经典证明:几乎所有有理数都是无理数的无理数次方
数学史上的著名猜想之(一)
数学史上的著名猜想之(一)—―被否定的数学猜想过伯祥数学史上,长时期未能解决的数学猜想特别多!并且很多都是世界级的难题,其中数论方面的问题又占多数.它们表面上是那么的浅显,好像不难解决似的,其实,若无深厚的数学功底,即使想接近它也十分困难。
本章特作较多的介绍,使数学爱好者有一个初步了解.如果你有志要攻克这些猜想,就必须作好长期艰苦跋涉的思想准备.1.被否定的数学猜想(1)试证第五公设的漫长历程几何是从制造器皿、测量容器、丈量土地等实际问题中产生和发展起来的.几何学的发展历程中,有两个重大的历史性转折.其一是,大约从公元前7世纪到公元前3世纪,希腊数学从素材到框架,已经为几何学的理论大厦的建造准备了足够的条件.欧几里得在前人毕达哥拉斯、希波克拉底和欧多克斯等人的工作基础上,一举完成了统治几何学近2000年的极其伟大的经典著作《几何原本》.它使几何学发展成为一门独立的理论学科,是几何学史上的一个里程碑.其二,也正是由于《几何原本》的问世,才带来了一个使无数人困惑和兴奋的著名问题--欧几里得第五公设问题.在《几何原本》的第一卷中,规定了五条公设和五条公理.著名的欧几里得第五公设:“若两条直线被第三条直线所截,如有两个同侧内角之和小于两直角,则将这两直线向该侧适当延长后必定相交.”就是这五条公设中的最后一条.由于它在《几何原本》中引用得很少(直到证明关键性的第29个定理时才用到它);而且,它的辞句冗长,远不如前四条公设那样简单明了.于是给后人的印象是:似乎欧几里得本人也想尽量避免应用第五公设.于是,一代又一代的数学家猜测:大概不用花费很多力气就能证明欧几里得第五公设.就这样,数学家们开始了试证第五公设的历程.这是个始料未及的漫长历程!真正是前赴后继,几乎每个时代的大数学家都做过这一件工作.然而,满以为非常简单,只不过是举手之劳的一件事,谁料历时两千年仍未解决.第五公设问题几乎成了“几何原理中的家丑”(达朗贝尔).直至19世纪,人们才逐渐意识到“欧氏第五公设可以证明”是一个错误的猜想,但它却引导数学家们得到了有意义的结果.所以说:错误的猜想有时也是极有意义的!“在我们试图证明某个猜想的时候,如果使尽各种招数仍无进展,就应去查一查这个猜想本身有没有毛病.”(2)引出一个大胆猜想第五公设的一个又一个试证,总是发生“偷用”某个与第五公设等价的“假设”去代替的毛病,这逐渐地使几位思想较开阔而又有远见的数学家高斯、亚诺什•鲍耶、罗巴契夫斯基意识到:“欧几里得第五公设是不能从《几何原本》的其余公设、公理中导出.”也即与其它公设公理不相依赖,并且提出了一个新的大胆猜想:“欧几里得几何不是惟一的几何;任何一组假设如果彼此之间不导致矛盾的话,一定提供一种可能的几何.”罗巴契夫斯基、鲍耶正是在此想法的基础上开展了一系列工作,才发现了非欧几何的.虽然,他们的工作约有30年之久被人们所忽视;非欧几何的相容性问题在其后的40年中仍然悬而未决,然而,从某数学家的头脑中首先形成这大胆的猜想——与第五公设相矛盾的公理,也许仍可建立逻辑上相容的新几何——的那一刻起,就注定了即将发生几何学发展的又一次历史性的大转折:将迎来的是,几何学思想的大解放,几何学大发展的新时代.可以说,在19世纪所有复杂的技术创造中间,最深刻的一个——非欧几何的创造,就是起源于两千年试证第五公设的失败而日渐形成的大胆的猜想,非欧几何是在欧几里得几何领域中,一系列的长期努力所达到的一个新顶点。
100个数论经典例题
100个数论经典例题1. 证明:无理数的十进展开不可能是一个重复的数字序列。
2. 证明:一个正整数为完全平方数的充分必要条件是它的每个质因子的指数都是偶数。
3. 证明:有理数的不循环小数展开是独一无二的。
4. 如果两个整数m和n的最大公约数是1,那么m/n的分数形式是既简单又唯一的。
5. 证明:对于任意自然数n,n²+n+41都是一个质数。
6. 证明:对于任意自然数n,3n²+3n+7都是一个质数。
7. 求1²+2²+3²+...+n²的值,并给出证明。
8. 求1³+2³+3³+...+n³的值,并给出证明。
9. 证明:无穷多个素数是等差数列的形式。
10. 设p是一个素数,证明:x²≡-1(mod p)的解的个数为0或2。
11. 给定一个正整数n,求所有满足φ(x)=n的正整数x,其中φ(x)表示小于x且与x互质的正整数的个数(欧拉函数)。
12. 证明:若p是任意一个素数,则对于任意自然数n,(n+p)!≡n!pⁿ(mod p²)。
13. 证明:若p是任意一个素数,则对于任意自然数n,n!≡-1(mod p)当且仅当p=2或p≡1(mod 4)。
14. 对于任意一个素数p和整数a,证明:x²≡a(mod p)有解的充分必要条件是a^(p-1)/2≡±1(mod p)。
15. 证明:对于任意自然数n,存在无限多个三元组(x,y,z)使得x⁴+y⁴=z³。
16. 证明:对于任意正整数k,存在无限多个素数p,使得p≡1(mod k)。
17. 求2²+4²+6²+...+50²的值,并给出证明。
18. 求1+2+3+...+99+100的值,并给出证明。
19. 给定正整数a、b、n,求aⁿ+bⁿ的最大公因数,并给出证明。
无理数
摘要在实数系中,无理数和有理数相比较,无理数更为抽象,但它在实数系中是不可缺少的,占着重要的枢纽地位。
同时,它也是数系扩充的重要组成部分,即有理数系扩充到实数系。
对于无理数证明的研究,一方面,极大地促进了数学演绎推理的发展;另一方面,也体现了数学研究的严谨性。
因此,在研究无理数时,对于一些常见无理数的证明是非常重要的。
文章首先归纳了方根型无理数的证明方法,然后利用幂级数展开式和定积分的知识论证了一些特殊类型的无理数,最后,验证了 ,e的超越性,并借助Lindemann-Weierstrass定理证明在一定条件下的代数数的三角函数值与反三角函数值的无理性。
关键词:无理数,有理数,超越数ABSTRACTIn the real number system, irrational number is more abstract than rational number, but irrational number are indispensable and occupies an important key position in the real number system. Meanwhile, they are an important part when the rational number system is expanded to the real number system. The study of the proof of irrational number greatly promotes the development of mathematical rational deductive inference. At the same time, it also shows the rigorousness of mathematics. Therefore, the proofs of some common irrational numbers are extremely important. Firstly, the article generalizes the methods to prove irrational numbers with root type. Secondly, it uses the knowledge of power series expansion and definite integral to prove some irrational numbers with special types. Finally, the article demonstrates the transcendence of and e. Moreover, it uses Lindemann-Weierstrass theorem to prove the irrationality of trigonometric function value and anti-trigonometric function value under certain conditions.Key Words:irrational number, rational number, transcendental number目录摘要 (I)ABSTRACT ............................................ I I 一引言 . (1)二有理数与无理数的定义和性质 (1)2.1有理数与无理数的定义 (1)2.2相关性质 (1)三无理数的判定方法 (3)3.1 方根型无理数的证明 (3)3.2 幂级数证明方法 (9)3.3 利用定积分证明 (12)3.4 超越数证明法 ............................................................... 错误!未定义书签。
第6章实数-解读无理数课件--2023学年沪科版数学七年级下册
(2)如果(2+ 2)a -(1- 2)b=5,其中a、b为有理数,求a+2b的值.
