复变函数拉氏变换部分习题解答分析(复拉)(精品)

合集下载

第4章 拉氏变换作业参考答案

第4章 拉氏变换作业参考答案

第四章 习题解4-1 根据拉氏变换定义,求下列函数的拉普拉斯变换。

(1)ate --1(2)()()t t 5cos 73sin 2+ (3)tet 3-(4)()t et5cos 4-(5)()[]tb e at --cos 1(6)()tett 22531-++(7)5232++t t (8)()te t 732--δ(9)()t Ω2cos (10)t t e e βα--- (11)()t et5cos 22-(12)()ϕω+t cos解:(1))(111]1[a s s a s s e L at +=+-=-- (2)()()2579657323]5cos 73sin 2[222222+++=+++⨯=+s s s s s s t t L (3)23)3(1][+=-s et L t(4)())](21[)](21[]5cos [)54()54(45544t j t j t t j t j t te e e jL e e e j L t eL --+-----+=+= 25)4(5)541541(212++=+++-+=s j s j s j (5)()[]()]cos []cos 1[at e e L e at L t b t b tb ----=-22)(1ab s a b s ++++=(6)由于1!][+=n ns n t L ,由s 域频移特性得()]53[]531[222222t t t t e t te e L e t t L ----++=++ 3232)2(207)2(10)2(3)2(1+++=+++++=s s s s s s (7)32232526526]523[ss s s s s t t L ++=++=++ (8)()732]32[7+-=--s et L tδ(9)()()22242121]2cos 2121[]cos [Ω+⋅+=Ω+=Ωs ss t L t L (10)))((11][βααββαβα++-=+-+=---s s s s e eL t t(11)在(9)的计算结果基础上由s 域频移特性得()25)2(221)2(21]5cos [222+++⋅++=-s s s t e L t (12)()]sin sin cos cos []cos [ϕωϕωϕωt t L t L -=+222222s i n c o s s i n c o s ωϕωϕωϕωωϕ+-=+-+=s s s s s4-7 求下列函数的拉普拉斯反变换。

复变函数与积分变换之拉普拉斯变换

复变函数与积分变换之拉普拉斯变换


程 大
数s i,
其中
0,
F(s)
f (t )estdt

0
在S平面的某区域内收敛,则称其为 f (t)的
复 变
Laplace变换,记为

数 与 积 分
L[ f (t )] F (s) f (t )estdt 0
变 换
f (t)称为F (s)的Laplace逆变换,记为L1[F (s)]
因此, 按傅氏积分公式, 在f (t)的连续点就有
f (t)u(t) et
1
2
f
(
)u(
)
e
e
j
d
e
jt
d
1
2
e
jt
d
0
f
(
)
e(
j )
d
1
2
F ( j) ejtd, t 0
等式两边同乘以et, 则
f
(t
)
1
2
F ( j) e( j)td,t 0
f
(t)
eit 2
1 2
(L
eit
L
eit )
1 2
(
s
1
i
s
1
i
)
s
复 变
s2 2

(Re(s) 0)
L[sint]
s2
2

与 积
例2
求函数f t t2 coskt的拉氏变换.




L
t 2 cos kt
(1)2 ( s2
s
k
2
)
2s3 (s2
6k2s k 2 )3

复变函数部分习题解答分析(复拉)

