=﹣5,②a=﹣2,b=5,分别求解即可;(2)根据|a﹣b|=a﹣b,可得a﹣b≥0,分两种情况:①a=2,b=﹣5,②a=﹣2,b=﹣5,分别求解即可.【解答】解:∵|a|=2,|b|=5,∴a=±2,b=±5,(1)∵ab<0,①a=2,b=﹣5,此时a﹣b=7,②a=﹣2,b=5,此时a﹣b=﹣7,∴a﹣b的值为±7;(2)∵|a﹣b|=a﹣b,∴a﹣b≥0,①a=2,b=﹣5,此时ab=﹣10,②a=﹣2,b=﹣5,此时ab=10,∴ab的值为±10.【点评】本题考查了有理数的乘法,有理数的除法,绝对值等,熟练掌握这些知识是解题的关键.19.(2022秋•港闸区校级月考)如果a,b,c是非零有理数,求式子的所有可能的值.【分析】根据绝对值的性质和有理数的乘法法则分情况讨论即可.【解答】解:根据题意,当a>0,b>0,c>0时,=2+2+2﹣1=5;当a>0,b>0,c<0时,=2+2﹣2+1=3;当a>0,b<0,c>0时,=2﹣2+2+1=3;当a<0,b>0,c>0时,=﹣2+2+2+1=3;当a<0,b<0,c>0时,=﹣2﹣2+2﹣1=﹣3;当a>0,b<0,c<0时,=2﹣2﹣2﹣1=﹣3;当a<0,b>0,c<0时,=﹣2+2﹣2﹣1=﹣3;当a<0,b<0,c<0时,=﹣2﹣2﹣2+1=﹣5;综上所述,式子的所有可能的值为±3或±5.【点评】本题考查了有理数的乘法和绝对值,熟练掌握绝对值的性质以及有理数的乘法法则是解题的关键.20.(2022秋•鼓楼区期末)在数轴上有一点A,将点A向左移动2个单位得到点B,点B向左移动4个单位得到点C,点A、B、C分别表示有理数a、b、c.若a、b、c三个数的乘积为负数且这三个数的和与其中的一个数相等,则a的值为.【分析】设a的值为x,则b的值为x﹣2,c的值为x﹣6,根据这三个数的和与其中的一个数相等分情况讨论即可得出答案.【解答】解:设a的值为x,则b的值为x﹣2,c的值为x﹣6,①当x+x﹣2+x﹣6=x时,解得:x=4,∴a=4,b=2,c=﹣2,∴abc<0,符合题意;故a的值为:4.②当x+x﹣2+x﹣6=x﹣2时,解得:x=3,∴a=3,b=1,c=﹣3,∴abc<0,符合题意;故a的值为:3.③当x+x﹣2+x﹣6=x﹣6时,解得:x=1,∴a=1,b=﹣1,c=﹣5;∴abc>0,不符合题意;综上所述:a的值为4或3.故答案为:4或3.【点评】本题考查了数轴,有理数的乘法,考查分类讨论的数学思想,根据这三个数的和与其中的一个数相等分情况讨论是解题的关键.21.(2022秋•崇川区校级月考)已知:|a|=2,|b|=5,若|a﹣b|=a﹣b,则ab=【分析】根据绝对值的意义先确定a、b的值,再计算a与b的积.【解答】解:∵|a|=2,|b|=5,∴a=±2,b=±5.∵|a﹣b|≥0,∴a﹣b≥0,∴a=±2,b=﹣5.∴ab=±2×(﹣5)=±10.故答案为:±10.【点评】本题主要考查了绝对值的意义,理解绝对值的意义是解决本题的关键.22.(2022秋•启东市校级月考)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【分析】分别根据运算“*”的运算方法列式,然后进行计算即可得解.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.【点评】本题考查了有理数的乘法,是基础题,理解新运算的运算方法是解题的关键.三.有理数的除法(共6小题)23.(2023•如东县一模)计算(﹣6)÷3=()A.2B.﹣2C.D.﹣【分析】根据有理数除法运算法则“同号得正,异号得负,并把绝对值相除”计算即可.【解答】解:原式=﹣(6÷3)=﹣2,故选:B.【点评】本题考查有理数除法法则的运用,熟悉有理数除法法则是解题的关键.24.(2023•姑苏区三模)计算(﹣12)÷3的结果等于()A.﹣4B.4C.﹣9D.9【分析】利用有理数的除法法则解答即可.【解答】解:原式=﹣12÷3=﹣4.故选:A.【点评】本题主要考查了有理数的除法,熟练掌握有理数的除法法则是解题的关键.25.(2023•苏州一模)化简的结果是()A.2B.﹣2C.D.【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,由此即可计算.【解答】解:=1×(﹣2)=﹣2.故选:B.【点评】本题考查有理数的除法,关键是掌握有理数除法法则.26.(2022秋•亭湖区期中)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,如何抽取能使这2张卡片上的数字乘积最大,并说明理由;(2)从中取出2张卡片,如何抽取能使这2张卡片上的数字相除的商最小,并说明理由.【分析】(1)根据两数相乘,同号得正,异号得负,并把绝对值相乘,取绝对值最大且同号的2张卡片;(2)根据两数相除,同号得正,异号得负,从中取出2张卡片,使这2张卡片上的数字相除的商最小,则取绝对值相差越大且异号的两数相除即可得到答案.【解答】解:(1)从中取出2张卡片,使这2张卡片上的数字乘积最大,可抽取﹣7和﹣3,﹣7×(﹣3)=21;(2)从中取出2张卡片,使这2张卡片上的数字相除的商最小,可抽取﹣7和1,﹣7÷1=﹣7.【点评】本题考查有理数的乘、除法运算,同时考查数学运算素质,熟练掌握相关运算法则,是解题的关键.27.(2022秋•玄武区期中)下列说法:①若|a|=|b|,则a=b;②若a、b互为倒数,则=1;③若|a|=a,则a>0;④若a+b=0,则a、b互为相反数.其中正确的个数有()A.1个B.2个C.3个D.4个【分析】分别利用有理数的加法、相反数的定义,倒数的定义、有理数乘法运算,绝对值的性质分别分析得出答案.【解答】解:①若|a|=|b|,则a=b或a=﹣b,故①不符合题意;②若a、b互为倒数,则ab=1,故②不符合题意;③若|a|=a,则a一定为正数或0,故③不符合题意;④若a+b=0,则a、b互为相反数,故④符合题意.故选:A.【点评】此题主要考查了相反数、倒数的定义、有理数的加法,绝对值的性质等知识,正确掌握相关性质是解题关键.28.(2022秋•盐都区期中)计算:(1);(2);(3).【分析】(1(2)从左到右依次计算即可;(3)从左到右依次计算即可.【解答】解:(1)原式=+(×)=;(2)原式=(﹣8)×=﹣2;(3)原式=(﹣12)×(﹣)=10.【点评】本题考查的是有理数的乘法与除法,熟知有理数的乘除法则是解题的关键.一、单选题 1.(2022秋·江苏连云港·七年级统考期中)下列四个算式中运算结果为2022的是( )A .()20221−⨯−B .()20221−−C .()20221+−D .()20221÷- 【答案】A【分析】根据有理数运算的法则逐项判断即可.【详解】解:()202212022−⨯−=,故A 符号题意,()20221202212023−−=+=,故B 不符合题意; ()20221202212021+−=−=,故C 不符合题意; ()202212022÷=−-,故D 不符合题意;故选:A . 【点睛】本题考查有理数的运算,正确计算是解题的关键.【答案】A【分析】根据乘积是1的两个数互为倒数,即可得解.【详解】解:12的倒数是2;故选A .【点睛】本题主要考查了倒数的定义,熟练掌握乘积是1的两个数互为倒数,是解题的关键.3.(2022秋·江苏南通·七年级校联考期末)要使算式()52−□的运算结果最小,则“W ”内应填入的运算符号为( )A .+B .−C .⨯D .÷ 【答案】C【分析】根据有理数加减乘除和有理数大小比较的性质计算,即可得到答案.【详解】解:()523−+=−,()527−−=−,()5210−⨯=−,()5522−÷=−∵510732−<−<−<−∴要使算式()52−□的运算结果最小,则“W ”内应填入的运算符号为:⨯, 故选:C .【点睛】本题主要考查了有理数的四则运算,有理数比较大小,熟知相关计算法则是解题的关键. 4.(2022秋·江苏连云港·七年级统考期末)如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则b 与a 的( )A .和为正数B .差为正数C .积为正数D .商为正数 【答案】B【分析】根据点在数轴上的位置,判断出数的大小,进而判断出式子的符号即可.【详解】解:由图可知:0a b <<,a b >,A 、b 与a 的和为负数,选项错误,不符合题意;B 、b 与a 的差为正数,选项正确,符合题意;C 、b 与a 的积为负数,选项错误,不符合题意;D 、b 与a 的商为负数,选项错误,不符合题意;故选B .【点睛】本题考查利用数轴判断式子的符号.熟练掌握数轴上的点表示的数从左到右依次增大,是解题的关键. 5.(2022秋·江苏南京·七年级统考期末)如图,数轴上点A B C D 、、、所表示的数分别是a b c d 、、、,若0abcd <,ab cd >,则原点的位置在( )A .A 的左边B .线段AB 上C .线段BC 上D .线段CD 上【答案】D【分析】根据数轴上点A B C D 、、、的位置得出a b c d <<<,结合0abcd <,得出0,0a b c d <>、、或,,0,0a b c d <>,再结合ab cd >可得出原点的位置在线段CD 上.【详解】因为0abcd <,a b c d <<<,所以要么0,0a b c d <>、、,要么,,0,0a b c d <>,又因为ab cd >,所以,,0,0a b c d <>,所以原点的位置在线段CD 上.故选∶D .【点睛】本题考查数轴,掌握数轴上点的特点及有理数的乘法法则是解题的关键. 6.(2023秋·江苏镇江·七年级统考期末)如图,数轴上的点A ,B ,C 分别表示有理数a ,b ,c ,则下列结论错误的是( )A .0ac <B .0a b +<C .||b c b c −=−D .a c b c +<+【答案】C【分析】根据数轴上点的位置得出三个数的大小关系、正负情况、绝对值大小情况,再依据有理数的乘法法则、加法法则、去绝对值法则、除法法则判断即可求解.【详解】解:根据数轴上点的位置得:0a b c <<<,||||||<<b a c ,0ac ∴<,0a b +<,0b c −<,a c b c +<+,||b c c b ∴−=−, C ∴选项错误,不符合题意.故选:C .【点睛】此题考查了数轴,以及有理数运算法则,弄清数轴上点表示数的特征是解本题的关键. 7.(2023春·江苏南京·七年级南师附中新城初中校联考期中)如图为乘法表的一部分,每一个空格填入该格最上方与最左方的两数之积,则16个阴影空格中填入的数之和是( )A.87 464 B.87 500 C.87 536 D.87 572【答案】B【分析】根据题意,列式计算即可.【详解】解:∵每一个空格填入该格最上方与最左方的两数之积,∴16个阴影空格中填入的数之和是:()()()() 6186878889628687888963868788896486878889⨯++++⨯++++⨯++++⨯+++ ()()6162636486878889=+++⨯+++250350=⨯87500=;故选B.【点睛】本题考查有理数的混合运算.正确的理解题意,列出算式,是解题的关键.【答案】D【分析】根据有理数的乘、除、加、减运算法则逐一计算即可.【详解】解:A.39344−⨯=−,不符合题意;B.3433443−÷=−⨯=−,不符合题意;C.313244−+=−,不符合题意;D.333344−−=−,符合题意;故选:D.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.【答案】B【分析】分别利用有理数的加法、相反数的定义,倒数的定义、有理数乘法运算,绝对值的性质分别分析得出答案.【详解】解:①若0a b +=,则a 、b 互为相反数,是正确的;②若a 、b 互为倒数,则1ab =,是正确的;③若0ab >,则a 、b 均大于0或均小于0,题干的说法是错误的;④若||a a =,则a 一定为正数或0,题干的说法是错误的.故选:B .【点睛】此题主要考查了相反数、倒数的定义、有理数的加法,乘法运算,绝对值的性质等知识,正确掌握相关性质是解题关键.二、填空题【答案】8【分析】根据新定义代入计算,即可求解.【详解】解:根据题意得:()()232238⊗−=−⨯−=,故答案为:8. 【点睛】本题主要考查了有理数的混合运算,理解新定义是解题的关键.11.(2022秋·江苏苏州·七年级校考期中)在数5−、1、3−、5、2−中任取两个数相乘,其中最大的积是______,最小的积是______;任取三个数相乘,其中最大的积是______,最小的积是______.【答案】 15 25− 75 30−【分析】根据乘法法则,当偶数个负数相乘时积为正,当奇数个负数相乘时积为负,即可解决最大积和最小积的问题.【详解】解:任取两个数相乘,其中最大的积是()5315−⨯−=,最小的积是5525−⨯=−, 任取三个数相乘,其中最大的积是()53575−⨯−⨯=,最小的积是()()53230−⨯−⨯−=−,故答案为:15,25−,75,30−. 【点睛】本题考查了有理数的大小比较、有理数的乘法,解题关键要掌握有理数的大小比较、有理数的乘法法则.【答案】2− 23 【分析】①先计算32−的值,再根据相反数的定义求解即可.②先计算32−的值,再根据倒数的定义求解即可.【详解】①∵3322−=,32的相反数是32− ∴32−的相反数是32−.故答案为:32− ②∵3322−=,32的倒数是23 ∴32−的倒数是23故答案为:23【点睛】本题主要考查了绝对值、相反数和倒数,掌握绝对值、相反数和倒数的定义是解题的关键. 13.(2020秋·江苏扬州·七年级校考期中)从数6−,1,3.5,2−任取两个数相乘,所得的结果最小的是______.【答案】21− 【分析】根据异号两数相乘得负,取6−与3.5相乘可得结果最小的是21−.【详解】解:∵66−=,22−=,12 3.56<<<,∴任取两个数相乘,所得的结果最小的是()6 3.521−⨯=−.故答案为:21−. 【点睛】此题考查了有理数的乘法,以及有理数的大小比较,熟练掌握运算法则是解本题的关键. 14.(2022秋·江苏宿迁·七年级校考期中)今年国庆长假期间,我市新区“诚信专业修脚店”推出酬宾优惠:充500元送100元,顾客可获得价值600元的贵宾卡一张,进店消费时凭借此卡还可以享受标价7.5折的优惠,这样两次优惠相加,持此贵宾卡的顾客消费时的实际支付款只相当于标价的__________折.【答案】6.25【分析】直接用500除以600再乘以7.5折即可得到答案.【详解】解:5006007.5 6.25÷⨯=折,故答案为:6.25.【点睛】本题主要考查了有理数乘除混合计算的实际应用,正确理解题意是解题的关键. “”(2a b a =+()114−=________【答案】14【分析】把相应的值代入,利用有理数的相应的法则进行运算即可.【详解】解:1(1)4− 11(21)(21)(1)44=⨯−⨯⨯+−−11(1)(1)122=−⨯++13122=−⨯+314=−+ 14=.故答案为:14.【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.16.(2022秋·江苏淮安·七年级校考期末)新亚商场在2023年“元旦”期间举行促销活动,根据顾客按商品标价的一次性购物总额,规定相应的优惠方法如下:①如果不超过600元,则不予优惠;②如果超过600元,但不超过900元,则按购物总额给予8折优惠;③如果超过900元,则其中900元给予8折优惠,超过900元的部分给予6折优惠,促销期间,小王和妈妈分别看中一件商品,若各自单独付款,则应分别付款560元和640元;若合并付款,则她们总共只需付款___________元. 【答案】996或1080/1080或996【分析】根据题意可知付款560元时,其实际标价为为560或700元,付款640元,实际标价为800元,分两种情况分别计算求出一次购买标价1360元或1500元的商品应付款即可.【详解】解:由题意知付款560元,实际标价为560或560×108=700(元),付款640元,实际标价为106408008⨯=(元),如果一次购买标价5608001360+=(元)的商品应付款:()9000.813609000.6996⨯+−⨯=(元);如果一次购买标价7008001500+=(元)的商品应付款:()9000.815009000.61080⨯+−⨯=(元).故答案是:996或1080.【点睛】本题主要考查了有理数混合运算的应用,注意顾客付款560元时,要分两种情况考虑:有可能原价就是560元,也有可能符合优惠②,此时的结论也会有差别,另外注意计算的准确性.三、解答题【答案】2【分析】根据乘法分配律进行计算即可求解. 【详解】解:()131122412⎛⎫−+⨯− ⎪⎝⎭()()()1311212122412=⨯−−⨯−+⨯−691=−+−2=【点睛】本题考查了有理数的乘法运算,熟练掌握分配律是解题的关键.(2)()()32435−÷⨯−−. 【答案】(1)4 (2)64【分析】(1)用乘法分配律计算; (2)先算括号内的,再算括号外的.【详解】(1)解:原式125121212236=⨯+⨯−⨯6810=+−4=; (2)解:原式()()88=−⨯−64=.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的运算律和相关运算法则.【答案】(1)3(2)2− (3)10【分析】(1)根据有理数乘法法则:同号两数相乘得正,异号两数相乘得负,并把绝对值相乘;据此计算即可;(2)根据有理数的乘除混合运算法则,先将除法转化成乘法,再算乘法,进行计算即可; (3)先将除法转化成乘法,然后根据有理数乘法运算法则进行计算即可.【详解】(1)解:1223⎛⎫⎛⎫−⨯− ⎪ ⎪⎝⎭⎝⎭1223=⨯13=;(2)解:1(32)44−÷⨯11(32)44=−⨯⨯113244=−⨯⨯2=−;(3)解:124(2)15⎛⎫÷−÷− ⎪⎝⎭152426⎛⎫⎛⎫=⨯−⨯− ⎪ ⎪⎝⎭⎝⎭152426=⨯⨯10=. 【点睛】此题考查有理数的乘除混合运算,熟练掌握有理数的乘除法运算法则是解答此题的关键.【答案】(1)8(2)1 5−【分析】(1)根据乘法分配律可以解答本题;(2)根据题目中的例子的解题方法,可以求出所求式子的值.【详解】(1)原式1111212362=⨯−⨯+⨯426=−+8=;(2)原式的倒数是:354284147⎛⎫−−⨯⎪⎝⎭3542828284147=⨯−⨯−⨯211016=−−=5−,故原式15=−.【点睛】本题考查有理数的混合运算以及乘法运算律,解答本题的关键是明确有理数混合运算法则.【答案】(1)14,2 (2)4 (3)8【分析】(1)根据数轴上两点距离公式36x −=表示的是数x 到3的距离为6,则x 表示的数为9或3−,同理可得y 表示的数为5−或1,由此求解即可; (2)直接去绝对值即可得到答案;(3)先讨论去绝对值得到当21x −≤≤,12x x −++取得最小值为3,当43y −≤≤时,34y y −++取值最小值为7,再由123410x x y y −+++−++=得到123347x x y y −++=−++=,,则21x −≤≤,43y −≤≤,由此根据有理数乘法计算法则求解即可.【详解】(1)解:∵数轴上表示x 和3的两点之间的距离表示为3x −,∴36x −=表示的是数x 到3的距离为6,∴x 表示的数为9或3−, 同理可得y 表示的数为5−或1,∵数x 、y 在数轴上表示的数分别是点A 、点B , ∴A 、B 两点间的最大距离是()9514−−=,最小距离是()352−−−=,故答案为:14,2;(2)解:∵x 表示一个有理数,且31x −<<, ∴13314x x x x −++=++−=,故答案为:4;(3)解:当21x −≤≤时,12213x x x x −++=++−=, 当<2x −时,1221213x x x x x −++=−−+−=−−>,当1x >时,1221213x x x x x −++=++−=+>,∴当21x −≤≤,12x x −++取得最小值为3,同理可得:当43y −≤≤时,34y y −++取值最小值为7, ∵123410x x y y −+++−++=,123x x −++≥,347y y −++≥,∴123347x x y y −++=−++=,,∴21x −≤≤,43y −≤≤,∴当24x y =−=−,时,xy 有最大值,最大值为()248−⨯−=,故答案为:8.【点睛】本题主要考查了数轴上两点距离公式,绝对值的几何意义,去绝对值,有理数的乘法计算等等,灵活运用所学知识是解题的关键.一、单选题1.下列各组的两个数中,互为倒数的是( ) A .3和﹣3 B .﹣3和13−C .﹣3和13D .13和13−【答案】B【分析】根据倒数的意义,两个数的积等于1,这两个数互为倒数,分别把每组的两个数相乘,看其积是否等于1;据此解答.【详解】解:A 、3×()3−=-9,不是互为倒数; B 、1(3)()13−⨯−=,是互为倒数;C 、1313−⨯=−,不是互为倒数;D 、11()3319⨯−=−,不是互为倒数;故选:B .【点睛】本题是考查倒数的意义及特征,判断两个数是否是互为倒数,可以根据倒数的意义,也可看两个数的分子、分母的位置是否相反(整数看作分母为1的分数).2.两个不为0的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( ) A .一定相等B .一定互为倒数C .一定互为相反数D .相等或互为相反数【答案】D【分析】设这两个数分别为a ,b ,根据题意可得b aa b=,从而可得22a b =,从而判断出a 和b 的关系. 【详解】设这两个数分别为a ,b 依题意可得:b a a b= 化简得:22a b = ∴a=b 或a=-b 故答案选择:D.【点睛】本题考查的是有理数的除法:除以一个数等于乘以这个数的倒数.3.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了( ) A .80元 B .120元C .160元D .200元【答案】C【分析】八折是指售价是标价的80%,把标价看成单位“1”,实际少付的钱数就是标价的(1-80%),它对应的数量是40元,根据分数除法的意义,用40除以(1-80%)即可求出标价,再减去40元,就是实际花的钱数.【详解】解:40÷(1-80%) =40÷20% =200(元) 200-40=160(元)答:他购买这件商品花了160元. 故选:C .【点睛】解决本题关键是理解打折的含义,找出单位“1”,再根据分数除法的意义求出标价,从而解决问题.4.在1,2−,3−,4这四个数中,任取两个数相乘,所得积最大的是( ) A .12− B .2−C .4D .6【答案】D【分析】根据有理数的乘法以及有理数的大小比较,列出乘积最大的算式计算即可得解. 【详解】解:所得的积最大的是:()()236−⨯−=. 故选D .。