解: ∵(2+ 2)a (1 2)b 5
整理得 (a b) 2 2a b 5 0
∵a、b为有理数
∴
a b 0 2a b 5
解得 a 5 ,b 5 ,
3
3
∴ a 2b 5 . 3
小结:无理数的发现,除了是实际的需 求外,也要注意是运算的需要. 解决此题的关键在于利用乘法分配律将 代数式恒等变形化为已知式.
小结:估算无理数大小时,常用“夹逼法”,确定这个无理数在哪两 个连续整数之间是解题的关键.
例题精讲
例题 若两个连续整数x、y满足x< 5 1<y,则x+y的值是____7____.
分析: 估算无理数
夹逼法
4< 5 <9
2< 5 < 3
3< 5+1< 4
x=3
y=4
x+y=7
小结:估算无理数大小时,常用“夹逼法”,确定这个无理数 在哪两个连续整数之间是解题的关键.
例题精讲
例题 我们知道,任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一 个无理数的积为无理数,而零与无理数的积为零.由此可得:如果mx+n=0,其中m、n为 有理数,x为无理数,那么m=0且n=0.
(1)如果(a-2) 2 +b+3=0,其中a、b为有理数,那么a=___2___,b=___-3___.
要求出满足条件的x的值.
分析:
“夹逼法”确定这个无理数在哪两个连续整数之间
确定无理数的整数部分、小数部分 确定m、n的数值,代入方程求解。
例题精讲
有关有理数与无理数的证明
有关有理数与无理数的证明狄利克雷函数(Dirichlet Function),在实数上处处不连续的证明(2006年10月25日修改版)声明:前天下午在与曲建勋的讨论中找到其证明方式本证明过程,最关键的两个步骤,由我和曲建勋分别提出,在此对曲建勋表示感谢,并郑重声明,并非我一人完成此证明√2代表根号2证明过程我写得很啰嗦,尤其是前面三个命题,可能有些人会认为太显而易见了,但为了严谨我还是写出来了,高人可以略过其证明过程前提:1、任何有理数均可写成既约分数p/q (p,q∈Z 且q≠0)2、任何无理数据不可写成这样的形式,且均可写成无限不循环小数3、任何实数必定属于有理数或无理数中的一类,且不能同时属于两类数命题1:任何有理数与无理数相加结果都是无理数证明:假设命题不成立设p/q (p,q∈Z 且q≠0)为任意有理数X为任意无理数则p/q+X=m/n (m,n∈Z 且n≠0)X=m/n-p/q=(mq-np)/(n*q)则根据前提1,X为有理数,与假设矛盾故假设不成立,命题1成立命题2:任何无理数除以非零有理数结果都是无理数证明:假设命题不成立设p/q (p,q∈Z 且q≠0,p≠0)为任意非零有理数X为任意无理数则X/(p/q)=m/n (m,n∈Z 且n≠0)X=(p*m)/(q*n)则根据前提1,X为有理数,与假设矛盾故假设不成立,命题2成立命题3:√2为无理数证明:假设命题不成立则√2为有理数,设√2=p/q (p,q∈Z 且q≠0)2=(p*p)/(q*q)则p必须是偶数∵p/q是既约分数∴q是奇数∴设p=2n q=2m+1(m,n∈Z)∵2*q*q=p*p∴2*(2m+1)*(2m+1)=2n*2n ∴(2m+1)*(2m+1)=2n*n 而m,n∈Z时本式不能成立故假设不成立,命题3成立命题4:任何有限小数都是有理数证明:显而易见~~下面进入本证明的关键部分首先介绍狄利克雷函数(Dirichlet Function)f(x)= 1(x为有理数)0(x为无理数)命题5:任意两个有理数之间一定存在至少一个无理数证明:设p/q、m/n (p,q,m,n∈Z 且q≠0,n≠0)为任意两个有理数,不妨设p/q <m/n则m/n-p/q=(mq-np)/(nq)为有理数设Q为正有理数,且满足√2<Q(mq-np)/(nq)则0<√2/Q<(mq-np)/(nq)p/q<√2/Q+p/q<(mq-np)/(nq)+p/q=m/n根据命题1、2、3,√2/Q+p/q为无理数∴命题5成立命题6:任意两个无理数之间一定存在至少一个有理数证明:设X,Y为任意两个无理数,且X<Y将X,Y写成小数形式,从最高位开始比较两个数直到找到一位X,Y不一样的位数,那一位上的数必然是X<Y 去掉Y在那一位以后的所有位,得到一个有限小数,记为Z 显而易见X<Z<YZ为有理数,命题6成立根据命题5、6,任意有理数都不连续,任意无理数也都不连续,根据前提3,则狄利克雷函数在全体实数上处处不连续。
谈谈有理数与无理数
谈谈有理数与无理数实数通常分为有理数和无理数两类。
这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。
本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。
关于有理数,我们知道得较多,其特征有:1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数;2、每个有理数都可以写成分数的形式,即nm ,其中m 和n 都是整数,且n ≠0。
利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。
我们不加证明地给出关于有理数的一条结论: 当有理数nm 的分母n 能分解质因数为2α³5β(其中α、β为自然数)时,有理数nm 能化成有限小数;否则,化为无限循环小数。
(关于有理数与小数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述) 无理数是指那些无限不循环小数。
大家熟悉的无理数很多,2、e 、π等等都是。
与有理数相比,无理数不具备那样好的性质。
譬如,两个无理数的四则运算结果不一定是无理数,象π-π=0,22=1。
根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用:1、任何有理数≠任何无理数;2、设是a 有理数,b 是无理数,则a+b ,a-b ,a ²b (a ≠0),a/b (a ≠0)都是无理数。
下面着重介绍实数无理性的判定方法。
在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算有关,如2,311;与对数值有关,如log 23;与三角函数值有关,如cos20°,sin1°;此外还有象e (自然对数的底)、π(圆周率)这样的特殊值。
判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。
原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数和无理数的关系,α就是有理数,故α=nm (n ≠0),于是就得到一个具体的等式,这为我们导出矛盾提供了一个直观的工具。
(根号5),(根号13),(根号21),(根号29)等都是无理数的统一证明
(根号5),(根号13),(根号21),(根号29)等都是无理数的统一证明
作者:黄兆麟
来源:《中学数学杂志(初中版)》2015年第05期
本文仅从整数的奇偶性上引出矛盾,利用反证法给出5,13,21,29等数均为无理数的统一证明,供同学们参考.
定理若p是自然数,则8p+5是无理数.
证明假设8p+5是有理数,即有8p+5=mn(mn是既约分数),
则有(8p+5)n2=m2 (1)
[1]假设m与n均为偶数,则恰与mn为既约分数矛盾!故假设[1]不真!
[2]假设m与n的奇偶性不同,由于8p+5始终为奇数,则(1)式左右两边的奇偶性将始终不同,从而矛盾!故假设[2]也不真!
[3]假设m与n均为奇数(m>n),则m+n与m-n均为偶数!
故此时可设m+n=2r,m-n=2s(r,s∈N*,r>s),那么可将(1)式变形为
4(2p+1)n2=(m+n)(m-n),
即有(2p+1)n2=rs (2)
显然(2)式左边为奇数!那么可知r与s必同时为奇数!这将导致
m=r+s,n=r-s,即m与n均为偶数!恰与开始的“[3]假设m与n均为奇数”矛盾!故假设[3]也不真!
综合假设[1]、[2]、[3]均不真,知8p+5=mn不真,故知8p+5是无理数.