复变函数部分习题解答分析(复拉)
1 分 析: 双 曲 函 数 的 定 义. 解 法 一 chz = ch(−z ) = ch(iiz ) = cos(iz ) = 0, z = (k + 2 )πi. 解 法 二
∂u ∂y 2
= 2vvy = −vx 两式相乘并整理得 (4v 2 + 1)vx vy = 0. 由以上
ux = vy = 6xy ⇒ u = 3x2 y + D(y ) (4) 将(3),(4)代入(0)式,得 u =
3x2 y − y 3 + C, v = 3xy 2 − x3 + C .
chz =
ez +e−z 2
1 = 0, e2z + 1 = 0. 2z = Ln(−1) = ln | − 1| + i arg(−1) + 2kπi, z = (k + 2 )πi.
作业卷(三) 一 判断题 1.设 C 为 f (z ) 的解析域 D 内的一条简单正向闭曲线, 则 |z | < 2 内解析, C 取 |z | = 1, 则
的解为 z =
分析:两边同乘以 eiz , 得e2iz = 1. 两边取自然对数, 得 2iz = Ln1 = ln |1| + i arg(1) + 2kπi = 2kπi, z =
条件.
分析:f (z ) 在该点解析, 则 f (z ) 在该点的某一个邻域内可导, 在该点当然连续。填必要.
分析: 解析的充要条件. ux =
复变函数部分习题解答分析
作业卷(一) 一 判断题 1.复数 7 + 6i > 1 + 3i. ×. 两个复数, 只有都是实数时, 才可比较大小. 2.若 z 为纯虚数,则 z = z ¯. √ . 按书上定义, 纯虚数指 yi, y = 0, 若 z = yi , 则 z ¯ = −yi. 3.函数 w = arg(z ) 在 z = −3 处不连续. √ . 当 z 从下方 → −3时, w = arg(z ) 的极限为 −π ; 当 z 从上方 → −3 时, w = arg(z ) 的极限为 π . 4. f (z ) = u + iv 在 z0 = x0 + iy0 点连续的充分必要条件是 u(x, y ), v (x, y ) 在(x0 , y0 ) 点连续. √ . Th1.4.3. 5.参数方程 z = t2 + ti ( t 为实参数)所表示的曲线是抛物线 y = x2 . ×. x = y 2 . 二 填空题 1.若等式 i(5 − 7i) = (x + i)(y − i) 成立,则 x= 2.方程 Im(i − z ¯) = 3 表示的曲线是 3.方程z 3 + 27 = 0的根为 4.复变函数 w =

复变函数课后习题答案(全)

复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。

复变函数习题答案

复变函数习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--=== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根()()132π+π2ππcos πisin πcos isin 0,1,233k k k ++=+=∴1ππ1cosisin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数习题答案

复变函数习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--=== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根()()132π+π2ππcos πisin πcos isin 0,1,233k k k ++=+=∴1ππ1cosisin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

拉氏变换习题解答

拉氏变换习题解答
拉氏变换习题解答
习题一
].求下列函数的拉氏变换,并用查表的方法来验证结果 .
f f .l m6 t t ss nn = . ,
, i, ! 、
t-2
(2)/ (t) =e-21; (6) f(t) =cosh kt; i1
(3)/(t)=t气
(4) f ( t) = sin tcost; (10) f(t) =cos2 t
2) 利用& [勹卫勹及位移性质
sz si
& [f(t)] = &
[分] = 吕
a a
1 s 2. 若& [f(t)] = F(s), a 为正实数,证明 ( 相似性质) & [/(at)]= - F(一) 。

& [急f(at)] =厂f(at)e-s'dt =丿厂f(at)e一; m d(at) o a o
&加)] = &[t cos at] = 一 五& [cos at] = - c
2 : a2
l
= (:22: : 22
(6) & [r(t)]=& [5sin2t - 3 cos2t]=5& [sin2t]- 3& [cos2t] =
(7)
IO 3s I0 - 3s = s2+4 s2+4 s2+ 4
-
(s .l )
(S +
3 3 =- - e S S
+
1 e s 2 $
(
) .1
e
($
“ +L 2
、)
· 1
g 工户





2

复变函数课后部分习题解答精编版

复变函数课后部分习题解答精编版

(1)(3-i)5解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°](3-i)5=25[cos(30°⨯5)-isin(30°⨯5)]=25(-3/2-i/2) =-163-16i(2)(1+i )6解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2tan θ=x y =1x>0,y>0∴θ属于第一象限角∴θ=4π ∴1+i=2(cos4π+isin 4π) ∴(1+i )6=(2)6(cos 46π+isin 46π) =8(0-i )=-8i1.2求下式的值 (3)61-因为-1=(cos π+sin π)所以61-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6).习题一1.2(4)求(1-i)31的值。

解:(1-i)31 =[2(cos-4∏+isin-4∏)]31=62[cos(12)18(-k ∏)+isin(12)18(-k ∏)](k=0,1,2)1.3求方程3z +8=0的所有根。