有理数的乘除

有理数的乘除

有理数的乘除有理数是数学中的一类数,包括整数、分数和整数倍的乘法和除法运算。

在数学中,有理数的乘除运算是非常重要的基础知识。

本文将介绍有理数的乘法和除法,并且探讨一些与有理数乘除相关的性质。

一、有理数的乘法有理数的乘法是指两个有理数相乘的运算。

两个有理数相乘的结果仍然是一个有理数。

1.1 有理数的乘法规则有理数的乘法遵循以下规则:- 两个正数相乘,结果为正数;- 两个负数相乘,结果为正数;- 一个正数和一个负数相乘,结果为负数。

例如,2乘以3等于6,负3乘以负2等于6,负4乘以5等于负20。

1.2 有理数的乘法性质有理数的乘法具有以下性质:- 乘法交换律:a乘以b等于b乘以a,即ab=ba。

- 乘法结合律:a乘以(b乘以c)等于(a乘以b)乘以c,即a(bc)=(ab)c。

- 乘法分配律:a乘以(b加上c)等于ab加上ac,即a(b+c)=ab+ac。

这些性质使得有理数的乘法运算更加简单和灵活。

二、有理数的除法有理数的除法是指一个有理数除以另一个有理数的运算。

两个有理数的除法结果也是一个有理数,除非除数为0,此时除法运算无意义。

2.1 有理数的除法规则有理数的除法遵循以下规则:- 两个正数相除,结果为正数;- 两个负数相除,结果为正数;- 一个正数除以一个负数,结果为负数。

例如,8除以4等于2,负12除以负3等于4,6除以负2等于负3。

2.2 有理数的除法性质有理数的除法具有以下性质:- 除法结合律:a除以(b除以c)等于(a乘以c)除以b,即a/(b/c)=(a*c)/b。

- 除法分配律:a除以(b加上c)等于a除以b加上a除以c,即a/(b+c)=a/b+a/c。

这些性质使得有理数的除法运算更加简便和灵活。

三、有理数乘除的习题为了更好地理解有理数的乘除运算,接下来我们解决一些习题。

3.1 习题一计算下列乘法:- 2乘以(-3)等于多少?- 4乘以(-2/3)等于多少?- (-5/6)乘以(-2/3)等于多少?3.2 习题二计算下列除法:- 8除以(-4)等于多少?- (-15)除以(-3)等于多少?- (-9/10)除以(3/5)等于多少?解答这些习题有助于加深理解有理数的乘除运算规则和性质。