练习若p是自然数,则8p+2,8p+3,8p+6均为无理数.。
有关有理数与无理数的证明
狄利克雷函数(Dirichlet Function),在实数上处处不连续的证明(2006年10月25日修改版)声明:前天下午在与曲建勋的讨论中找到其证明方式本证明过程,最关键的两个步骤,由我和曲建勋分别提出,在此对曲建勋表示感谢,并郑重声明,并非我一人完成此证明√2代表根号2证明过程我写得很啰嗦,尤其是前面三个命题,可能有些人会认为太显而易见了,但为了严谨我还是写出来了,高人可以略过其证明过程前提:1、任何有理数均可写成既约分数p/q (p,q∈Z 且q≠0)2、任何无理数据不可写成这样的形式,且均可写成无限不循环小数3、任何实数必定属于有理数或无理数中的一类,且不能同时属于两类数命题1:任何有理数与无理数相加结果都是无理数证明:假设命题不成立设p/q (p,q∈Z 且q≠0)为任意有理数X为任意无理数则p/q+X=m/n (m,n∈Z 且n≠0)X=m/n-p/q=(mq-np)/(n*q)则根据前提1,X为有理数,与假设矛盾故假设不成立,命题1成立命题2:任何无理数除以非零有理数结果都是无理数证明:假设命题不成立设p/q (p,q∈Z 且q≠0,p≠0)为任意非零有理数X为任意无理数则X/(p/q)=m/n (m,n∈Z 且n≠0)X=(p*m)/(q*n)则根据前提1,X为有理数,与假设矛盾故假设不成立,命题2成立命题3:√2为无理数证明:假设命题不成立则√2为有理数,设√2=p/q (p,q∈Z 且q≠0)2=(p*p)/(q*q)则p必须是偶数∵p/q是既约分数∴q是奇数∴设p=2n q=2m+1(m,n∈Z)∵2*q*q=p*p∴2*(2m+1)*(2m+1)=2n*2n ∴(2m+1)*(2m+1)=2n*n 而m,n∈Z时本式不能成立故假设不成立,命题3成立命题4:任何有限小数都是有理数证明:显而易见~~下面进入本证明的关键部分首先介绍狄利克雷函数(Dirichlet Function)f(x)= 1(x为有理数)0(x为无理数)命题5:任意两个有理数之间一定存在至少一个无理数证明:设p/q、m/n (p,q,m,n∈Z 且q≠0,n≠0)为任意两个有理数,不妨设p/q<m/n则m/n-p/q=(mq-np)/(nq)为有理数设Q为正有理数,且满足√2<Q(mq-np)/(nq)则0<√2/Q<(mq-np)/(nq)p/q<√2/Q+p/q<(mq-np)/(nq)+p/q=m/n根据命题1、2、3,√2/Q+p/q为无理数∴命题5成立命题6:任意两个无理数之间一定存在至少一个有理数证明:设X,Y为任意两个无理数,且X<Y将X,Y写成小数形式,从最高位开始比较两个数直到找到一位X,Y不一样的位数,那一位上的数必然是X<Y去掉Y在那一位以后的所有位,得到一个有限小数,记为Z显而易见X<Z<YZ为有理数,命题6成立根据命题5、6,任意有理数都不连续,任意无理数也都不连续,根据前提3,则狄利克雷函数在全体实数上处处不连续。
任意有理数都是无限循环小数证明
任意有理数都是无限循环小数证明任意有理数都是无限循环小数的证明一、引言在数学中,我们经常会遇到无限循环小数这样的概念,而有理数则是我们最常接触到的数。
本文将探讨一个有趣且有深度的主题:任意有理数都是无限循环小数。
通过对有理数的定义和循环小数的性质的分析,我们将给出相应的证明,并分享个人对这一主题的观点和理解。
二、有理数的定义在数学中,有理数是可以表示为两个整数的比例的数。
1/2、3/4、-2/7等都是有理数。
而无理数则是不能表示为两个整数的比例的数,如√2、π等。
有理数有以下两个重要的特征:1.有理数可以用分数的形式表示,即分子和分母都是整数。
2.有理数可以是正数、负数或零。
三、循环小数的定义循环小数是指小数部分从某一位开始,将会重复出现的小数。
1/3=0.3333...,其中小数部分的3将无限循环下去。
循环小数有以下两个特征:1.循环节:循环节是指在循环小数中重复出现的一段数字。
1/6=0.166666...,其中循环节为6。
2.小数部分将无限循环下去,循环节将不断重复出现。
四、任意有理数都是无限循环小数的证明假设我们有一个任意的有理数a,可以表示为a = p/q,其中p和q都是整数,且q≠0。
我们来证明a是无限循环小数。
1. 若q为素数若q为素数,我们可以将a表示为a=p/q。
我们来考虑a的小数部分。
由于素数只有1和本身两个因子,所以当我们进行除法的过程时,余数将一直在1到q-1之间循环,直到某一时刻余数为1,此时小数部分将开始循环,并且循环节的长度为q-1。
a为无限循环小数。
2. 若q为合数若q为合数,我们可以将a表示为a=p/q。
在这种情况下,我们需要将q分解为素数的乘积:q = p1 * p2 * ... * pn。
我们来考虑a的小数部分。
根据小数的除法规则,我们将从最后一位开始,依次求得小数部分的每一位。
具体的过程如下:- 我们将p与p1进行除法运算,并得到商s1和余数r1。
- 将r1与p2进行除法运算,并得到商s2和余数r2。
无理数次方规则
无理数次方规则全文共四篇示例,供读者参考第一篇示例:无理数指的是那些不能被表示为两个整数之比的数,也就是无限不重复的小数。
无理数的次方运算是数学中的一个重要概念,它涉及到无理数之间的运算规则和特性。
本文将详细介绍无理数次方规则,探讨无理数次方运算的性质和规律。
在数学中,每一个数都可以被看做是某个数的次方,比如2可以被表示为2的1次方,3可以被表示为3的1次方,因为1的次方就是它本身。
但是对于无理数来说,情况就比较复杂了。
我们来看无理数的次方规则。
无理数的次方可以分为两种情况:正数次方和负数次方。
无理数的正数次方就是将这个无理数重复乘以自己,而无理数的负数次方则是将这个无理数的倒数重复乘以自己。
π的平方就是π乘以π,π的立方就是π乘以π再乘以π,而π的负二次方就是1/π乘以1/π。
无理数次方运算也符合一些基本的数学规律,比如乘法分配律、交换律和结合律等。
无理数的次方运算满足乘法分配律,即(a*b)^n=a^n * b^n,其中a和b为无理数,n为整数。
无理数的次方运算还满足交换律,即a^m * b^n=b^n * a^m,其中a和b为无理数,m和n为整数。
无理数的次方运算也满足结合律,即(a^m)^n=a^(m * n),其中a为无理数,m和n为整数。
无理数次方运算也存在一些特殊情况,比如零次方和分数次方。
对于零次方来说,任何数的零次方都等于1,包括无理数。
而对于分数次方来说,无理数的分数次方通常需要通过对数函数或者泰勒级数等方法来近似计算,因为分数次方无法直接表示为有限的小数或者无限不重复的小数。
无理数次方运算在数学和物理等领域有着广泛的应用。
在数学中,无理数次方运算被广泛应用于代数、微积分、概率论等领域中的数学模型研究中。
在物理中,无理数次方运算则被用于描述各种自然现象和物质性质,比如牛顿万有引力定律、爱因斯坦的质能方程等。
无理数次方规则是数学中的一个重要概念,无理数的次方运算涉及到无理数之间的运算规则和特性。
非常神奇的数学结论有哪些?