解:所求方程的根就是w=38-因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2其中ρ=3r=38=2即w=2[cosπ/3+isinπ/3]=1—3i1w=2[cos(π+2π)/3+isin(π+2π)/3]=-22w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i3习题二1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。

(1) Im(z)>0解:设z=x+iy因为Im(z)>0,即,y>0而)x-∞∈,(∞所以,不等式所确定的区域D为:不包括实轴的上半平面。

复变函数—课后答案拉氏变换习题解答

复变函数—课后答案拉氏变换习题解答

( Re s > max{k , −k})
-1-
(6) & ⎡ ⎣ f ( t )⎤ ⎦=

+∞
0
cosh kte− st dt = ∫
+∞
0
ekt + e− kt − st 1 e dt = 2 2
(∫
+∞
0
e− ( s − k )t dt + ∫ e − ( s + k ) t dt
0
+∞
)
⎛ − ( s − k ) t +∞ e − ( s + k )t +∞ ⎞ |0 + |0 ⎟ = 1 ⎛ 1 + 1 ⎞ = s 1⎜e = ⎜ ⎟ 2 ⎜ −( s − k ) − ( s + k ) ⎟ 2 ⎝ s − k s + k ⎠ s 2 − k 2 ⎝ ⎠

+∞
0
f (t )e − st dt = ∫ 3e − st dt + ∫π cos t ⋅ e − st dt
0 2
π 2
+∞
=
+∞ e i t + e − i t 3 − st 2 3 3 − 1 +∞ e | + ∫π e − st dt = − e 2 + ∫π (e −( s −i)t + e −( s +i)t )dt t =0 s s 2 2 −s 2 2
⎧ 1, f (t ) = ⎨ ⎩− 1,
(4)由图易知, f (t ) 是周期为 2b 的周期函数,在一个周期内
0≤t <b b ≤ t < 2b
由公式 & [ f (t )] =

8复变函数课后题答案(中国石油大学)

8复变函数课后题答案(中国石油大学)

习题八答案 1. 求下列函数的拉氏变换:(1) 3,,2()cos ,;2t f t t t ππ⎧<⎪⎪=⎨⎪≥⎪⎩ 解:由拉氏变换的定义知:22220231[()]3cos 1.1s s st stL f t e dt etdt e e s s ππππ+∞−−−−⎛⎞=+=−−⎜⎟+⎝⎠∫∫(2) ()cos ()sin ().f t t t t u t δ=⋅−⋅解:由拉氏变换的定义以及单位脉动函数的筛选性质知:0202221[()]cos ()sin ()cos |111.11st st st t L f t t t e dt t u t e dt t e s s s s δ+∞+∞−−−==⋅⋅−⋅⋅=⋅−+=−=++∫∫2. 求下列函数的拉氏变换:(1)2()1;f t t =−解:由拉氏变换的线性性质知:2332!121[()][][1].L f t L t L s s s s=−=−=− (2) ()1;tf t te =−解:由拉氏变换的线性性质和位移性质知:211[()][1][].(1)t L f t L L te s s =−=−− (3) ()cos ;f t t t =解:法一:利用位移性质。

()cos .2it ite ef t t t t −+==由拉氏变换的位移性质知:222211111[()][][].222()()(it its L f t L te L te s i s i s −⎡⎤−=+=+=⎢⎥−++⎣⎦211) 法二:利用微分性质。

令 则()cos ,g t t =2221()[()],'().1(s s G s L g t G s s s −===++21) 由拉氏变换的微分性质知:[cos ][()]'().L t t L tg t G s ==−即 2221[()].(1)s L f t s −=+ (4) 2()sin 6;tf t et −=解:因为 26[sin 6],36L t s =+ 故由拉氏变换的位移性知:26[()].(2)36L f t s =++ (5) 2()cos ;f t t = 解:1cos 2().2tf t +=故22211112[()][][cos 2].22224(4)s s L f t L L t s s s s +=+=+⋅=++ (6)()(1);tf t u e −=−解:因为1,10(1),0,10ttte u e e −−−⎧−>⎪−=⎨−<⎪⎩ 即: 1,0(1).0,0t t u e t −>⎧−=⎨<⎩ 故01[()]1.st L f t e dt s+∞−=⋅=∫(7) 2()(1);tf t t e =−解:22()(1)2.ttttf t t e t e te e =−=−+ 法一:利用拉氏变换的位移性质。