有理数的乘除运算

有理数的乘除运算

有理数的乘除运算有理数是数学中的一种数,它可以表示为两个整数的比值,其中分母不为零。

有理数的乘除运算是数学中的基本运算之一,它在实际生活和科学研究中有着广泛的应用。

在本文中,将详细介绍有理数的乘除运算方法以及相关的例题。

一、有理数的乘法运算1. 有理数的乘法规律有理数的乘法遵循以下规律:- 两个正数相乘,乘积也是正数;- 两个负数相乘,乘积是正数;- 正数与负数相乘,乘积是负数。

例如,2 × 3 = 6,(-2) × (-3) = 6,2 × (-3) = -6。

2. 有理数的乘法计算有理数的乘法计算方法是将两个有理数的分子相乘得到新的分子,分母相乘得到新的分母,最后将结果约简。

例如,对于分数 -3/4 和 1/2,我们可以进行以下计算:(-3/4) × (1/2) = (-3) × 1 / (4 × 2) = -3/8。

二、有理数的除法运算1. 有理数的除法规律有理数的除法遵循以下规律:- 两个正数相除,商是正数;- 两个负数相除,商是正数;- 正数除以负数,商是负数。

例如,6 ÷ 2 = 3,(-6) ÷ (-2) = 3,6 ÷ (-2) = -3。

2. 有理数的除法计算有理数的除法计算方法是将除数取倒数,再将除法转化为乘法进行计算。

具体步骤如下:- 将除数取倒数,即将分子与分母交换位置;- 将除法转化为乘法,即用除数的倒数乘以被除数。

例如,对于分数 5/6 ÷ 2/3,我们可以进行以下计算:(5/6) ÷ (2/3) = (5/6) × (3/2) = (5 × 3) / (6 × 2) = 15/12 = 5/4。