非常神奇的数学结论有哪些?最神奇的结论,我不知道,但是神奇的结论可就多了去了。
我按照神奇度依次递增的顺序来给出各种千奇百怪的结论,以下是脑洞大开的时刻:1、存在无理数的无理数次方是有理数吗?废话,肯定存在。
例如,我们来考虑很明显很明显等于2是有理数了;但是对于更一般的情况下判断任意给一个无理数的无理数次方是有理数还是非常难的,目前没有更有效的方法。
2、圆周率π圆周率本身是无理数,而且更神奇的是你的生日、银行卡号、学号、身份证号等可能就包含在圆周率中的某一段中;但是这还不是更神奇的事情。
更神奇的地方是和概率论有着非常密切的关系。
最典型的一个例子应该是18世纪法国数学家蒲丰的投针实验,这个实验是这样的:假设在平坦的地面上画着间距为单位1的平行线,把一根长度为单位1的针随机扔在地上,问这根针与地面的平行线相交的概率为多少。
答案非常出乎意料的是这个用到微积分的知识。
但是这还不是更神奇的事情。
更神奇的是,这个级数的每一项都是有理分式,无数个有理数求和却不是有理数而是无理数,并且这个无理数还和有关,它居然等于当然这个公式对于下面这些公式来说还是弱爆了。
韦达给出了一个超漂亮的式子:沃利斯也不甘示弱:更有史上最天才的拉马努金给出的(这个等式规律性非常强有木有):等等等等有几吨这种美感与智慧并存的结论这还不是更神奇的事情,更神奇的地方等待着面前的你去发掘!3、存在一个不等式,它的解在平面上的分布图形长的和该不等式一模一样!!这个我是在顾森的博客上看到的:2001年,在介绍一种全新的方程图象绘制算法时,塔珀(Jeff Tupper)构造了这样一个有趣的不等式:对于某个n,图象在0<=x<=106,n<=y<=n 17的范围内它的解的分布图形是:有木有长的一模一样!!有木有长的一模一样!!4、在有些空间中,收敛序列可能不止收敛于一个点!在潜意识里,任给一个收敛序列,它的收敛点只有一个,比如给一个序列它的通项为它只收敛于自然底数e。
无理数的经典例题
无理数是不能表示为两个整数的比例的实数,它们的小数部分是无限不循环的。
以下是一些关于无理数的经典例题:
1. **证明根号2 是无理数:**
考虑方程\(x^2 = 2\),证明它没有整数解。
这可以通过反证法,假设存在整数解,然后导出一个矛盾,证明根号2 是无理数。
2. **证明\(e\) 是无理数:**
证明自然对数的底\(e\) 是无理数是一个复杂的问题,通常需要使用数学分析的方法。
这个证明是由瑞士数学家乔治·庞加莱提出的,使用了连分数等技巧。
3. **证明\(\pi\) 是无理数:**
证明圆周率\(\pi\) 是无理数是一个著名的问题。
这个证明最初由德国数学家弗朗茨·利希滕贝尔格在18世纪提出,后来由英国数学家罗杰·阿普利顿于1882年完成。
4. **证明黄金比例\( \frac{1 + \sqrt{5}}{2} \) 是无理数:**
这个数通常用希腊字母\(\phi\) 表示,它是黄金比例的一个代表。
证明\(\phi\) 是无理数可以通过构造与其相关的方程并应用数学归谬法。
5. **证明平方根为质数的无理数性质:**
例如,证明\(\sqrt{3}\)、\(\sqrt{5}\)、\(\sqrt{7}\) 等为无理数。
这可以通过反证法,假设它是有理数,然后导出矛盾。
这些问题都涉及到一些高级的数学知识,通常需要运用代数、数论、分析等多个数学分支的方法。
证明一个数是无理数往往需要使用反证法,也可能需要一些创造性的构造和证明技巧。
无理数次方规则
无理数次方规则
无理数次方规则是数学中的一个重要概念,它描述了当一个数被无理数(即不能表示为两个整数的比的数,如π或√2)次方时的行为。
这个规则通常用于处理涉及无理数次方的数学表达式和方程。
无理数次方规则的基本形式可以表示为:
a^(ir) = cos(rln(a)) + i*sin(rln(a))
其中,a 是实数或复数,r 是无理数,i 是虚数单位(满足i^2 = -1)。
这个公式是欧拉公式的一个应用,它建立了无理数次方与三角函数之间的关系。
这个规则的重要性在于它提供了一种处理无理数次方的方法,使得我们可以对涉及无理数的数学表达式进行更深入的分析和计算。
例如,在量子力学和波动理论中,无理数次方经常出现在波函数的描述中,这些波函数描述了粒子的行为和相互作用。
需要注意的是,无理数次方规则通常只适用于连续的无理数,而不适用于离散的无理数(如某些无理数序列)。
此外,当底数 a 为负数或复数时,无理数次方的结果可能会更加复杂,需要更多的数学知识和技巧来处理。
总之,无理数次方规则是数学中的一个重要概念,它为我们提供了一种处理涉及无理数的数学表达式和方程的方法,使得我们可以更深入地理解和应用数学知识。
几道有意思的小数学题
几道有意思的小数学题1.“一切无理数的无理数次方一定是无理数”,试证明此命题或举出反例。
2.两人在1,2,3,……,9这九个数字中轮流取数,不准重复,谁先取到三数之和为15谁就赢了。
问先走者有没有一个稳操胜券的策略?3.汽油危机已经来临,大家都在叫油荒。
分散在长长的环形公路各处的加油站所存的油量仅仅够你跑一圈而无点滴富余。
请证明,如果你在一个合适的加油站开始启程,把空油箱加足了汽油,你有充分把握可以跑完一圈,不会中途抛锚。
请先仔细思考再看解答.1.“一切无理数的无理数次方一定是无理数”,试证明此命题或举出反例。
Solution:这个命题是错误的,有一个构造巧妙的反例:我们设如果x是有理数,那x就是该命题的反例;如果x是无理数,那么我们来看看x 的根2次方是多少——它就是2!!!于是反例找到了。
2.两人在1,2,3,……,9这九个数字中轮流取数,不准重复,谁先取到三数之和为15谁就赢了。
问先走者有没有一个稳操胜券的策略?Solution:答案是没有必胜策略。
解决这个问题的最简单办法是把它转化成另一个我们都很熟悉的问题。
首先构造幻方如下:4 9 23 5 78 1 6横行竖列对角线的和都是15,因此他们两个人玩得其实就是“吃井字”游戏(“吃井字”游戏就是在3×3的格子里画圈叉,三个连成一条线就赢了的那个游戏)!我们都知道“吃井字”游戏是没有必胜策略的,双方可以打成平局,所以原问题也没有必胜策略。
3.汽油危机已经来临,大家都在叫油荒。
分散在长长的环形公路各处的加油站所存的油量仅仅够你跑一圈而无点滴富余。
请证明,如果你在一个合适的加油站开始启程,把空油箱加足了汽油,你有充分把握可以跑完一圈,不会中途抛锚。
Solution:设想你在第一站带上足够的燃料,沿着公路环行,每到一处,便做好记录油箱里还有多少油,并把那里的汽油全部倒进油箱。
当你回到第一站时,你将发现,油箱里的剩油与出发时一样多。
总有一站油箱里的油量最小,我们就从这站开始启程,这样保证环行一周途中不愁汽油断档。
无理数的平方是无理数的例子
无理数的平方是无理数的例子
无理数是指不能表示为两个整数的比值的数,它们的小数部分是无限不循环的。
而无理数的平方也是无理数,这是一种很有趣的数学现象。
首先,我们来证明无理数的平方是无理数。
假设存在一个无理数x,它的平方是有理数。
设x的平方为a/b,其中a和b都是整数,并且b不等于0。
那么我们可以得到x的平方等于a/b,即x^2=a/b。
根据无理数的定义,x无法表示为两个整数的比值,所以它的平方也不应该能够表示为两个整数的比值。
这与假设矛盾,所以假设不成立,无理数的平方是无理数。
接下来,我们来举一个例子。
我们知道根号2是一个无理数,它的小数部分是无限不循环的。
那么根据前面的证明,根号2的平方也是无理数。
计算根号2的平方等于2,这是一个有理数。
这个例子说明了无理数的平方不一定是无理数的情况,并且也可以通过计算得到具体的结果。
除了根号2,还有许多其他无理数的平方也是无理数的例子。
比如根号3、根号5、根号7等等,它们的平方都是无理数。
这些例子进一步证明了无理数的平方不会变成有理数,而仍然保持无理数的特性。
总结起来,无理数的平方是无理数的例子有很多,这是一种数学现象。
无理数的平方既可以通过证明得到结果,也可以通过具体的计算得到结果。
这种性质不仅丰富了数学的内容,也给我们带来了更多的思考和探索的可能性。
初二数学:上册2.2有理数与无理数一起走近无理数
一起走近无理数在前面的学习中,我们认识了负数,使数的范围扩展到有理数.现在我们又开始学习无理数,把数的范围扩展到了实数.刚开始学习无理数,认为无理数不像有理数那样直观易懂,总有一种虚幻的感觉.那么该怎样学习无理数呢?一、明确无理数的存在无理数并不是“无理”,也不是人们臆想出来的,而是实实在在的存在.如:(1)两条直角边都为1的等腰直角三角形,它的斜边为2;(2)任何一个圆,它的周长和直径之比为常数π.像2、π这样的数在我们的身边还有很多.二、弄清无理数的定义及常见无理数无理数是指无限不循环小数,这说明无理数可以化为具有两个特征的小数:一是小数的位数时无限的,二是不循环的.我们比较常见的无理数往往具备以下几种表现形式:1.某些含有π的数,如:π,π3等; 2.开方开不尽得到的数,如:3、5等;3.依某种规律构造的无限不循环小数,如0.1010010001…(两个1之间依次多一个0).三、了解无理数的性质1.所有的无理数都可以用数轴上唯一的一个点来表示,并且右边的无理数总比左边的大;2.在有理数中的互为相反数的定义、绝对值得定义、大小比较法则及运算法则、运算律等,对于无理数仍然适用,如52-的相反数是25-,因为052<-,所以52-的绝对值是25-.四、澄清一些模糊认识1.无理数包括正无理数、0、负无理数0是一个整数,故它是有理数,因此无理数只能分为正无理数和负无理数两类.2.带根号的数就是无理数 由于像4、38-这样的数通过计算可以化为2和-2,因此它们是有理数,可见带根号的不一定是无理数.特别是π,它是无理数但并不是用根号形式表示的.3.无理数的数量比有理数少有些同学认为1、2、3、4、5这五个数,它们都是有理数,而开平方后得到的无理数只有2、3、5三个,因此得出无理数的数量要比有理数少.其实,我们对1、2、3、4、5开立方时还会产生32、33、34、35等无理数,如果再开四次方、五次方……还可以产生更多的无理数.