复变函数课后习题答案(全)之令狐文艳创作

复变函数课后习题答案(全)之令狐文艳创作

习题一答案1.令狐文艳2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-= (4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5= (6=5.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥(2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可,首先左端221212()()x x y y =+++, 而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++,由此,左端=右端,即原式成立。

2.2拉氏变换练习题及答案

2.2拉氏变换练习题及答案

1
e jt e jt estdt
0
0 2j

1

e jt e stdt
1
e jt estdt 1 L[e jt ] L[e jt ]
2j 0
2j
2j

1 2j
1

s

j

1
s

j


1 2j

2 j s2 2

s2
2
留数法的三种情况
情况一:F(s)的分母多项式D(S)=0中无重根
s1
s1
k1 k2
F (s) s2 5s 6 (s 2)( s 3) s 2 s 3
情况二:F(s)的分母多项式D(S)=0中有共轭复数根
F(s)

s1 s(s2 s 1)

k1 s

s s0

1
2s2 12s 6

k2


s(s

2)(s

3)
(s

2) s2

5
k3


2s2 12s 6 s(s 2)(s 3)
(s

3)
s3

4
X (s) 2s2 12s 6 1 5 4 s(s 2)( s 3) s s 2 s 3
s
s(s 2)(s 3)
2s2 12s 6 k1 k2 k3
X(s)

s(s 2)( s 3) s s 2 s 3
求K1、K2、K3的方法有两种:

(精品)《复变函数》习题及答案

(精品)《复变函数》习题及答案

第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。

( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。

( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。

( )4、cos z 与sin z 在复平面内有界。

( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。

( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。

( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。

( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。

( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。

( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。

( ) 12、有界整函数必为常数。

( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。

( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。

( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。

( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。

( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。

( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。

( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。

复变函数习题答案

复变函数习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--++ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--=== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根()()132π+π2ππcos πisin πcos isin 0,1,233k k k ++=+=∴1ππ1cosisin 332=+=z 2cos πisin π1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数课后习题答案解析(全)

复变函数课后习题答案解析(全)

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+ (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。

复变函数部分习题解答分析(复场拉)

复变函数部分习题解答分析(复场拉)

±
3 2

3i.
的实部 u(x, y ) =
, 虚部 v (x, y ) =
x2 − x+ y 2 − 2 , (x+1)2 +y 2
. v (x, y ) = .
3y . (x+1)2 +y 2
分析:将 z = x + iy 代入, 分离实部、 虚部, 得 u(x, y ) = 5.设 z1 = 2i, z2 = 1 − i, 则 Arg(z1 z2 ) = 分析: arg(z1 ) = π , arg(z2 ) = − π , Arg(z1 z2 ) = 4 √ 2 6.复数 z = − 12 − 2i 的三角表示式为 分析: 4[cos(− 5 π) 6 + i sin(− 5 π )], 6 4e
1 dz z
C
f (z ) dz = 0.
1 z
×.分析:f (z )的解析域D不足以保证f (z )在C 上及内解析。关键词 单连通区域.反例 f (z ) =
C
在0 <
= 2πi = 0
2.若 u,v 都是调和函数, 则 f (z ) = u + iv 是解析函数. ×.分析: 解析对 u,v 的要求很高,它们之间有本质的内在联系即 Cauchy-Riemann 方程,知道其一, 另一 若不考虑差一个常数, 则完全确定. 调和这一要求达不到. 反例俯拾即是 u(x, y ) = x, v (x, y ) = −y 都是 调和函数,但 f (z ) = x − yi 不解析. 3.设 f (z ) 在单连通区域 D 内解析, F (z ) 是 f (z ) 的一个原函数, C 为 D 内的一条正向闭曲线,则 0. √
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 w,x
得z =
+ iy =
1 u+iv
=
u u2 +v 2