三、有理数乘除运算的混合运算有理数的乘除运算可以与加减运算一起进行,按照先乘除后加减的原则进行运算。

在运算过程中,可以根据需要使用括号来改变运算的顺序。

七年级初一数学2.6有理数的乘法与除法知识点解读有理数的除法

七年级初一数学2.6有理数的乘法与除法知识点解读有理数的除法

知识点解读:有理数的除法一、关于有理数的除法知识点一:有理数的除法法则(掌握)有理数的除法法则:(1)法则1:除以一个数等于乘以这个数的倒数.用字母表示为:a ÷b =a × 1b(b ≠0). (2)法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不等于0的数都得0 . 温馨提示:对于除法的两个法则,在计算时可根据具体情况选用,一般在不能整除的情况下选用第二法则较简便;而在能整除的情况下则通常选用第一法则.例1 计算:(1)()()644-÷-; (2)37521446⎛⎫⎛⎫⎛⎫÷-÷-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 析解:两个数的除法运算,应先确定商的符号,然后把被除数和除数的绝对值相除;多个有理数的除法运算,应先转化为乘法运算.解:(1)原式=()644+÷=16;(2)原式=14462375⎛⎫⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=14462375⎛⎫-⨯⨯⨯ ⎪⎝⎭=325-.知识点二:倒数的概念(理解)倒数的概念:与小学学过的互为倒数的概念一样,即乘积为1的两个数互为倒数,如:3和13,5-和15-,56-和65-分别互为倒数.一般的,当0a ≠时,a 与1a互为倒数. 对倒数的概念的理解还应注意以下几点:(1)零没有倒数;(2)正数的倒数仍是正数,负数的倒数仍是负数;(3)倒数等于本身的数是1和-1;(4)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可,求一个小数的倒数,要先把小数转化为分数后再求其倒数,求一个带分数的倒数,要先把带分数化为假分数再求.知识点三:有理数的混合运算(拓展)二、关于有理数的混合运算对于乘除混合运算问题,我们可以按从左到右的顺序依次进行计算,也可以直接把除法转化为乘法来计算,若有括号的应先做括号里面的.例2 计算(-81)÷214×49÷(-15).分析:将除法先统一成乘法,再利用约分来简化计算.解:(-81)÷214×49÷(-15)=81×49×49×115=1115.说明:有理数的乘除混合运算必须按从左到右的顺序依次进行计算,像(-81)÷214×49=-81÷94×49=-81,这样计算是错误的.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,正确的是()A.若ac2<bc2,则a<b B.若ab<c,则a<b cC.若a﹣b>a,则b>0 D.若ab>0,则a>0,b>0 【答案】A【解析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A、若ac2<bc2,则a<b,正确;B、若ab<c,则a<bc,错误;C、若a﹣b>a,则b<0,故错误;D、若ab>0,则a>0,b>0或a<0,b<0,故错误,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.2.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cm C.5cm,5cm,11cm D.13cm,12cm,20cm【答案】D【解析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.3.如果点M(a+3,a+1)在直角坐标系的x轴上,那么点M的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)【答案】B【解析】∵点M(a+3,a+1)在直角坐标系的x轴上,∴a+1=0,解得a=−1,所以,a+3=−1+3=2,点M的坐标为(2,0).故选B.4.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.25【答案】C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C.考点:等腰三角形的性质;三角形三边关系.5.港珠澳大桥2018年10月24日正式通车,整个大桥造价超过720亿元人民币,720亿用科学记数法表示为()A.72×109B.7.2×109C.7.2×1010D.0.72×1011【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:720亿用科学记数法表示为7.2×1010故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.3 B.27 C.9 D.1【答案】A【解析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,12×81=27, 第2次,12×27=9, 第3次,12×9=3, 第4次,12×3=1, 第5次,1+2=3,第6次,12×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2019是奇数,∴第2019次输出的结果为3,故选:A .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.7.已知方程组35223x y k x y k +=+⎧⎨+=⎩的解满足x + y = 2 ,则k 的值为( ) A .4B .- 4C .2D .- 2 【答案】A【解析】方程组中两方程相减消去k 得到关于x 与y 的方程,与x+y=2联立求出解,即可确定出k 的值.【详解】35223x y k x y k ++⎧⎨+⎩=①=②, ①-②得:x+2y=2,222x y x y +⎧⎨+⎩== , 解得20x y ⎧⎨⎩==, 则k=2x+3y=4,故选A .【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.下列调查活动中适合使用全面调查的是( )A .某种品牌手机的使用寿命B .全国植树节中栽植树苗的成活率C .了解某班同学课外阅读经典情况D .调查“厉害了,我的国”大型电视记录片的收视率【答案】C【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行一一判断解答.【详解】A. 某种品牌手机的使用寿命,适合抽样调查,故A 选项错误;B.全国植树节中栽植树苗的成活率,适合抽样调查,故B 选项错误;C.了解某班同学的课外阅读经典情况,适合使用全面调查,故C 选项正确;D.调查“厉害了,我的国”大型记录电影在线收视率,适于抽样调查,故D 选项错误.故选C .【点睛】本题考查抽样调查和全面调查的区别,难度不大 9.若关于x 的不等式组030x a x -≥⎧⎨-<⎩有3个整数解,则a 的值可以是( ) A .-2B .-1C .0D .1【答案】C 【解析】试题解析:解不等式组030x a x -≥⎧⎨-<⎩, 得 3x a x ≥⎧⎨<⎩,所以解集为3a x ≤<; 又因为不等式组030x a x -≥⎧⎨-<⎩,有3个整数解,则只能是2,1,0, 故a 的值是0.故选C.10.如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A .体育场离张强家3.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店1.5千米D .张强从早餐店回家的平均速度是3千米/小时【答案】C 【解析】试题分析:A 、由函数图象可知,体育场离张强家2.5千米,故A 选项正确;B 、由图象可得出张强在体育场锻炼30-15=15(分钟),故B 选项正确;C 、体育场离张强家2.5千米,体育场离早餐店2.5-1.5=1(千米),故C 选项错误;D 、∵张强从早餐店回家所用时间为95-65=30(分钟),距离为1.5km ,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D 选项正确.故选C .考点:函数的图象.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.现有2张大正方形纸片A ,2张小正方形纸片B ,5张小长方形纸片C ,这9张纸片恰好拼成如图所示的大长方形,已知大长方形的周长为42,面积为107,则1张小长方形纸片C 的面积为____________.【答案】9【解析】设小长方形纸片C 的的长为x ,宽为y ,根据大长方形的周长为42,面积为107列方程组求解即可.【详解】设小长方形纸片C 的的长为x ,宽为y ,有题意得()()()2224222107x y x y x y x y ⎧+++=⎪⎨++=⎪⎩, 解之得79x y xy +=⎧⎨=⎩, 故答案为:9.【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.13.观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为_____.【答案】(x+m )(x+n )=x 2+(m+n )x+mn【解析】根据规律乘积中的一次项系数是两因式中常数项的和,乘积中的常数项是常数项的积,即可得出答案,【详解】观察下列各式:(x+5)(x+6)=x 2+11x+30;(x ﹣5)(x ﹣6)=x 2﹣11x+30;(x ﹣5)(x+6)=x 2+x ﹣30;(x+5)(x ﹣6)=x 2﹣x ﹣30;其中的规律用公式表示为(x+m )(x+n )=x 2+(m+n )x+mn ,故答案为:(x+m )(x+n )=x 2+(m+n )x+mn【点睛】本题考查多项式乘多项式,熟练掌握计算法则是解题关键.14.已知435x y -=,用x 表示y ,得y _____________. 【答案】453x y -= 【解析】把x 看做已知数求出y 即可. 【详解】 435x y -=453x y -∴= 故答案为453x y -=【点睛】本题考查解一元二次方程,熟练掌握计算法则是解题关键.15.若关于x 的不等式组0721x m x -<⎧⎨-≤-⎩只有4个正整数解,则m 的取值范围为__________. 【答案】78m <≤【解析】首先解两个不等式,根据不等式有4个正整数解即可得到一个关于m 的不等式组,从而求得m 的范围.【详解】0721x m x -<⎧⎨-≤-⎩①②解不等式①得:x<m解不等式②得:x≥4∵原不等式组只有4个正整数解,故4个正整数解为;4、5、6、7∴78m <≤故答案为:78m <≤【点睛】本题主要考查了不等式组的正整数解,正确求解不等式组,并得到关于m 的不等式组是解题的关键. 16.如图所示,把ABC △的三边BA 、CB 和AC 分别向外延长一倍,将得到的点A '、B '、C '顺次连接成A B C ''',若ABC △的面积是5,则A B C '''的面积是________.【答案】1【解析】连接AB '、BC '、CA ',由题意得:AB AA =',BC BB =',AC CC =',由三角形的中线性质得出△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积AAC =∆的面积=△BB C '的面积=△A C C ''的面积5=,即可得出△A B C '''的面积.【详解】解:连接AB '、BC '、CA ',如图所示:由题意得:AB AA =',BC BB =',AC CC =',∴△AA B ''的面积ABB =∆'的面积ABC =∆的面积BCC =∆'的面积=△AA C '的面积=△BB C ''的面积=△A C C ''的面积5=,∴△A B C '''的面积5735=⨯=;故答案为:1.【点睛】本题考查了三角形的中线性质、三角形的面积;熟记三角形的中线把三角形的面积分成相等的两部分是解题的关键.17.若216x mx ++是一个完全平方式,则m=________【答案】±1 【解析】利用完全平方公式的结构特征可确定出m 的值.【详解】解:∵多项式222164x mx x mx ++=++是一个完全平方式,∴m =±2×1×4,即m =±1, 故答案为:±1. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题18.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年级(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了如图所示的两幅不完整的统计图(每组包括最小值不包括最大值).九年级(1)班每天阅读时间在0.5 h 以内的学生占全班人数的8%,根据统计图解答下列问题:(1)九年级(1)班有________名学生.(2)补全频数分布直方图.(3)除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1 h的学生有多少人.【答案】 (1)50;(2)见解析;(3)见解析;(3)246人.【解析】试题分析:(1)根据统计图可知0~0.5小时的人数和百分比,用除法可求解;(2)根据总人数和已知各时间段的人数,求出九年级(1)班学生每天阅读时间在0.5~1 h的人数,画图即可;(3)根据除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h的学生有165人,除以总人数得到百分比,即可画扇形图;(4)根据扇形统计图求出其它班符合条件的人数,再加上九年级(1)班符合条件的人数即可.试题解析:(1)4÷8%=50(2)九年级(1)班学生每天阅读时间在0.5~1 h的有50-4-18-8=20(人),补全频数分布直方图如图所示.(3)因为除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5 h的学生有165人,所以1~1.5 h在扇形统计图中所占的百分比为165÷(600-50)×100%=30%,故0.5~1 h在扇形统计图中所占的百分比为1-30%-10%-12%=48%,补全扇形统计图如图所示.(4)该年级每天阅读时间不少于1 h的学生有(600-50)×(30%+10%)+18+8=246(人).19.进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:甲品种乙品种进价(元/千克) 1.6 1.4售价(元/千克) 2.4 2(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?【答案】(1)300千克,200千克;(2)1.1元/千克.【解析】(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,根据总价=单价×数量结合总利润=每千克的利润×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设乙品种西瓜的售价为m元/千克,根据总利润=每千克的利润×数量结合售完获利不少于560元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,依题意,得:1.6 1.4760(2.4 1.6)(2 1.4)360x yx y+=⎧⎨-+-=⎩,解得:300200 xy=⎧⎨=⎩.答:佳佳水果超市购进甲品种西瓜300千克,购进乙品种西瓜200千克.(2)设乙品种西瓜的售价为m元/千克,依题意,得:300×2×(2.4﹣1.6)+200×(m﹣1.4)≥560,解得:m≥1.1.答:乙品种西瓜最低售价为1.1元/千克.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.20.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.【答案】(1)详见解析;(2)详见解析.【解析】(1)画出点B 关于直线AC 的对称点D 即可解决问题.(2)将四边形ABCD 各个点向下平移5个单位即可得到四边形A′B′C′D′.【详解】(1)点D 及四边形ABCD 的另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点睛】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移. 21.如图,已知四边形ABCD ,//AD BC ,点P 在直线CD 上运动(点P 和点C ,D 不重合,点P ,A ,B 不在同一条直线上),若记DAP ∠,APB ∠,PBC ∠分别为α∠,β∠,γ∠.图1 图2 图3(1)如图1,当点P 在线段CD 上运动时,写出α∠,β∠,γ∠之间的关系,并说出理由;(2)如图2,如果点P 在线段CD 的延长线上运动,探究α∠,β∠,γ∠之间的关系,并说明理由.(3)如图3,BI 平分PBC ∠,AI 交BI 于点I ,交BP 于点K ,且:5:1PAI DAI ∠∠=,20APB ︒∠=,30I ︒∠=,求PAI ∠的度数.【答案】(1)βαγ∠=∠+∠;(2)见解析;(3)50°.【解析】(1)过点P 作//PE AD ,根据平行线的性质即可求解;(2)根据题意分当点P 运动到直线AB 左侧时和当点P 运动到直线AB 右侧时,根据平行线的性质及外角定理即可求解;(3)根据BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,由//AD BC ,得到2DHP CBP x ∠=∠=,又BKI AKP ∠=∠,得到3020PAI x ︒︒∠=+-10x ︒=+,再根据:5:1PAI DAI ∠∠=,得到11255DAI PAI x ︒∠=∠=+,由DHF ∠是APH ∆的外角,可得DHP PAH APB ∠=∠+∠,即12210205x x x ︒︒︒=++++,故可求出x 即可求解.【详解】(1) βαγ∠=∠+∠.图1理由如下:过点P 作//PE AD ,如图1 ,//PE AD ,APE α∴∠=∠,//AD BC ,//PE BC ∴,BPE γ∴∠=∠,APE BPE βαγ∴∠=∠+∠=∠+∠;(2)当点P 运动到直线AB 右侧时,//AD BC ,1PBC ∴∠=∠,而1PAD APB ∠=∠+∠,APB PBC PAD ∴∠=∠-∠,即βγα∠=∠-∠.当点P 运动到直线AB 左侧时,//AD BC ,2PBC ∴∠=∠,而2PAD APB ∠=∠+∠,APB PAD PBC ∴∠=∠-∠,即βαγ∠=∠-∠.(3)如图,点P 在50PAI ∠=. BI 平分ABC ∠,可设PBI CBI x ∠=∠=,则2CBP x ∠=,//AD BC ,2DHP CBP x ∴∠=∠=,20APB ︒∠=,30I ︒∠=,BKI AKP ∠=∠,3020PAI x ︒︒∴∠=+-10x ︒=+,又:5:1PAI DAI ∠∠=, 11255DAI PAI x ︒∴∠=∠=+,DHF ∠是APH ∆的外角,DHP PAH APB ∴∠=∠+∠,即12210205x x x ︒︒︒=++++,解得40x =,401050PAI ︒︒︒∴∠=+=.【点睛】此题主要考查平行线的性质与三角形的角度求解,解题的关键是熟知平行线的性质及三角形的外角定理与内角和定理.22.如图,在ABC ∆中,CD 垂直AB ,垂足为D ,ABC ∠的平分线BP 交CD 于点P .(1)若20BCD ∠=︒,求PBC ∠的度数;(2)若BCD α∠=,求BPD ∠的度数.【答案】(1)35PBC ∠=︒;(2)1452BPD α∠=︒+. 【解析】(1)由CD 垂直AB ,可得直角,由BP 平分ABC ∠,可得PBC PBD ∠∠=,依据三角形内角和定理可求ABC ∠,进而求出PBC ∠;(2)方法同(1),只是角度用α表示,最后由三角形的外角等于与它不相邻的两个内角的和,表示BPD ∠即可.【详解】解:(1)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD 20∠=︒,ABC 902070∠∴=︒-︒=︒,又BP 平分ABC ∠,1PBC PBD ABC 352∠∠∠∴===︒, 答:PBC 35∠=︒;(2)CD AB ⊥,CDB CDA 90∠∠∴==︒,BCD α∠=,ABC 90α∠∴=︒-,又BP 平分ABC ∠,()11PBC PBD ABC 90α22∠∠∠∴===︒-, ()11BPD PBC PCB 90αα45α22∠∠∠∴=+=︒-+=︒+,答:1BPD 45α2∠=︒+.【点睛】考查三角形内角和定理、角平分线意义、垂直的意义等知识,三角形的内角和定理的推论,即三角形的任何一个外角等于与它不相邻的两个内角的和,在解决问题时也经常用到,注意掌握.23.某镇道路改造工程,由甲、乙两工程队合作完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程,甲工程队30天完成的工程与甲、乙两工程队10天完成的工程相等.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】(1)甲、乙两工程队单独完成此项工程各需要60天和30天;(2)甲工程队至少单独施工36天.【解析】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天,根据题意即可列出分式方程进行求解;(2)设甲单独施工y 天,根据题意列出不等式进行求解. 【详解】(1)设乙工程队单独完成此项工程各需要的天数为x ,则甲单独完成需要(x+30)天, 根据题意得301110()3030x x x =⋅+++, 解得x=30,经检验,x=30是原方程的解,故甲、乙两工程队单独完成此项工程各需要60天和30天;(2)设甲单独施工y 天,根据题意得6011603011 3.564y y -⨯+⨯≤+ 解得y ≥36,故甲工程队至少单独施工36天.【点睛】此题主要考查分式方程与不等式的应用,解题的关键是根据题意找到等量关系或不等关系进行求解.24.解不等式组5178(1)1062x xxx-<-⎧⎪⎨--≤⎪⎩①②并写出它的解集在数轴上表示出来.【答案】-3<x≤2,图见解析【解析】根据不等式的基本性质分别求出两个不等式的解集,然后取公共解集,最后把它的解集在数轴上表示出来即可.【详解】解:解不等式①,得:x>-3,解不等式②,得:x≤2,所以不等式组的解集是-3<x≤2,则不等式组的解集如图所示:【点睛】此题考查的是解一元一次不等式组,掌握一元一次不等式组的解法和公共解集的取法是解决此题的关键.25.已知23x y-=,222413x xy y-+=.求下列各式的值:(1)xy.(2)222x y xy-.【答案】(1)2 (2)6【解析】(1)首先将23x y-=两边平方,即可得22449x y xy+-=,再减去222413x xy y-+=可得xy的值.(2)首先将222x y xy-因式分解,提取xy,则可得(2)xy x y-在进行计算即可.【详解】(1)23x y-=∴22449x y xy+-=22224492413x y xyx xy y⎧+-=∴⎨-+=⎩两式相减可得:2xy =(2)222x y xy -=(2)xy x y -=236⨯=【点睛】本题主要考查因式分解,关键在于凑的思想应用.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°【答案】D【解析】根据三角形内角和定理求出∠3+∠4,根据邻补角的概念计算即可.【详解】如图:∵∠C=78°,∴∠3+∠4=180°﹣78°=102°,∴∠1+∠2=360°﹣(∠3+∠4)=258°,故选D.【点睛】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.2.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各x y=()列及对角线上的三个数之和都相等,则2A .2B .4C .6D .8【答案】B 【解析】根据题意得出方程组,求出方程组的解,代入2x y 计算即可.【详解】由题意得 26022002y y y x y y -++=++⎧⎨-+=++⎩, 解之得82x y =⎧⎨=⎩, ∴x-2y=8-4=4.故选B.【点睛】本题考查了二元一次方程组的应用及求代数式的值,能根据题意列出方程组是解此题的关键. 3.如图,在矩形ABCD 中放入6个全等的小矩形,所标尺寸如图所示,设小矩形的长为a ,宽为b ,则可得方程组( )A .3164a b a b +=⎧⎨-=⎩B .31624a b a b +=⎧⎨-=⎩C .2164a b a b +=⎧⎨-=⎩D .21624a b a b +=⎧⎨-=⎩【答案】A 【解析】设小矩形的长为a ,宽为b ,根据矩形的性质列出方程组即可.【详解】解:设小矩形的长为a ,宽为b ,则可得方程组3164a b a b +=⎧⎨-=⎩故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.如果点P(m﹣1,4﹣2m)在第四象限,那么m的取值范围是()A.m>1 B.m>2 C.2>m>1 D.m<2【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣1,4﹣1m)在第四象限,∴10420mm-⎧⎨-⎩>①<②,解不等式①得,m>1,解不等式②得,m>1,所以不等式组的解集是:m>1,所以m的取值范围是:m>1.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】根据x轴上的坐标特点求出n,再判断点B所在象限.【详解】∵点A(-2,n)在x轴上,∴n=0,∴B(-1,1),在第二象限,故选B.【点睛】此题主要考查直角坐标系中点的坐标特点,解题的关键是熟知坐标轴上的点的坐标特点.6.若多边形的内角和大于900°,则该多边形的边数最小为()A.9 B.8 C.7 D.6【答案】B【解析】根据多边形的内角和公式(n﹣2)×120°列出不等式,然后求解即可.【详解】解:设这个多边形的边数是n,根据题意得(n﹣2)×120°>900°,解得n>1.该多边形的边数最小为2.故选:B.【点睛】本题考查了多边形的内角和公式,熟记公式并列出不等式是解题的关键.7.如果a>b,那么下列结论一定正确的是()A.ac>bc B.5﹣a<5﹣b C.a﹣5<b﹣5 D.a2>b2【答案】B【解析】根据不等式的性质求解即可.【详解】解:A、当c<0时,ac<bc,故A不符合题意;B、两边都乘﹣1,不等号的方向改变,﹣a<﹣b,两边都加5,不等号的方向不变,5﹣a<5﹣b,故B符合题意;C、两边都减5,不等号的方向不变,故C不符合题意;D、当﹣1>a>b时,a2<b2,故D错误,故选:B.【点睛】本题考查了不等式的性质,不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.8.下列调查中,最适合采用全面调查(普查)方式的是()A.对华为某型号手机电池待机时间的调查B.对全国中学生观看电影《流浪地球》情况的调查C.对中央电视台2019年春节联欢晚会满意度的调查D.对“长征五号B”运载火箭零部件安全性的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.对华为某型号手机电池待机时间的调查,适合抽样调查;B.对全国中学生观看电影《流浪地球》情况的调查,适合抽样调查;C.对中央电视台2019年春节联欢晚会满意度的调查,适合抽样调查;D.对“长征五号B”运载火箭零部件安全性的调查,需要进行全面调查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.已知: 表示不超过的最大整数,例: ,令关于的函数(是正整数),例:=1,则下列结论错误..的是()A.B.C.D.或1【答案】C【解析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1, 所以或1,故D 选项正确,不符合题意,故选C.【点睛】 本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.10.小亮解方程组2317x y x y +=⎧⎨-=⎩●的解为5*x y =⎧⎨=⎩,则于不小心滴上两滴墨水,刚好遮住了两个数●和*,则这两个数分别为( )A .4和6-B .6和4C .2-和8D .8和2-【答案】D【解析】将5x =代入方程组第二个方程求出y 的值,即可确定出●和*表示的数.【详解】将5x =代入317x y -=中得:2y =-,将5x =,2y =-入得:21028x y +=-=,则●和*分别为8和2-.故选:D .【点睛】此题考查了二元一次方程组的解,解题关键在于方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题题11.若长度分别是4、6、x 的三条线段为边能组成一个三角形,则x 的取值范围是__.【答案】2<x<10【解析】试题解析:6446,x -<<+ 210.x ∴<<故答案为:210.x <<点睛:三角形的三边关系:任意两边之和大于第三边.12.如图,直线AB ∥CD ,BC 平分∠ABD ,∠1=55°,图中∠2=_____【答案】70°【解析】由两直线平行判断同位角相等和同旁内角互补,由角平分线的定义和对顶角相等,得到结论.【详解】∵AB∥CD,∴∠ABC=∠1=55°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=110°,∴∠BDC=180°-∠ABD=70°,∴∠2=∠BDC=70°.故答案是:70°.【点睛】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数.13.中午12点15分时,钟表上的时针和分针所成的角的度数为_____________【答案】82.5°【解析】根据时钟12时15分时,时针在12与1之间,分针在3上,可以得出分针与时针相隔234个大格,每一大格之间的夹角为30°,可得出结果.【详解】∵钟表上从1到12一共有12格,每个大格30°,∴时钟12时15分时,时针在12与1之间,分针在3上,∴分针与时针的夹角是234×30°=82.5°.故答案为:82.5°.【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°,是解决问题的关键.14.平面直角坐标系内x轴上有两点A(-3,0),B(2,0),点C在y轴上,如果△ABC的面积为15,则点C的坐标是_______.。