因此无理数并不比有理数少.4.有些无理数是分数因为分数属于有理数,且无理数与有理数是两类不同的数,所以无理数不可能写成分数.当然,有些无理数可以借助分数线来表示,如32,但不能因为它具备了分数的形式就认为它是分数.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.将一块直角三角板的直角顶点放在长方形直尺的一边上,如∠1=43°,那么∠2的度数为()A.43°B.57°C.47°D.53°【答案】C【解析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】解:如图,,∵∠1=43°,∴∠3=∠1=47°,∴∠2=90°-43°=47°.故选:C.【点睛】此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.2.下面不是同类项的是()A.-2与12 B.-2a2b与a2b C.2m与2x D.-y2x2与12x2y2【答案】C【解析】根据同类项的定义逐项分析即可,同类项的定义是所含字母相同,并且相同字母的指数也相同的项,叫做同类项.【详解】A、B、D符合同类项的定义,是同类项;C中所含字母不同,不是同类项.故选C.【点睛】本题考查了利用同类项的定义,熟练掌握同类项的定义是解答本题的关键. 同类项定义中的两个“相同”:①所含字母相同;②相同字母的指数相同,是易混点.注意几个常数项也是同类项,同类项定义中的两个“无关”:①与字母的顺序无关,②与系数无关.3.某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240 B.120 C.80 D.40【答案】D【解析】试题分析:调查的总人数是:80÷40%=200(人),则参加调查的学生中最喜欢跳绳运动项目的学生数是:200﹣80﹣30﹣50=40(人).故选D.考点:1.条形统计图;2.扇形统计图.4.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3【答案】C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.5.下列调查中,比较适合用全面调查(普查)方式的是()A.了解某班同学立定跳远的情况B.了解某种品牌奶粉中含三聚氰胺的百分比C.了解一批炮弹的杀伤半径D.了解全国青少年喜欢的电视节目【答案】A【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据定义判断即可得到答案.【详解】A、了解某班同学立定跳远的情况,适合全面调查;B、了解某种品牌奶粉中含三聚氰胺的百分比,具有破坏性,适合抽样调查;C、了解一批炮弹的杀伤半径,具有破坏性,适合抽样调查;D、了解全国青少年喜欢的电视节目,任务量过大,适合抽样调查;故选择:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.在一手机界面中出现了下列图形,其中不是轴对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形的概念求解.【详解】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故选:D.【点睛】考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.7.下列调查中,适合用全面调查方式的是()A.调查“神舟十一号”飞船重要零部件的产品质量B.调查某电视剧的收视率C.调查一批炮弹的杀伤力D.调查一片森林的树木有多少棵【答案】A【解析】全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此逐个选项分析判断.【详解】A. 调查“神舟十一号”飞船重要零部件的产品质量,由于是“重要零部件”,适合全面调查;B. 调查某电视剧的收视率,适合抽样调查;C. 调查一批炮弹的杀伤力,适合抽样调查;D. 调查一片森林的树木有多少棵,适合抽样调查.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查,要根据所要考察的对象的特征灵活选用.一般来说对于具有破坏性的调查,无法进行普查,普查的意义或价值不大应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.下列语句中,是命题的是()A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AM D.两个锐角的和大于直角【答案】D【解析】选项A,B,C不能写成如果……那么……的形式.选项D,如果两个角是锐角,那么它们的和大于直角.所以选D.9.将图1中五边形ABCDE纸片的点A以BE为折线向下翻折,点A恰好落在CD上,如图2所示:再分AB AE为折线,将,C D两点向上翻折,使得A、B、C、D、E五点均在同一平面上,别以图2中的,∠的度数为()如图3所示.若图1中122∠=,则图3中CADA︒A.58︒B.61︒C.62︒D.64︒【答案】D【解析】根据平角的定义和定理和折叠的性质来解答即可.【详解】解:由图2知,∠BAC+∠EAD=180°−122°=58°,所以图3中∠CAD=122°−58°=64°.故选:D.【点睛】本题考查了折叠的性质,结合图形解答,需要学生具备一定的读图能力和空间想象能力.10.下列选项中,不是依据三角形全等知识解决问题的是()A.同一时刻,同一地点两栋等高建筑物影子一样长B.工人师傅用角尺平分任意角C .利用尺规作图,作一个角等于已知角D .用放大镜观察蚂蚁的触角【答案】D【解析】分别利用作一个角等于已知角,以及工人师傅用角尺平分任意角,和同一时刻,同一地点两栋等高建筑物影子一样长都是利用全等三角形的知识解决问题,进而分析得出答案.【详解】解:A 、利同一时刻,同一地点两栋等高建筑物影子一样长,依据三角形全等知识解决问题,故此选项不合题意;B 、工人师傅用角尺平分任意角,是利用SSS 得出,依据三角形全等知识解决问题,故此选项不合题意;C 、利用尺规作图,作一个角等于已知角,是利用SSS 得出,依据三角形全等知识解决问题,故此选项不合题意;D 、用放大镜观察蚂蚁的触角,是利用相似,不是依据三角形全等知识解决问题,故此选项正确. 故选D .【点睛】此题主要考查了相似图形,正确掌握全等三角形的判定方法是解题关键.二、填空题题11.如果0,7x y xy +==-,则22x y xy +=______.【答案】0【解析】22x y xy +=xy(x+y)=-70⨯=0.故答案为0.12.在数轴上,如果点A 、点B 所对应的数分别为3-、2,那么A 、B 两点的距离AB =_______.【答案】5【解析】利用A ,B 对应的数,进而求出两点之间的距离.【详解】A ,B 两点之间的距离为2-(-3)=2+3=1.故答案为:1.【点睛】此题主要考查了实数与数轴,得出异号两点之间距离求法是解题关键.13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____.【答案】h =0.3n+1【解析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式.【详解】设该函数的解析式为h =kn+b ,将n =1,h =1.6以及n =4,h =3.1代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩, ∴h =0.3n+1,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+1.故答案为:h =0.3n+1.【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.已知2x =是不等式(5)(32)0x ax a --+≤的解,且1x =不是这个不等式的解,则实数a 的取值范围是________.【答案】12a <≤【解析】∵2x =是不等式(5)(32)0x ax a --+≤的解,∴(25)(232)0a a --+≤,解得2a ≤,∵1x =不是这个不等式的解,∴(15)(32)0a a --+>,解得1a >,所以a 的取值范围是12a <≤,故答案为:12a <≤.15.如图所示,将含有30°角的三角板的直角顶点放在互相平行的两条直线其中一条上,若∠1=35°,则∠2的度数为 度【答案】25°【解析】试题分析:根据平行线的性质定理可得:∠1+∠2=60°,根据题意求出∠2的度数.考点:平行线的性质16.已知33+的整数部分为m ,33的小数部分为n ,则m n +的值为__. 【答案】63333+33m 、n 的值,代入求出即可. 【详解】解:132<<,4335∴<<,231-<<-,1332∴<<, 33+的整数部分为m ,33n ,m 4∴=,n 33123==-,m n 42363∴+=+= 故答案为:63-【点睛】本题考查了估算无理数的大小的应用,能求出m 、n 的值是解此题的关键.17.若a ﹣3有平方根,则实数a 的取值范围是_____.【答案】a≥1.【解析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得30.a -≥解得: 3.a ≥故答案为 3.a ≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、解答题18.在ABC ∆中,BD 是ABC ∠的角平分线,DE BC ∥,交AB 于点E ,60A ︒∠=,95BDC ︒∠=,求BDE ∆各内角的度数.【答案】35︒,35︒,110︒【解析】先根据三角形外角性质计算出∠ABD 的度数,再根据角平分线的定义得到∠CBD=∠ABD ,然后利用平行线的性质由DE ∥BC 得∠EDB=∠CBD ,最后根据三角形内角和定理计算∠BED 的度数. 