v i. u2 +v 2
v 又由 y = 1 得 − u2 + = 1, u2 + v 2 + v = 0. v2 π 3
4.求角形域 0 < arg(z ) < 解 arg(w) = arg(¯ z ), 解 将x = 一 判断题
z +¯ z 2 ,y
作业卷(二) 1.若 f ′ (z ) 在区域 D 内处处为零, 则 f (z ) 在 D 内必恒为常数. √ . 在 D 内 f ′ (z ) = ux + ivx ≡ 0, ux = vx = 0. 从而 vy = ux = 0, uy = −vx = 0. 综上结论成立. 2.若 u(x, y ) 和 v (x, y ) 可导,则 f (z ) = u + iv 也可导. 1
= 0, 1, 2, z = −3,
3 2
±
3 2

3i.
4.复变函数 w =
z −2 z +1
的实部 u(x, y ) =
, 虚部 v (x, y ) =
x2 −x+y 2 −2 , (x+1)2 +y 2 π 4
. v (x, y ) = .
3y . (x+1)2 +y 2
分析:将 z = x + iy 代入, 分离实部、虚部, 得 u(x, y ) = 5.设 z1 = 2i, z2 = 1 − i, 则 Arg(z1 z2 ) = 分析: arg(z1 ) = π , arg(z2 ) = − π 4 , Arg(z1 z2 ) = √ 2 6.复数 z = − 12 − 2i 的三角表示式为 分析: 4[cos(− 5 6 π) + i sin(− 5 6 π )], 4e
kπ 271/3 (cos( π+2 3 )
,y = . .
.
或x = 1, y = 6.
分析: 由复数相等, Im(i − z ¯) = Im[i − (x − iy )] = Im[−x + (1 + y )i] = 1 + y = 3, 故填 y = 2. +
kπ sin( π+2 3 )), k
iik −e−iik
2i
| = |e
k −e−k
2
| → +∞(k → +∞, k > 0).
5.函数 f (z ) = u(x, y ) + iv (x, y ) 在点 z0 = x0 + iy0 可微等价于 u(x, y ) 和 v (x, y ) 在点 (x0 , y0 ) 可微. ×. 函数 f (z ) = u(x, y ) + iv (x, y ) 在点 z0 = x0 + iy0 可微等价于 u(x, y ) 和 v (x, y ) 在点 (x0 , y0 ) 可微且满 足 C − R 条件. 反例 u = x, v = −y. du = dx + 0dy, dv = 0dx − dy, u, v 都可微但 f (z ) = u + iv = x − iy 无 处可微. 6.函数 ez 是周期函数. √ . 2πi 为其周期. 二 填空题 1.设 ez = −3 + 4i, 则 Re(iz ) = 分析:对 z = −3 + 4i 两边取自然对数,有 z = Ln(−3 + 4i) = ln | − 3 + 4i| + i arg(−3 + 4i) + 2kπi, 从
∂u ∂x
= 2vvx = vy ,
∂u ∂y
= 2vvy = −vx 两式相乘并整理得 (4v 2 + 1)vx vy = 0. 由以上
三式易得vx ≡ vy ≡ 0, v 为常数. 又 u = v 2 , u 为常数, 从而 f (z ) = const.. 4.若函数 f (z ) = u + iv 解析, 且 u − v = (x − y )(x2 + 4xy + y 2 ), 试求 u(x, y ) 和 v (x, y ). 分析: 解析的充要条件. 由 u − v = (x − y )(x2 + 4xy + y 2 ) (0), 得 u = v + x3 + 3x2 y − 3xy 2 − y 3 . 又 由 ux = vy , uy = −vx , 得: vx + 3x2 + 6xy − 3y 2 = vy (1) vy + 3x2 − 6xy − 3y 2 = −vx (2) 由(1),(2)得 vy = 6xy ⇒ v = 3xy 2 + C (x) (3). ux = vy = 6xy ⇒ u = 3x2 y + D(y ) (4) 将(3),(4)代入(0)式,得 u =
2
3x2 y − y 3 + C, v = 3xy 2 − x3 + C . 5. 求方程 chz = 0 的全部解.
1 分 析: 双 曲 函 数 的 定 义. 解 法 一 chz = ch(−z ) = ch(iiz ) = cos(iz ) = 0, z = (k + 2 )πi. 解 法 二
1 z
2π 3
+ 2kπ, k = 0, ±1, ±2, · · · .
iy 满足 Re(z 2
+ 3) = 4, 求 x 与 y 的关系式.
解 Re(z 2 + 4) = Re(x2 − y 2 + 3 + 2xyi) = 4, x2 − y 2 = 1.
1 z
将平面上的直线 y = 1 所映射成 w 平面上的曲线方程.
1 z dz
C
f (z ) dz = 0.
1 z
×.分析:f (z )的解析域D不足以保证f (z )在C 上及内解析。关键词 单连通区域.反例 f (z ) =
C
在 0 < |z | <
= 2πi ̸= 0
2.若 u, v 都是调和函数,则 f (z ) = u + iv 是解析函数. ×.分析: 解析对 u, v 的要求很高,它们之间有本质的内在联系即 Cauchy-Riemann 方程,知道其一, 另一若 不考虑差一个常数, 则完全确定. 调和这一要求达不到. 反例俯拾即是 u(x, y ) = x, v (x, y ) = −y 都是调和 函数,但 f (z ) = x − yi 不解析. 3.设 f (z ) 在单连通区域 D 内解析, F (z ) 是 f (z ) 的一个原函数, C 为 D 内的一条正向闭曲线,则 0. √
4 + (2k + 1)π .(注:这里是从集合角度说) 而 Re(iz ) = i[iarg (−3 + 4i) + 2kπi] = arctan 3
2. 3i = 分析:3i = eiLn3 = ei[ln3+i arg(3)+2kπi] = ei[ln3+2kπi] = e2kπ (cos ln 3 + i sin ln 3). 3. (1 + i)i = 分析:(1 + i)i = eiLn(1+i) = ei[ln |1+i|+i arg(1+i)+2kπi] = ei[ln 4. cos 2i = 分析:cos 2i = 5. 方程 eiz =
i(− 5 π) 6 π 2