2.6 有理数的乘法与除法

2.6 有理数的乘法与除法
苏科版 七年级上册
2.6 有理数的乘法与除法(1)
有理数的乘法
9.21
在水文观测中,常遇到水位上升 与下降问题,请根据日常生活经验, 回答下列问题:
(1)如果水位每天上升4cm,那么3天后 的水位比今天高还是低?高(低)多少? (2)如果水位每天上升4cm,那么3天前 的水位比今天高还是低?高(低)多少?
(3) 如果水位每天下降4cm,那么3天后 的水位比今天高还是低?高(低)多少?
(4)如果水位每天下降4cm,那么3天前 的水位比今天高还是低?高(低)多少?
有理数乘法法则 1.两数相乘,同号得正,异 号得负,并把绝对值相乘。 2.任何数与0相乘都得0
例1 计算:
(1) 9×6; (3) (–3)×(–4);
(2) (−9)×6 ;
求解中的 第一步:
确定积的 符号
第二步: 绝对值 相乘
9 (5)解:原式=+( ×2) 4 9 = 2
1.计算: (1)(-7)×3 (2)(-16)×(-3)
(3)(-6)×(-1.2)
2 (4)(-1 )×9 3
1. 1×2×3×4; 2. (–1)×2×3×4; 3. (–1)×(–2) ×3×4;
多个非零有理数相乘运算步骤: 1.先根据负因数个数确定积的符 号, 2.再把绝对值相乘, 即先定符号后定值.
例2.
1 1 (– 1 ) ×(– 1 ) ×(– 1.25) 2 3
2.计算:
5 1 (1) 1.2 4 9
3 1 14 (2) . 7 2 15
3. 若xy=0,则( C )
A.x=0
C.x=0或y=0
B.y=0

3.2有理数的乘法与除法

3.2有理数的乘法与除法

§3.2有理数的的乘法导学案第一课时解留初一数学备课组于春杰【课前预习】看书学习:经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:【课内探究】一.学习目标:1.探索有理数乘法法则及运算律.2.会进行有理数的乘法运算,能用乘法运算律简化运算.二、学习重点、难点:重点:乘法的运算律和符号法则难点:灵活运用乘法的运算律和符号法则三、学习过程:(一)、自主学习:自学课本P53至55页问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?问题2水库的水位平均每小时上升-3厘米,2小时上升多少厘米?(二)合作探究:引导学生比较①,②得出:综合上面各种情况,引导学生自己归纳出有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.继而教师强调指出:“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.因此,在进行有理数乘法时更需时时强调:先定符号后定值.1.自学课本例1完成下列题目(1).(-3)×(-5) (2).(-2)×(+8.2)(3).(-41)×32 (4).(-24)×813你能总结出进行有理数数乘法运算的基本步骤吗?(生总结)(第一步是确定积的符号。

第二步是求绝对值的积)师生共同归纳得出有理数乘法法则:2.计算(1).(-17)×1 (2).(+321)×1(3).64×(-1) (4).(-21)×(-1)你能从中总结出什么结论吗?3.请仔细阅读课本53页―――57页的知识,完成下面内容..(三)、尝试应用:(自学例题完成下列题目)1、计算(1)、(-43)×(-5)×(+34)×(+2)(2)、(-85)×143×(-516)×(-67)(3)、(21-92+65)×(-36)2、计算(1)、(-8)×5×(-0.25)(2)、(-43)×(-23)×(-2)(3)、(-73)×61×(-158)×(-21)(4)、(-73)×(-0.125)×(-231)×(-8)思考:从上面几个不等于零的有理数的乘法运算中,你发现乘积的符号与因数的符号的个数之间存在着什么规律吗?如果有一个因数为零呢?(四)、能力提升:1、若a × b > 0, 并且 a>0, 则b ___ 0若a × b < 0, 并且a>0, 则b ___ 02、一个有理数和它的相反数之积( )A .必为正数 B.必为负数 C.一定不大于零 D.一定不等于-1(五)、课堂小结:1.有理数乘法法计算的法则是什么?2.谈谈本节课,你有哪些收获?教学反思:有理数的乘法一节的内容不仅包括有理数的乘法法则,也包括乘法的运算律和有理数乘法的符号法则。

有理数的乘法与除法运算规则

有理数的乘法与除法运算规则

有理数的乘法与除法运算规则有理数是指可以表示为两个整数之间的比值的数,包括正整数、负整数、零以及可以表示为分数形式的数。

在数学中,有理数的乘法与除法运算是基础且重要的内容之一。

本文将介绍有理数的乘法与除法运算规则,以帮助读者更好地理解和应用这些规则。

一、有理数的乘法运算规则1. 相同符号的有理数相乘,积为正数;不同符号的有理数相乘,积为负数。

例如:(-2) × (-3) = 64 × (-1) = -42. 任何数与零相乘,积都为零。

例如:2 × 0 = 00 × (-5) = 03. 有理数的绝对值相乘,积的绝对值等于原来各个有理数的绝对值的乘积。

例如:|-2| × |3| = 2 × 3 = 6|-8| × |(-1)| = 8 × 1 = 84. 有理数的分数形式相乘,可以进行“先约分,再相乘”的计算。

例如:(-\frac{4}{5}) \times (\frac{2}{3}) = -\frac{4 \times 2}{5 \times 3} = -\frac{8}{15}(\frac{3}{4}) \times (\frac{5}{6}) = \frac{3 \times 5}{4 \times 6} = \frac{15}{24} = \frac{5}{8} (可进一步约分)二、有理数的除法运算规则1. 除法运算可以看作是乘法运算的逆运算,即除一个有理数等于乘以其倒数。

例如:\frac{5}{6} \div \frac{2}{3} = \frac{5}{6} \times \frac{3}{2} = \frac{5 \times 3}{6 \times 2} = \frac{15}{12} (可进一步约分)=\frac{5}{4}(\frac{-2}{3}) \div (-\frac{4}{7}) = (\frac{-2}{3}) \times (-\frac{7}{4}) = \frac{-2 \times (-7)}{3 \times 4} = \frac{14}{12} (可进一步约分)= \frac{7}{6}2. 除以一个不等于零的数,等于乘以这个数的倒数。

有理数加减乘除乘方知识要点

有理数加减乘除乘方知识要点

有理数加减乘除乘方知识要点1.有理数的乘法(1)有理数乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘。

b)任何数同0相乘,都得0。

[注意]:①对于多个有理数相乘,由有理数的乘法法则可以推出:a)几个不等于0的数相乘,积的符号由负因数的个数决定。

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

即确定符号后把绝对值相乘。

b)几个数相乘,有一个因数为0,积就为0。

②在含有加减乘除的算式中,没有括号指明运算顺序时,要先算乘除,后算加减。

③乘号的三种形式“×”,“·”,“省略不写”。

对“·”和“省略不写”只能在适当的时候用。

如:“5×4”可以写成“5·4”但不能写为“54”;“1×”不能写成“1”。

(2)有理数乘法运算律a)交换律:b)结合律:c)分配律:[注意]:在使用分配律时,乘时一定要带着符号乘。

如:2.有理数的除法(1)有理数除法法则:除以一个数等于乘上这个数的倒数。

即a÷b=a×(b≠0)。

有理数的除法可以化成有理数的乘法,所以有理数的除法有与乘法类似的法则:a)两数相除,同号得正,异号得负,并把绝对值相除。

b)0除以任何一个不等于0的数,都得0。

[注意]:除法是乘法的逆运算,在a×b=c中,如果已知乘数c和一个因数b求另一个因数a,或已知乘数c和一个因数a求另一个因数b的运算都是除法。

(2)倒数在有理数范围内,我们也把乘积是1的两个数叫作互为倒数。

如:-2与-互为倒数,因为-2×(-)=1。

由倒数的定义可知,一个正数的倒数仍是正数,一个负数的倒数仍是负数,0没有倒数。

0为什么没有倒数呢?0没有倒数的原因有两个:①若0能作除数,有=b(a≠0),则有0×b=a,这样的b不存在。

②若=b(a=0),则有0×b=a,作为商b不唯一确定。

所以0不能作除数,也就没有倒数。

2.5有理数的乘法与除法

2.5有理数的乘法与除法

8
4
(5) .8[1(10.2 52)21](89)
76
33
迁移综合
已知a,b互为相反数,c,d互为 倒数,m的绝对值是2,求
abmcd200的8 值. m
拓展延伸
(1)如果 a >0 ,那么 ab __>__0. b
(2)如果
a b
<0 ,那么 ab _<___0.
拓展延伸
(1)如果 a =1 ,那么 a与b什么关系? b
(2)如果
a b
=-1 ,那么 a与b什么关系?
挑战自我
(1)当a 0时,| a | ___1__ ; a
(2)当b 0时,| b | ___-1__ ; b
(3)当ab 0时,a b _-_2_,_0_,__2_ . ab
A. 2
3
B. 2
3
3
C. 3
2
D. 3
2
二.计算
(1) (-32)÷(-8)×(-5)
(2) 0.15÷(-0.5) ×15
(3) 7( 3)(3) 8 14 8
随堂练习
(4) (1)(42)(21)
(5) (1)(7)3(1) 7
7
(6) (21)(5)(31)
(4)( 49
)