【详解】解:∵60A ︒∠=,95BDC ︒∠=,1BDC A ∠=∠+∠∴1956035BDC A ︒︒︒∠=∠-∠=-=,∵BD 平分ABC ∠,∴2135︒∠=∠=,又∵ED BC ∥,∴3235︒∠=∠=,∴180131803535110BED ︒︒︒︒︒∠=-∠-∠=--=,∴BDE ∆各内角的度数分别是35︒,35︒,110︒.【点睛】本题考查了平行线性质、三角形内角和定理及外角性质,熟知相关性质是解题的关键.19.如图,点D 为射线CB 上一点,且不与点B 、C 重合,DE ∥AB 交直线AC 于点E ,DF ∥AC 交直线AB 于点F.画出符合题意的图形,猜想∠EDF 与∠BAC 的数量关系,并说明理由.【答案】当点D 在线段CB 上时,∠EDF=∠BAC ;当点D 在线段CB 的延长线上时,∠EDF+∠BAC=180°,证明见解析. 【解析】①当点在线段CB 上时,因为DE ∥AB ,两直线平行,同位角相等,所以∠BAC=∠1;因为DF ∥AC ,两直线平行,内错角相等,所以∠EDF=∠1.等量代换,即可证明∠EDF=∠BAC ;②当点D 在线段CB 的延长线上时,因为DF ∥AC ,两直线平行,内错角相等且同旁内角和为180°,所以∠BAC=∠AFD ,∠EDF+∠AFD=180°.等量代换,即可证明∠EDF+∠BAC=180°.【详解】证明:(1)如图1,2所示:①当点D 在线段CB 上时,如图1,∠EDF=∠A,证明:∵DE ∥AB(已知),∴∠1=∠BAC(两直线平行,同位角相等).∵DF ∥AC(已知),∴∠EDF=∠1(两直线平行,内错角相等).∴∠EDF=∠BAC(等量代换).②当点D 在线段CB 的延长线上时,如图②,∠EDF+∠BAC=180°, 证明:∵DE ∥AB(已知),∴∠EDF+∠F=180°(两直线平行,同旁内角互补). ∵DF ∥AC(已知),∴∠F=∠BAC(两直线平行,内错角相等).∴∠EDF+∠BAC=180°(等量代换). 点睛:本题考查了平行线的判定与性质,利用分类讨论得出结果是解答本题的关键.20.已知x ﹣1x 5x 2+21x 的值. 【答案】1. 【解析】把x ﹣1x 5x 2+21x 的值. 【详解】∵x ﹣1x 5 ∴(x ﹣1x )2=5, ∴x 2+21x ﹣2=5, ∴x 2+21x =1.【点睛】此题考查代数式求值,注意所给算式的特点,灵活选用适当的方法解决问题.21.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.【答案】(1)14cm;(2)36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.【详解】(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【点睛】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.22.前几天,在青岛召开了举世目的“上合”会议,会议之前需要印刷批宣传彩页.经招标,A印务公司中标,该印务公司给出了三种方案供主办方选择:方案一:每份彩页收印刷费1元.方案二:收制版费1000元,外加每份彩页收印刷费0.5元.方案三:印数在1000份以内时,每份彩页收印刷费1.2元,超过1000份时,超过部分按每份0.7元收费.(1)分别写出各方案的收费y (元)与印刷彩页的份数x (份)之间的关系式.(2)若预计要印刷5000份的宣传彩页,请你帮主办方选择一种合算的方案.【答案】(1)方案一:y=x ;方案二:y=1000+0.5x ;方案三:当0≤x ≤1000时,y=1.2x ,当x >1000时,y=0.7x+500(2)方案二更节省费用,理由见解析【解析】(1)根据题意即可分别表示出各方案的收费y (元)与印刷彩页的份数x (份)之间的关系式; (2)将x =5000分别代入(1)中的关系式,然后比较大小,即可解答本题.【详解】(1)由题意可得,方案一:y=x ;方案二:y=1000+0.5x ;方案三:当0≤x ≤1000时,y=1.2x ,当x >1000时,y=1.2×1000+0.7(x-1000)=0.7x+500 (2)当x =5000时,方案一:y=5000;方案二:y=1000+0.5×5000=3500; 方案三: y=0.7×5000+500=4000 ∵5000>4000>3500,∴当印刷宣传彩页5000本时,应该方案二更节省费用.【点睛】本题是一道方案选择问题、考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的式子的值,求出最优方案.23.如图,已知A (0,)a ,B (,0)b ,且满足460a b -++=(1)求A 、B 两点的坐标;(2)点C (m,n)在线段AB 上,m 、n 满足n-m=5,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且S △MBC =S △MOD ,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG ⊥x 轴于G ,若S △PAB =20,且GE=12,求点P 的坐标.【答案】(1)A(0,2),B(-4,0);(2)D(0,-2);(3)P(-3,-3).【解析】(1)根据非负数的性质求得a 、b 的值即可;(2)由S △BCM =S △DOM 知S △ABO =S △ACD =1.连CO ,作CE ⊥y 轴,CF ⊥x 轴,则S △ABO =S △ACO +S △BCO ,据此列出方程组求得C (-3,2)而S △ACD =12×CE×AD=1,易得OD=2,故D (0,-2); (3)由S △PAB =S △EAB =5求得OE=2.由S △ABF =S △PBA =5求得OF=83.结合S △PGE =S 梯GPFO +S △OEF 求得PG=3.所以P (-3,-3). 【详解】解:(1)∵|a-2|≥060b +≥,460a b -++=∴4060a b -=+=,.∴a=2,b=-4.∴A (0,2),B (-4,0);(2)如图,由S △BCM =S △DOM∴S △ABO =S △ACD ,∵S △ABO =12×AO×BO=1. 连CO ,作CE ⊥y 轴于E ,CF ⊥x 轴于FS △ABO =S △ACO +S △BCO即12×4×n+12×2×(-m )=1 ∴53212n m n m -=⎧⎨-=⎩, ∴32m n =-⎧⎨=⎩∴C (-3,2)而S △ACD =12×CE×AD=12×3×(2+OD )=1 ∴OD=2,∴D (0,-2);(3)如图,∵S △PAB =S △EAB =5,∴12AO×BE=5,即2×(4+OE )=5, ∴OE=2.∴E (2,0).∵GE=1,∴GO=3.∴G (-3,0).∵S △ABF =S △PBA =5,∴S △ABF =12×BO×AF=12×4×(2+OF )=5. ∴OF=83. ∴F (0,-83). ∵S △PGE =S 梯GPFO +S △OEF∴12×1×PG=12×(83+PG )×3+12×2×83 ∴PG=3∴P (-3,-3).【点睛】考查了坐标与图形性质,非负数的性质以及算术平方根,解题的关键是利用三角形的面积公式求得相关线段的长度.24.如图,在ABC 中,BD AC ⊥于点D ,E 为BC 上一点,过E 点作EF AC ⊥,垂足为F ,过点D作//DH BC 交AB 于点H .()1请你补全图形(不要求尺规作图);()2求证:BDH CEF ∠=∠.【答案】 (1)见解析 (2)见解析【解析】(1)按要求作图;(2)先由DH //BC ,BDH DBC ∠∠=得,BD //EF 再证,CEF DBC ∠∠=得,BDH CEF ∠∠=所以.【详解】解:()1如图所示,EF ,DH 即为所求;(2)证明: //DH BC ,BDH DBC ∴∠=∠,BD AC ⊥,EF AC ⊥,//BD EF ∴,CEF DBC ∴∠=∠,BDH CEF ∴∠=∠.【点睛】本题考核知识点:平行线的判定和性质.解题关键点:熟记平行线的判定和性质.25.小华与爸爸用一个如图所示的五等分、可以自由转动的转盘来玩游戏;将转盘随机转一次,指针指向的数字如果是奇数.爸爸获胜,如果是偶数,则小华获胜(指针指到线上则重转)(1)转完转盘后指针指向数字2的概率是多少?(2)这个游戏公平吗?请你说明理由.【答案】(1)15;(2)不公平,理由见解析【解析】(1)列举出所有可能出现的结果,进而求出指针指向数字2的概率;(2)分别求出爸爸获胜和小华获胜的概率,通过比较得出结论.【详解】解:(1)将转盘随机转一次,指针指向的数字所有可能的结果有1,2,3,4,5,共五种,且每种出现的可能性相等,因此指向数字2的概率为:P=15,答:转完转盘后指针指向数字2的概率是15;(2)不公平,理由:爸爸获胜的概率为:P=35,小华获胜的概率为:P=25,∵32 55 ,∴不公平.【点睛】本题考查随机事件发生的概率,列举出所有可能出现的结果是解决问题的前提.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列计算正确的是( )A .(-a 3)2=a 5B .a 2÷a 2=0C .a 2•a 3=a 5D .(-a 2b )3=a 6b 3【答案】C【解析】根据幂的乘方与积的乘方、同底数幂的乘除法计算法则计算得到各式结果,即可做出判断.【详解】解:A 、原式=6a ,不符合题意;B 、原式=1,不符合题意;C 、原式=5a ,符合题意;D 、原式=63a b -,不符合题意.故选:C .【点睛】此题考查了同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 2.