π 4
+ 2kπ =
+ 2kπ, (k = 0, ±1, ±2, · · · ) .
,指数表示式为
.
三 计算、证明题
√ 1.求出复数 z = (−1 + 3i)4 的模和辐角. √ 8π π π 4 解 z = (−1 + 3i)4 = 24 (cos 23 + i sin 23 ) = 16ei 3 , |z | = 16, Arg(z ) = 2.设 z = x + 3.求 f (z ) = 解 由w =
复变函数拉氏变换部分习题解答分析
作业卷(一) 一 判断题 1.复数 7 + 6i > 1 + 3i. ×. 两个复数, 只有都是实数时, 才可比较大小. 2.若 z 为纯虚数,则 z ̸= z ¯. √ . 按书上定义, 纯虚数指 yi, y ̸= 0, 若 z = yi , 则 z ¯ = −yi. 3.函数 w = arg(z ) 在 z = −3 处不连续. √ . 当 z 从下方 → −3时, w = arg(z ) 的极限为 −π ; 当 z 从上方 → −3 时, w = arg(z ) 的极限为 π . 4. f (z ) = u + iv 在 z0 = x0 + iy0 点连续的充分必要条件是 u(x, y ), v (x, y ) 在(x0 , y0 ) 点连续. √ . Th1.4.3. 5.参数方程 z = t2 + ti ( t 为实参数)所表示的曲线是抛物线 y = x2 . ×. x = y 2 . 二 填空题 1.若等式 i(5 − 7i) = (x + i)(y − i) 成立,则 x= 分析: 两复数相等的定义. x = −6, y = −1, 2.方程 Im(i − z ¯) = 3 表示的曲线是 3.方程z 3 + 27 = 0的根为 分析: z3 = 27eiπ , z =
×. 若 u(x, y ) 和 v (x, y ) 可导,则 u, v 之间一般没有什么直接关系. f (z ) = u + iv 可导, u, v 之间一个几乎完 全确定另一个(活动的余地只是一个常数). 3.若 f (z ) 在 z0 点不解析, 则 f (z ) 在点 z0 必不可导. ×. 参见三2. 4. | sin z | ≤ 1. ×.复变函数中, sin z 无界. 如 | sin ik | = | e
相关文档
最新文档