(
2
1 3
)

7 3

(3)
辨别真假
下列做法对吗?不对的请改正。
1、3232
66
改正
1 ×
2、3 1 1
44
3 (1 1 ) 44
31 3 ×
改正
3 2 3 2 3 2 1 2

有理数的乘除运算

有理数的乘除运算

有理数的乘除运算有理数是指整数和分数的统称,包括正整数、负整数、零以及能够表示为分子与分母都是整数的分数。

在数学中,有理数的乘除运算是非常重要的基础知识之一。

本文将从基本概念出发,详细介绍有理数的乘法和除法运算。

一、有理数的乘法运算在有理数的乘法运算中,我们首先需要了解有理数的正负规则。

正数乘以正数得正数,负数乘以负数也得正数。

而正数乘以负数或者负数乘以正数,则得负数。

在进行有理数的乘法运算时,一般采用以下步骤:1. 直接将分子与分母相乘,所得的结果即为新的有理数的分子和分母。

例如:计算 (-2/3) × (4/5)解:(-2/3) × (4/5) = (-2 × 4) / (3 × 5) = -8/152. 将所得分子和分母进行约分,即将分子和分母的最大公约数同时除去。

例如:计算 (10/12) × (18/20)解:(10/12) × (18/20) = (10 × 18) / (12 × 20) = 180/240= (6 × 30) / (8 × 30) = 6/8 = 3/4二、有理数的除法运算在有理数的除法运算中,我们需要注意零的特殊规则。

任何数除以零是没有意义的,因此除法运算要避免出现被零除的情况。

进行有理数的除法运算时,可以采用以下步骤:1. 先将除法转化为乘法,即将除数倒数后进行乘法运算。

例如:计算 (-3/4) ÷ (2/5)解:(-3/4) ÷ (2/5) = (-3/4) × (5/2) = (-3 × 5) / (4 × 2) = -15/82. 如果需要,对所得的结果进行约分。

例如:计算 (18/28) ÷ (3/7)解:(18/28) ÷ (3/7) = (18/28) × (7/3) = (18 × 7) / (28 × 3) = 3/23. 如果被除数和除数都是整数,可进行整数的除法计算。

有理数的乘法与除法

有理数的乘法与除法

有理数的乘法与除法有理数是指能够表示为两个整数的比值的数,包括正整数、负整数、零、分数等。

在数学中,有理数的乘法与除法是基本的运算法则之一。

本文将详细介绍有理数的乘法与除法的概念、性质和应用。

一、有理数的乘法有理数的乘法是指将两个有理数相乘的运算,其结果仍然是一个有理数。

下面是有理数的乘法的性质和规则:1. 正数与正数相乘,结果仍为正数;正数与负数相乘,结果为负数。

例如:2 × 3 = 6,2 × (-3) = -6。

2. 负数与负数相乘,结果为正数。

例如:(-2) × (-3) = 6。

3. 零与任何数相乘,结果为零。

例如:0 × 5 = 0,0 × (-3) = 0。

4. 乘法满足交换律和结合律。

交换律:a × b = b × a。

例如:3 × 4 = 4 × 3。

结合律:(a × b) × c = a × (b × c)。

例如:(2 × 3) × 4 = 2 × (3 × 4)。

5. 乘法与加法满足分配律。

分配律:a × (b + c) = a × b + a × c。

例如:2 × (3 + 4) = 2 × 3 + 2 × 4。

有理数的乘法在实际应用中有着广泛的运用,如计算面积、体积、速度、密度等。

二、有理数的除法有理数的除法是指将一个有理数除以另一个有理数的运算,其结果仍然是一个有理数。

有理数的除法需要注意以下几点:1. 除数不为零,被除数为零时,结果为零。

例如:0 ÷ 5 = 0。

2. 正数除以正数,结果为正数;正数除以负数,结果为负数。

例如:6 ÷ 2 = 3,6 ÷ (-2) = -3。

3. 负数除以负数,结果为正数。

例如:(-6) ÷ (-2) = 3。

有理数的乘法与除法知识点及分类练习(含答案解析)

有理数的乘法与除法知识点及分类练习(含答案解析)

有理数的乘法与除法知识点及分类练习【知识点1:有理数的乘法】1.有理数的乘法法则:(1)不为0的两数相乘,同号得正,异号得负,再把绝对值相乘;(2)任何数同0相乘,都得0.注:当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;然后把各因数的绝对值相乘.(2)几个数相乘,如果有一个因数为0,那么积就等于0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.(4)在交换因数的位置时,要连同符号一起交换.(5)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad.(6)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.【知识点1:有理数的乘法 练习】 1. 下列运算过程中,有错误的是( ) A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 2. 若m <n <0,则(m+n )(m-n )( )0 A .<B .>C .=D .≥3. 已知实数a ,b 在数轴上对应点的位置如图所示,则下列判断错误的是( )A .a <1B .b-a >0C .ab >0D .1-b <04. 有理数a 、b 在数轴上的位置如图所示,则下列说法正确的是( )A .a+b >0B .ab >0C .b-a >0D .|b|-|a|>05. 有理数a 、b 在数轴上的位置如图所示,则下列各式错误的是( )A .ab <0B .(a-1)(b+1)>0C .a+b <0D .|a|-|b|>06. 如图,数轴上三个点所对应的数分别为a ,b ,c ,则下列结论正确的是( )A .a+b >0B .a-c >0C .ac >0D .|a|>|b|7. 下列计算正确的有( )①(-3)×(-4)=-12;②(-2)×5=-10;③(-41)×(-1)=41; ④0×(-5)=-5 A .1个 B .2个 C .3个 D .4个8. 算式(﹣112)×(﹣314)×23之值为何?( ) A .14B .1112C .114D .1349. 已知a <0,-1<b <0,则a ,ab ,ab 2由小到大的排列顺序是( ). A .a <ab <ab 2 B .ab 2<ab <a C .a <ab 2<ab D .ab <a <ab 2 10. 从1、2、3、4、…、100共100个正整数中取出若干个数,使其中任意三个数a 、b 、c (a <b <c ),都有a ×b ≠c ,则最多能取出( )个数. A .50B .76C .87D .9211. 计算16.8×732+7.6×716的结果是 .12. 如果有理数a ,b ,c ,d 都不为0,且它们的积的绝对值等于它们积得相反数,则a ,b ,c ,d 中最少有 个负数,最多有 个负数. 13. 计算:(1)(−3)×56×(−145)×(0.25); (2)(1-2)(2-3)(3-4)…(19-20);(3)(-5)×(-8.1)×3.14×0.14. 运用简便方法计算: (1) (−10556)×(+12) (2)(-0.25)×0.5×(-100)×4(3)(−5)×313+2×313+(−6)×313【知识点2:有理数的除法】1.倒数:乘积是1的两个数互为倒数.例如:a×b =1则a 、b 互为倒数。