如图所示,直线a 、b 被直线c 所截,下列条件不能使//a b 的是( )A .25∠=∠B .17∠=∠C .37∠=∠D .18180∠+∠=︒【答案】A 【解析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【详解】解:A 、24∠∠=,4∠与5∠是同旁内角,同旁内角相等不能说明//a b ;故A 符合题意; B 、57∠=∠,1∠与5∠是同位角,同位角相等能说明//a b ;故B 不符合题意;C 、37∠=∠,同位角相等能说明//a b ,故C 不符合题意;D 、1∠=5∠,8∠与5∠是邻补角,则18180∠+∠=︒能说明//a b ;故D 不符合题意;故选:A .【点睛】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 3.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a+c >b+cD .a+b >c+b 【答案】B【解析】根据数轴判断出a 、b 、c 的正负情况,然后根据不等式的性质解答.【详解】解:由图可知,a <b <0,c >0,A 、ac <bc ,故本选项错误;B 、ab >cb ,故本选项正确;C 、a+c <b+c ,故本选项错误;D 、a+b <c+b ,故本选项错误.故选B .4.已知实数x 、y 、z 同时满足x+y =5及z 2=xy+y ﹣9,则x+3y+5z 的值为( )A .22B .15C .12D .11 【答案】D【解析】由已知得出5x y =-,代入第二个式子后整理得出()223=0z y -+,推出030z y =-=,,求出x ,y ,z 的值,最后将x ,y ,z 的值代入计算,即可求出35x y z ++的值.【详解】解:∵x+y =5,∴5x y =-,把5x y =-代入29z xy y =+-得: ()259z y y y -+-=,∴()223=0z y -+,∴030z y =-=,,∴3532y x ==-=,, 352335011x y z ++=+⨯+⨯=,故选:D .【点睛】本题主要考查了因式分解的方法及代数式求值的方法,综合性较强,有一定难度.5.已知线段AB的A点坐标是(3,2),B点坐标是(-2,-5),将线段AB平移后得到点A的对应点A′的坐标是(5,-1),则点B的对应点B′的坐标为().A.(0,-6)B.(3,-8)C.(1,-4)D.(0,-8)【答案】D【解析】根据点A的对应点A′的坐标是(5,-1)可知平移规律,即可解答.【详解】∵点A(3,2)的对应点A′的坐标是(5,-1)∴平移规律是横坐标加2,纵坐标减3,∴点B(-2,-5)的对应点B′的坐标(0,-8)故选D【点睛】本题考查了平面直角坐标系内点的平移问题,难度较低,找出平移规律是解题关键.6.如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°【答案】B【解析】由平行线的性质得出∠AEC=∠AFD=58°,再由三角形的外角性质即可得出∠BCE的度数.【详解】解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.【点睛】本题主要考查了平行线的性质以及三角形的外角性质,解题时注意:两直线平行,同位角相等.7.在3.14,2273这四个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B【解析】无限不循环小数是无理数.据此分析即可.【详解】在3.14,227,﹣3,π这四个数中,无理数是:﹣3,π这两个数. 故选:B【点睛】本题考核知识点:无理数.解题关键点:理解无理数的意义.8.如图①,从边长为a 的正方形中剪去一个边长为b 的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+【答案】A 【解析】由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式. 【详解】由大正方形的面积-小正方形的面积=矩形的面积得()()22a b a b a b -=+-故答案为:A .【点睛】本题考查了平方差公式的证明,根据题意列出方程得出平方差公式是解题的关键.9.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一直线上,则三角板ABC 旋转的度数是( )A .60°B .90°C .120°D .150°【答案】D 【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选D .考点:旋转的性质.10.手机上使用14nm 芯片,1nm =0.0000001cm ,则14nm 用科学记数法表示为( )A .1.4×10﹣6cmB .1.4×10﹣7cmC .14×10﹣6cmD .14×10﹣7cm【答案】A【解析】绝对值小于1的数可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】14nm=14×0.0000001cm =1.4×10﹣6cm , 故选:A .【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).二、填空题题11.某剧院的观众席的座位为扇形,且按下列方式设置:写出座位数y 与排数x 之间的关系式___________________________【答案】y=3x+1【解析】分析:首先设函数解析式为y=kx+b ,然后找两组值代入解析式求出k 和b 的值,从而得出答案. 详解:设函数解析式为y=kx+b ,将x=1,y=50;x=2,y=53代入可得: 50253k b k b +=⎧⎨+=⎩,解得:347k b =⎧⎨=⎩, ∴函数解析式为y=3x+1. 点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.设出函数解析式是解决这个问题的关键.12.高斯函数[x],也称为取整函数,即[x]表示不超过x 的最大整数.例如:[1.3]=1,[-1.5]=-1.若[x-1]=3,则x 的取值范围是__________ .【答案】45x ≤<【解析】由[x-1]=3得314x ,解之即可.【详解】若 [x-1]=3,则314x ,解得:45x ≤<.【点睛】本题主要考查解一元一次不等式组,根据取整函数的定义得出关于x 的不等式组是解题的关键. 13.如图直线l ∥m,将含有45°角的三角板的直角顶点放在直线m 上,若∠1=16°,则∠2的度数为_____.【答案】29°【解析】过点A 作直线b ∥l,再由直线m ∥可知m ∥l ∥b,得出∠3=∠1,∠2=∠4,由此可得出结论【详解】过点A 作直线b ∥l,如图所示∵直线m ∥1∴m ∥l ∥b,∴.∠3=∠1,∠2=∠4.∵∠1=16°∴∠3=16°∴∠4=45°-16°=29° ∴∠2=∠4=29°故答案为:29°【点睛】此题考查平行线的性质,做辅助线是解题关键14.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为16,则BE 等于 _________【答案】1【解析】过B点作BF⊥CD,与DC的延长线交于F点,运用割补法把原四边形转化为正方形,即可求出BE的长.【详解】解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,在△BCF和△BAE中,∵∠F=∠BEA,∠CBF=∠ABE,AB=BC,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD=S正方形BEDF=16,∴16.故答案为:1.【点睛】此题考查三角形全等的判定与性质,正方形的判定与性质,运用割补法把原四边形转化为正方形,其面积保持不变,所求BE就是正方形的边长了;也可以看作将三角形ABE绕B点逆时针旋转90°后的图形.15.点M(2,﹣3)到x轴的距离是_____.【答案】3【解析】根据点到x 轴的距离等于纵坐标的绝对值解答. 【详解】33-=,∴点()2,3M -到x 轴的距离是3.故答案为:3.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值是解题的关键.16.请你写出一个比4大且比6小的无理数,这个无理数是_______.1π+【解析】分析:根据无理数的三种形式写出即可,无理数通常有以下三种形式,①开方开不尽的数, ,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅(0的个数一次多一个). 详解:设这个无理数是x ,则4<x<6,∴16<x 2<36,…,∵π是无理数,且π≈3.14,∴这个无理数还可以是:π+1,π+2等.1π+.点睛:本题考查了实数的大小比较,熟练掌握无理数的定义及无理数的三种形式是解答本题的关键. 17.因式分解:2y 2﹣18=_____.【答案】2(y+3)(y ﹣3).【解析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(y 2﹣9)=2(y+3)(y ﹣3),故答案为:2(y+3)(y ﹣3)【点睛】此题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.三、解答题18.△ABC 在网格中的位置如图所示,请根据下列要求作图:(1)过点C 作AB 的平行线;。
无理数的证明
无理数的证明
无理数是一类特殊的实数,它的十进制小数部分是从不重复的无
限循环小数,且不能化为两个整数的比。
它们实际上是不可数的,数
量上超越了所有有理数。
无理数的存在与重要性早在古希腊时期就被
发现和研究。
本文将介绍无理数的证明和意义。
证明无理数的存在:
假设存在一个有理数p/q (p,q 互质),且它的平方等于2. 则:
p^2 = 2q^2.