有理数的乘法和除法

有理数的乘法和除法

1.5 有理数的乘法和除法1.5.1 有理数的乘法第1课时有理数的乘法要点感知两数相乘,同号得____,异号得____,并把_______相乘.任何数与0相乘,都得____.预习练习1-1 计算:-4×(-12)=______,8×(-9)=______,(-2 013)×0=_______.1-2 计算:(1)(-6)×(-2);(2)-23×0.45.知识点有理数的乘法法则1.下列计算中,积为负数的是( )A.(+2)×(+2 013)B.(+2)×(-2 013)C.(+2)×0D.(-2)×(-2 013)2.计算2×(-12)的结果是( )A.-4B.-1C.14D.323.数轴上的两点A,B表示的数相乘的积可能是( )A.10B.-10C.6D.-64.若两数的乘积为正数,则这两个数一定是( )A.都是正数B.都是负数C.一正一负D.同号5.下列说法正确的是( )A.同号两数相乘,积的符号不变B.一个数同1或-1相乘,仍得原数C.一个数同0相乘,结果一定为0D.互为相反数的两数积为16.若两数的积为0,则一定有( )A.两数中最少有一个为0B.两数中最多有一个为0C.两数同时为0D.两数互为相反数7.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D.可能为正,也可能为负8.计算:(-34)×(+89)=_____.9.填表:10.计算:(1)15×(-6);(2)(-2)×5;(3)(-8)×(-0.25);(4)(-0.24)×0;(5)57×(-415);(6)(-23)×(-214).11.计算(-13)×(-9)的结果是( )A.-3B.3C.-27D.2712.两个互为相反数的有理数相乘,积为( )A.正数B.负数C.零D.负数或零13.在-3、3、4、-5这四个数中,任取两个数相乘,所得的积中最大的是_______.14.如图是一个简单的数值运算程序,当输入x的值为1时,则输出的数值为________.15.(2013·玉溪)若规定“*”的运算法则为:a*b=ab-1,则2*3=____________.16.登山队员攀登珠穆朗玛峰,在海拔3 000 m时,气温为-20 ℃,已知每登高1 000 m,气温降低6 ℃,当海拔为5 000 m时,气温是_________℃.17.计算:(1)(+4)×(-5);(2)1 000×(-0.1);(3)0×(-0.7);(4)(-0.8)×(-134 );(5)135×(-334);(6)(-0.125)×(-8);(7)(-3.25)×(+213);(8)(+123)×(-115).18.列式计算:甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后,甲、乙水库水位的总变化量各是多少?(规定水位上升为正)挑战自我19.|a|=4,|b|=2,且ab<0,b-a 的值是( ) A.2或-6 B.6或-6 C.-2或6 D.2或-220.一只小虫沿着一根东西方向放置的木杆爬行,以向东为正方向,小虫先以每分钟178米的速度向西爬行,后来又以同样的速度向东爬行,它向西爬行了7分钟,又向东爬行3分钟,求此时小虫的位置.参考答案要点感知 正 负 绝对值 0 预习练习1-1 2 -72 01-2(1)原式=6×2=12.(2)原式=-0.3. 当堂训练1.B2.B3.C4.D5.C6.A7.A8.-32 9.+5 -31+5 10.(1)原式=-(15×6)=-90. (2)原式=-(2×5)=-10. (3)原式=8×0.25=2. (4)原式=0.(5)原式=-(75×154)=-214.(6)原式=32×241=23. 课后作业11.B 12.D 13.15 14.2 15.5 16.-32 17.(1)原式=-20. (2)原式=-100. (3)原式=0. (4)原式=1.4. (5)原式=-6. (6)原式=1. (7)原式=-21. (8)原式=-2. 18.(+3)×4=12(厘米). (-3)×4=-12(厘米).答:甲上升12厘米,乙下降12厘米. 19.B20.依题意,得(-187)×7+187×3=187×(-7+3)=815×(-4)=-215(米). 答:此时小虫的位置是在起点向西的方向离起点215米处. 第2课时 有理数乘法的运算律要点感知1 用字母表示:乘法交换律: a ×b=______,乘法结合律:(a ×b)×c=________,乘法对加法的分配律(简称分配律):a ×(b+c)=__________,(-1)a=______.预习练习1-1计算:(-4)×(-7)×(-25)=_________.1-2计算:-34×(-113-4).要点感知2几个不等于0的数相乘,当负因数个数是偶数时,积是_____;当负因数个数是奇数时,积是______.几个数相乘,如果其中有因数为0,那么积等于_____.预习练习2-1计算(-1)×2×(-3)×4×(-5)的结果的符号是_______.2-2计算8×(-0.25)×0×(-2 013)的结果为_________.知识点1 有理数的乘法运算律1.指出下列运算中所运用的运算律:(1)3×(-2)×(-5)=3×[(-2)×(-5)]__________________________;(2)48×(524-216)=48×524-48×136___________________________.2.运用乘法运算律进行简便运算:(1)(-76)×(-15)×(-67)×15;(2)(14-16+12)×(-12).知识点2 多个有理数相乘3.下列各式中积为正的是( )A.2×3×5×(-4)B.2×(-3)×(-4)×(-3)C.(-2)×0×(-4)×(-5)D.(+2)×(+3)×(-4)×(-5)4.三个有理数相乘积为负数,则其中负因数的个数有( )A.1个B.2个C.3个D.1个或3个5.若2 014个有理数的积是0,则( )A.每个因数都不为0B.每个因数都为0C.最多有一个因数为0D.至少有一个因数为06.计算:(1)(-2)×3×(+4)×(-1);(2)(-5)×(-5)×(-5)×2;(3)(-37)×(-45)×(-712);(4)(-5)×(-332)×730×0×(-325).7.计算(-2)×(3-12),用分配律计算过程正确的是( )A.(-2)×3+(-2)×(-12) B.(-2)×3-(-2)×(-12) C.2×3-(-2)×(-12) D.(-2)×3+2×(-12)8.已知a,b,c的位置在数轴上如图所示,则abc与0的关系是( )A.abc>0B.abc<0C.abc=0D.无法确定9.在算式(-34)×31+21×31+(-87)×31=(-34+21-87)×31中应用了( )A.加法交换律B.乘法交换律C.乘法结合律D.乘法分配律10.计算:(1-2)×(2-3)×…×(2 011-2 012)×(2 012-2 013)=________.11.绝对值小于2 013的所有整数的积为________.12.计算:(1)(-12)×(-23)×(-3);(2)14×(-16)×(-45)×(-114);(3)(-511)×(-813)×(-215)×(-34).13.用简便方法计算:(1)(-8)×(-5)×(-0.125);(2)(-112-136+16)×(-36);(3)(-5)×(+713)+7×(-713)-(+12)×(-713);(4)-691516×(-8).14.若a,b,c为有理数,且|a+1|+|b+2|+|c+3|=0,求(a-1)×(b+2)×(c-3)的值.挑战自我15.计算:(1-12)(1+12)(1-13)(1+13) (1)12014)(1+12014).参考答案课前预习要点感知1 b ×a a ×(b ×c ) a ×b+a ×c -a 预习练习1-1 -7001-2 原式=(-43)×(-131)+(-43)×(-4)=1+3=4. 要点感知2 正数 负数 0 预习练习2-1 负 2-2 0 当堂训练1.(1)乘法结合律 (2)乘法分配律2.(1)原式=[(-67)×(-76)]×[(-15)×51]=1×(-3)=-3. (2)原式=41×(-12)-61×(-12)+21×(-12)=-3+2-6=-7. 3.D 4.D 5.D6.(1)原式=+(2×3×4×1)=24.(2)原式=[(-5)×(-5)]×[(-5)×2]=25×(-10)=-250. (3)原式=-(73×54×127)=-51. (4)原式=0. 课后作业7.A 8.A 9.D 10.1 11.012.(1)原式=-(21×32×3)=-1. (2)原式=-(41×16×54×45)=-4. (3)原式=115×138×511×43=136. 13.(1)原式=(-8)×(-0.125)×(-5)=1×(-5)=-5. (2)原式=(-121)×(-36)+(-361×(-36)+61×(-36)=3+1-6=-2.(3)原式=(-5)×317-7×317+12×317=(-5-7+12)×317=0×317=0. (4)原式=691615×8=(70-161)×8=560-21=55921. 14.因为|a+1|+|b+2|+|c+3|=0,所以a=-1,b=-2,c=-3,所以a-1=-2,b+2=0,c-3=-6.则(a-1)×(b+2)×(c-3)=0. 15.原式=21×23×32×34×…×20142013×20142015=21×20142015=40282015.1.5.2 有理数的除法 第1课时 有理数的除法要点感知1 同号两数相除得____,异号两数相除得____,并把它们的绝对值相除;0除以任何一个不等于0的数都得_____.预习练习1-1 (-4)÷(-2)=_____,(-72)÷8=______.要点感知2 一般地,如果两个数的____等于1,我们把其中一个数叫做另一个数的倒数,______没有倒数.预习练习2-1 (1)+3的倒数是____;(2)-1的倒数是____;(3)-47的倒数是_____;(4)-112的倒数是_____;(5)0.2的倒数是______;(6)-1.2的倒数是______.要点感知3 除以一个不等于零的数等于乘这个数的______.即a ÷b=a ×1b(b______).预习练习3-1计算:(1)3÷(-32);(2)(-23)÷(-125).知识点1 倒数1.(2013·随州)与-3互为倒数的是( )A.-13B.-3C.13D.32.下列各对数中互为倒数的是( )A.-1与1B.0与0C.-12与2 D.-1.5与-233.倒数等于本身的数为_________.4.写出下列各数的倒数:3,-1,0.3,-23,14,-312.知识点2 有理数的除法法则5.(2012·南通)计算6÷(-3)的结果是( )A.-12B.-2C.-3D.-186.两个数的商为正数,则两个数( )A.都为正B.都为负C.同号D.异号7.(-57)÷(-212)的计算过程正确的是( )A.(-57)÷(-212)=(-57)×(-52) B.(-57)÷(-212)=(-57)×(-52)C.(-57)÷(-212)=(-57)×(-25) D.(-57)÷(-212)=(-57)×(-25)8.如图,数轴上a,b两点所表示的两数的商为( )A.1B.-1C.0D.29.用“>”“<”或“=”号填空:10.计算:(1)(-6.5)÷(-0.5);(2)4÷(-2);(3)0÷(-1 000);(4)(-2.5)÷5 8 .11.(2013·永州)-12013的倒数为( )A.12013B.-12013C.2 013D.-2 01312.下列计算正确的是( )A.(-18)÷6=3B.(-24)÷(-2)=-12C.75÷(-15)=5D.(-15)÷0.5=-3013.下列说法:①任何有理数都有倒数;②一个数的倒数一定小于这个数;③0除以任何数都得0.其中正确的个数有( )A.0个B.1个C.2个D.3个14.如果x×(-6)=-23,那么x等于( )A.-4B.4C.19D.915.-223的倒数与13的相反数的积是( )A.8B.- 8C.18D.-1816.若a>0,则aa=______;若a<0,则aa=______.17.计算:(1)(-8)÷2;(2)(-6)÷34;(3)(-54)÷(-45);(4)(+513)÷(-313);(5)(-338)÷(-2.25).18.用简便方法计算:(1)(-2467)÷(-6);(2)99989÷(-119).19.求下列各数的倒数,并用“<”把它们的倒数连接起来.-12,-(-2.5),-|-5|,-313.挑战自我20.若a,b都是非零的有理数,则aa+bb+abab的值是多少?参考答案课前预习要点感知1 正数负数0预习练习1-1 2 -9要点感知2 乘积 0预习练习2-1 (1)31 (2)-1 (3)-47 (4)-32 (5)5 (6)-65 要点感知3 倒数 ≠0预习练习3-1 (1)原式=3×(-32)=-2. (2)原式=32÷152=32×75=1210. 当堂训练 1.A 2.D 3.±1 4.各数的倒数分别为:31,-1,310,-23,4,-72. 5.B 6.C 7.D 8.B9.> > < < = = < < > > = = 10.(1)原式=13. (2)原式=-2. (3)原式=0. (4)原式=(-25)×58=-4. 课后作业11.D 12.D 13.A 14.C 15.C 16.1 -1 17.(1)原式=-4. (2)原式=-6×34=-8. (3)原式=45÷54=45×45=1625. (4)原式=316×(-103)=-58. (5)原式=827×94=23.18.(1)原式=2476×61=(24+76)×61=4+71=471. (2)原式=(1 000-91)×(-109)=1 000×(-109)-91×(-109)=-900+101=-899109. 19.-21的倒数是-2;-(-2.5)=2.5,它的倒数是52;-|-5|=-5,它的倒数是-51;-331的倒数是103.所以-2<-103<-51<52. 20.当a>0,b>0时,原式=a a +b b +ab ab =a a +b b +abab=1+1+1=3; 当a>0,b<0时,原式=a a +b b +ab ab =a a +b b -+abab -=1+(-1)+(-1)=-1; 当a<0,b>0时,原式=a a +b b +ab ab =a a -+b b +abab -=-1+1+(-1)=-1; 当a<0,b<0时,原式=a a +b b +abab =a a -+b b -+ab ab =-1+(-1)+1=-1.即原式的值为3或-1.第2课时 有理数的乘除混合运算要点感知 有理数的乘除混合运算,可以按______的顺序依次计算,也可以先将除法转化为_____. 预习练习 计算:(1)2÷13×3; (2)(-3)÷12×2; (3)(-225)÷3×13; (4)3.5×87÷(-117).知识点1 有理数的乘除混合运算1.将式子(-1)×(-112)÷23中的除法转化为乘法运算,正确的是( )A.(-1)×(-32)×23B.(-1)×(-32)×32C.(-1)×(-23)×32D.(-1)×(-23)×232.计算(-2)÷(-5)×110的结果是( )A.1100B.25C.1D.1253.下列运算正确的是( )A.25÷16×(-6)=25÷[16×(-6)] B.25÷16×(-6)=25×6×(-6)C.25÷16×(-6)=25×16×(-6) D.25÷16×(-6)=25×6×64.下列运算中,结果为负值的是( )A.1×(-2)÷(-3)B.(-1)×2÷(-3)C.(-1)×(-2)÷(-3)D.(-1)÷2×05.计算(-5)×(-6)÷(-7)的结果的符号是_______.6.计算2313÷(-67)×0的结果是________.7.m,n,p均为负数,则m÷n×p______0.(填“>”“<”或“=”)8.计算:(1)28×(-36)÷72;(2)-313÷213×(-2);(3)-34×(-112)÷(-214);(4)(-12)÷(-4)÷(-115);(5)(-2)×(-54)÷(-38);(6)(-56)×(-1516)÷(-134)×47.知识点2 用计算器计算9.使用计算器计算时,按键顺序为:,则计算结果为______.10.用计算器计算(精确到0.01):(1)67.2×5.6÷4.5;(2)12÷(-45)×(-16).11.将(-7)÷(-34)÷(-2.5)转化为乘法运算正确的是( )A.(-7)×43×(-2.5) B.(-7)×(-43)×(-2.5) C.(-7)×(-43)×(-25) D.(-7)×(-34)×(-52)12.计算(-1)÷(-3)×(-13)的结果是( )A.-1B.-9C.-19D.913.下列等式成立的是( )A.6÷(-14)×4=6×(-4)×4 B.6÷(-14)×4=6×(-14)×4C.6÷(-14)×4=6÷(-14×4) D.6÷(-14)×4=6×(-4)÷414.若a的相反数是512,b的倒数为-411,则a与b的商的5倍是_______.15.计算:(1)(-212)÷(-5)×(-313);(2)-23×(-85)÷(-0.25);(3)(-34)×(-16)÷(-94);(4)5÷(-12)×(-2);(5)(-512)÷(-35)×54;(6)-72×214×49÷(-335).16.用计算器计算(精确到0.01):(1)(-37)×125÷(-75);(2)-4.375×(-0.112)-2.321÷(-5.157).挑战自我17.按下面程序计算:输入x=2,则输出的答案是______.18.通常,山的高度每升高100米,气温将下降0.6 ℃,现地面气温是-4 ℃.请你帮小明算算:(1)高度是2 400米高的山上气温是多少℃?(2)气温是-22 ℃的山顶高度是多少米?参考答案课前预习要点感知 从左到右 乘法 预习练习 (1)原式=2×3×3=18. (2)原式=(-3)×2×2=-12. (3)原式=(-512)×31×31=-154. (4)原式=-3.5×78×87=-3.5. 当堂训练1.B2.D3.B4.C5.负6.07.<8.(1)原式=28×(-36)×721=-14. (2)原式=310×73×2=720. (3)原式=-43×23×94=-21. (4)原式=3÷(-511)=-25. (5)原式=(-2)×(-45)×(-38)=-320.(6)原式=-56×1621×74×74=-24. 9.-210.(1)原式≈83.63.(2)原式≈4.27. 课后作业11.C 12.C 13.A 14.10实用文档 精心整理 21 15.(1)原式=-25×51×310=-35.(2)原式=-32×58×4=-1564.(3)原式=(-43)×(-61)×(-94)=-181.(4)原式=5×(-2)×(-2)=20.(5)原式=(-125)×(-35)×45=144125.(6)原式=72×49×94×185=20.16.(1)原式≈61.67. (2)原式≈0.94.17.9518.(1)当h=2 400时,t=-4-0.6×1002400=-18.4(℃).答:高度是2 400米高的山上气温是-18.4 ℃.(2)当t=-22时,[(-4)-(-22)]÷0.6×100=3 000(米). 答:气温是-22 ℃的山顶高度是3 000米.。

有理数的乘法与除法(7类热点题型讲练)(原卷版)

有理数的乘法与除法(7类热点题型讲练)(原卷版)

第05 有理数的乘法与除法1.掌握有理数的乘法和除法法则;2.掌握有理数的乘法运算规律;3.掌握乘法几类常见的能够运用简便运算的题型;4.掌握有理数乘法和除法的应用.知识点01 有理数的乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘. (2)任何数同0相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个时,积为正.①几个数相乘,有一个因数为0,积就为0. 倒数:乘积是1的两个有理数互为倒数.【注意】:①0没有倒数;②倒数等于它本身的数有1和-1.知识点02 有理数的乘法运算律(1)乘法交换律:ab ba =;(2)乘法结合律:()()ab c a bc =; (3)乘法分配律:()a b c ab ac +=+.知识点03 确定乘积符号(1)若a<0,b>0,则ab < 0;(2)若a<0,b<0,则ab > 0;(3)若ab>0,则a、b_______;(4)若ab<0,则a、b_______;(5)若ab = 0,则a、b中至少有一个数为0.【答案】同号;异号知识点04 有理数除法法则①除以一个不为0的数,等于乘以这个数的_______.①两数相除(被除数不为0),同号得正,异号得负,并把绝对值相除.【注意】:0除以任何不为0的数,都得0.【答案】倒数题型01两个有理数的乘法运算题型02多个有理数的乘法运算题型03倒数题型04有理数乘法运算律题型05有理数乘法的实际应用题型06有理数的除法运算题型07有理数的乘除混合运算一、选择题1a b a ⎛⎫=- ⎪⎝⎭)274的值 七年级统考期末)单项式a 是一个正数,且a b c abc++15.(2023·浙江·七年级假期作业)出租车司机小明在东西向的大直街运营,若规定向东为正,向西为负,他今天共载了11名乘客,行车里程如下:(单位:千米)+-+-+--++-+13,5,6,1,10,4,5,12,2,7,9。

有理数的乘法与除法

有理数的乘法与除法

有理数的乘法与除法一、知识(一)有理数乘法的法则及运算律1、有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.几个有理数相乘的符号确定:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一因数为零,积就为零.2、乘法运算律(1)乘法交换律:两个数相乘,交换因数的位置,积不变.即ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即(ab)c=a(bc).(3)乘法对加法的分配律:一个数与两个数的和相乘,等于把这个数分别与两个数相乘,再把积相加.即a(b+c)=ab+ac.例1、计算下列各式:(1)(-5)×(-4);(2)(-)×0;(3)(-6)×(-);(4)×(-);(5)(-2004)×1 (6)(-)×(-1)分析:以上各题都是两个有理数相乘,运用有理数乘法法则,先确定积的符号,再将绝对值相乘即可.解:(1)(-5)×(-4)=+(5×4)=20;(2)(-)×0=0;(3)(-6)×(-)=+(6×)=14;(4)×(-)=-(×)=-1;(5)(-2004)×1=-2004(6)(-)×(-1)=小结:①两个不为零的有理数相乘,同号得正,异号得负,并把绝对值相乘:任何数与0相乘,积为0;一个有理数与1相乘仍得这个数,一个有理数与-1相乘得这个数的相反数;乘积为1的两个有理数互为倒数.②乘法计算时,若有因式是带分数,一般要化为假分数.③两因式相乘时,第一个因式前面可以不加括号,但后面的因式必须添加括号,如-1×-8的写法是错误的,因两个运算符号是不能连在一起写的,碰到上述情况,正确的写法是添括号,如:-1×(-8)或(-1)×(-8).例2、计算(1)((2)(3)(分析:第(1)题若按运算顺序,先算括号里面,那么计算起来比较麻烦,观察此题的特点,24分别是分母2、3、4、6、12的倍数,因此运用分配律,改变运算顺序,可使运算简便,第(2)小题若直接相乘必很麻烦,观察此题的特点,可先把19折成(,然后运用分配律计算.第(3)题直接相乘再相加,这很麻烦,根据此题的特点,可逆用分配律,使计算简便.解:(1)((2)=(20(3)(=小结:第(1)小题运用了分配律,避开了通分的麻烦.第(2)题先运用分拆的思想,再运用分配律,避免了带分数化假分数,假分数再化成带分数的麻烦,第(3)题逆用了分配律,利用凑整的思想方法,简化了运算,分配律在乘法运算中的作用主要是使运算简便,提高计算速度和准确度,能否灵活地运用分配律是计算能力高低的具体表现.(二)有理数的除法法则1、有理数的除法法则法则1:两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0;法则2:除以一个数等于乘以这个数的倒数,0不能作除数.2、倒数的意义乘积是1的两个数互为倒数,其中一个数是另一个数的倒数,0没有倒数.倒数的求法:(1)求一个整数的倒数,直接可写成这个数分之一,即a的倒数为.(2)求一个分数的倒数,只要将分子、分母颠倒一下即可,即的倒数为.(3)求一个带分数的倒数,应先将带分数化成假分数,再求倒数.(4)求一个小数的倒数,应先将小数化成分数,再求倒数.有理数的乘除混合运算乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

有理数的乘法与除法

有理数的乘法与除法

有理数的乘法与除法有理数是数学中一个重要的概念,它包括整数、分数和小数等。

在数学运算中,有理数的乘法与除法是常见的运算方式。

本文将分析有理数乘法和除法的规则,以及一些实例来加深理解。

一、有理数的乘法有理数的乘法是指将两个有理数相乘的运算过程。

对于有理数的乘法有以下几个规则:1. 正数与正数相乘,结果仍为正数。

例如,2乘以3等于6。

2. 负数与负数相乘,结果仍为正数。

例如,-2乘以-3等于6。

3. 正数与负数相乘,结果为负数。

例如,2乘以-3等于-6。

4. 0乘以任何数都等于0。

例如,0乘以5等于0。

此外,还需要注意乘法中的乘法交换律和结合律:1. 乘法交换律:a乘以b等于b乘以a。

例如,2乘以3等于3乘以2。

2. 乘法结合律:a乘以(b乘以c)等于(a乘以b)乘以c。

例如,2乘以(3乘以4)等于(2乘以3)乘以4。

二、有理数的除法有理数的除法是指将一个有理数除以另一个有理数的运算过程。

对于有理数的除法有以下几个规则:1. 正数除以正数,结果仍为正数。

例如,6除以2等于3。

2. 负数除以负数,结果仍为正数。

例如,-6除以-2等于3。

3. 正数除以负数,结果为负数。

例如,6除以-2等于-3。

4. 0不能作为除数,任何数除0都没有意义。

除法中还需注意的是除法的除法原则:1. 除法原则:如果a除以b等于c,那么a等于b乘以c。

例如,6除以2等于3,那么6等于2乘以3。

三、乘法和除法的应用实例下面通过一些实例来加深对有理数乘法和除法的理解。

实例1:计算 -2.5 乘以 4。

根据乘法的规则,负数与正数相乘结果为负数,因此 -2.5 乘以 4 的结果为 -10。

实例2:计算 -6 除以 -3。

根据除法的规则,负数除以负数结果为正数,因此 -6 除以 -3 的结果为 2。

实例3:计算 0.4 乘以 2.5。

由于乘以0的结果始终为0,因此 0.4 乘以 2.5 的结果为 0。

实例4:计算 -10 除以 2。

根据除法的规则,负数除以正数结果为负数,因此 -10 除以 2 的结果为 -5。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(+4) ×(- 3)= -12 (+4) ×(- 2)= - 8 (- 4) ×(+1)= - 4 (-4 ) ×(+ 3)= -12 (+4) × 0 = 0 (- 4) × 0 = 0
探究:你最聪明
两数相乘:(+)×(+)= + ( - )×(-) = + (+)×(-)= 0× a= 0
有理数乘法法则:
例题 : (1)(3) 5 ( 9) ( 1)
65 4 (2)8 5 (4) (3)(3) (7) 9 (6)
课堂小结:
1.知道了有理数的乘法法则; 2.准确的判断两数相乘的积的符号; 3.学会了归纳法和分类法.
课堂作业: 1.(+0.4) ×(-0.2) 2.(-1 ) ×(- ) 3.(-6) ×(-4+1-6) 4.(-3.7+1.3) ×3 5.(16-26+5) ×(-3.4-1.6) 6. ︳-21-19︳×(-2.9+1.1)
有理数的乘法与除法(1)
情景导入:
2003年夏天,我国淮河流域发生 特大洪水。党和政府为保护国家和人民 的生命财产安全,果断决策:炸开王家 坟大坝泄洪。泄洪后,根据水文观测站 监测的数据显示,王家坟大坝下游淮河 流域的水位以每天下降0.35米的速度回 落, 第四天后,该段的水位下降了多少?
有:(-0.35)×4=-1.4
举一个实例说明
(4) (3) 12的意义
计算
(1)1234 =+24 (2)2345 =120
探索和发 结论:几现个不等于0的数 相乘,积的符号由负因数
(3)2
3
4
(-5)
=-120
的个数决定,当负因数有 奇数个时,积为负;当负
(4)2 3 (-4)(-5)=120因数有偶数个时,积为正
(5)2(-3)(-4)(-5) =-120 几个数相乘,有 (6)(-2)(-3)(-4)(-5) =120一个为0,积就为0.
1. (-7) ×3
3. (-6.5) ×(-7.2)
5. (-7) ×(-9)
7.
(-5)
×(-
1 25
)
9. (-13.32) ×(-1)
2. (-48) ×(-3)
4. (- 2 ) ×9 3
6. 5×︳-5︳
8.
(-5
1 2
)
×(-3
3 4
)
10. 8×(17-77)
实际运用
来源于生活 运用于生活
选一选!
1.两数相乘,若积为负,则这两数 ( D ) A.都是正数 B. 都是负数 C. 同号 D. 异号
2.ab﹥0,a+b﹤0,则
( C)
A.a ﹥0,b ﹤0 . B. a ﹥0,b ﹥0
C. a ﹤ 0,b ﹤0 . D.a,b中只有一个是负数
(4) 如果水位每天下降4厘米,那么3天前的 水位比今天高还是低?高(或低)多少?
想一想 你能用上面的方法写出表 示1天后、2天后、1天前、2天 前水位变化的式子吗?
试一试,你能行! 填空: (+4) ×(+3)= +12 (+4) ×(+2)= +8 (+4) ×(+1)= +4 (-4 ) ×(- 3)= +12 (- 4) ×(- 2)= + 8 (- 4) ×(- 1)= + 4
知识扫描
两数相乘,同号得正,异号得 负,并把绝对值相乘。Biblioteka 任何数与0相乘得0。 指点迷津
非0两数相乘,关键是什么?
(1)确定积的符号
(2)求出绝对值之积
做做看!
计算:
(1) 9×6 (2)(-9)×6 (3) 2.5×(-6) (4)(-7.2)×(-5) (5)(-1000.11) ×0
我们来实践!
问题:水文观测中,常遇到水位上升与下降问 题。请根据日常生活经验,回答下列问题。
(1)如果水位每天上升 4厘米,那么3天后的水位比 今天高还是低?高(或低)
上升:+ 下降:-
多少?
几天后:+
(2) 如果水位每天上 几天前:-
升4厘米,那么3天前的水
位比今天高还是低?高
(或低)多少?
(3) 如果水位每天下降4厘米,那么3天后的 水位比今天高还是低?高(或低)多少?
相关文档
最新文档