根据唯一分解定理,p必须是2的因数,即p=2k,带入上式得;
4k^2 = 2q^2, 2k^2 = q^2.
q也是2的因数,且2是它和p的公共因子,与p/q互质矛盾。
因此p/q不存在,2是无理数。
从无理数的定义和证明可以看出,无理数是有理数的一种否定。
无理数在数学中起到非常重要的作用,许多定理是建立在无理数上的。
例如,勾股定理认为,a^2 + b^2 = c^2,其中a,b,c为正整数时成立。
但实际上,如果不引入无理数(如勾股数√2),这一定理就不完整,无法水落石出。
此外,无理数的概念还对理性和思维方法有很大的影响。
它告诉
我们现实世界中存在着很多不能用简单的有理数表示的量,如圆周率
π,自然对数e等都是无理数。
因此,我们必须换一种思维方式,以
更深刻的方法理解这些数量。
这为数学领域的发展开辟了新的道路。
总之,无理数是一类非常重要的数,它的存在性与意义对于数学
和其他领域的发展都具有重要的指导意义,值得我们深入学习和探索。
证明e是无理数最经典的一种方法
证明e是无理数最经典的一种方法
证明e是无理数有很多方法,但有一种方法是最简单的,也是最容易理解的,本篇就来介绍这种方法
首先大家都知道e的无穷级数形式
如果一个数是有理数,一定可以写成两个正整数之比,所以我们假设e是有理数,则它可以写成a/b,且a和b均为正整数
所以就是如下形式
我们将e的无穷级数以b!为界分成如下的形式,
b!后面就是(b+1)!,(b+2)!,(b+3)!,.........
上述的级数我们可以提取一个b!出来,写成如下形式
你会发现上述括号内的级数,一定介于0和1之间,也就是说它是个小数
所以e=a/b可以写成如下简要的形式
我们进一步化简,
将b!写成(b-1)!b
最终得到一个:等号左边是整数,等号右边是一个小数,这是不可能的
所以e不能写成两个正整数之比,也就是说e不是有理数。
无理数指数幂的证明
无理数指数幂的证明英文回答:Irrational Exponents.Irrational exponents, also known as fractional exponents, extend the concept of exponents to include irrational numbers. This allows us to represent roots and other complex expressions in a more concise and elegant way. Here's a step-by-step explanation of how irrational exponents work:1. Definition:An irrational exponent is an exponent that is not a rational number. Rational numbers can be expressed as a fraction of two integers (e.g., 1/2, 3/4), while irrational numbers cannot (e.g., π, √2).2. Representation:Irrational exponents are represented using the radical symbol (√). For example, √2 represents the square root of 2, and ³√5 represents the cube root of 5.3. Operations:Irrational exponents follow the same rules of exponents as rational exponents. For example:Multiplication: (x^a) (x^b) = x^(a+b)。
经典证明:几乎所有有理数都是无理数的无理数次方
一个无理数的无理数次方是否有可能是一个有理数?这是一个非常经典的老问题了。
答案是肯定的,证明方法非常巧妙:考虑根号 2 的根号 2 次方。
如果这个数是有理数,问题就已经解决了。
如果这个数是无理数,那么就有:我们同样会得到一个无理数的无理数次方是有理数的例子。
这是一个典型的非构造性证明的例子:我们证明了无理数的无理数次方有可能等于有理数,但却并没有给出一个确凿的例子。
毕竟我们也不知道,真实情况究竟是上述推理中的哪一种。
那么,真实情况究竟是上述推理中的哪一种呢?Gelfond-Schneider 定理告诉我们,假设α 和β 都是代数数,如果α 不等于0 和1 ,并且β 不是有理数,那么α 的β 次方一定是超越数。
根据这一定理我们可以立即看出,根号 2 的根号 2 次方真的是一个无理数,实际情况应该是上述推理中的后者。
那么,是否存在一个无理数a ,使得a 的a 次方是有理数呢?最近,Stan Dolan 证明了这样一个结论:事实上,几乎所有(1, ∞) 里的有理数都是某个无理数a 的 a 次方。
注意到当x 大于1 时,函数f(x) = x x是连续单调递增的,因而对于所有(1, ∞) 里的有理数r ,一定存在唯一的a ,使得a a = r 。
不妨假设a 是一个有理数,它的最简分数形式是n / m 。
如果m = 1 ,那么我们会有平凡解n n = r 。
下面我们证明,m 是不可能大于 1 的,否则会产生矛盾。
假设有理数r 的最简分数形式是c / b ,于是我们有:(n / m)n / m = c / b或者说:n n · b m = m n · c m注意到,m n是n n · b m的约数。
然而,m 和n 是互质的,m n与n n没有公共因子,因而m n一定是b m的约数。
同理,b m是m n · c m的约数,但由于b和c 是互质的,因此b m一定是m n的约数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个无理数的无理数次方是否有可能是一个有理数?这是一个非常经典的老问题了。
答案是肯定的,证明方法非常巧妙:考虑根号 2 的根号 2 次方。
如果这个数是有理数,问题就已经解决了。
如果这个数是无理数,那么就有:
我们同样会得到一个无理数的无理数次方是有理数的例子。
这是一个典型的非构造性证明的例子:我们证明了无理数的无理数次方有可能等于有理数,但却并没有给出一个确凿的例子。
毕竟我们也不知道,真实情况究竟是上述推理中的哪一种。
那么,真实情况究竟是上述推理中的哪一种呢?Gelfond-Schneider 定理告诉我们,假设α 和β 都是代数数,如果α 不等于0 和1 ,并且β 不是有理数,那么α 的β 次方一定是超越数。
根据这一定理我们可以立即看出,根号 2 的根号 2 次方真的是一个无理数,实际情况应该是上述推理中的后者。
那么,是否存在一个无理数a ,使得a 的a 次方是有理数呢?最近,Stan Dolan 证明了这样一个结论:事实上,几乎所有(1, ∞) 里的有理数都是某个无理数a 的 a 次方。
注意到当x 大于1 时,函数f(x) = x x是连续单调递增的,因而对于所有(1, ∞) 里的有理数r ,一定存在唯一的a ,使得a a = r 。
不妨假设a 是一个有理数,它的最简分数形式是n / m 。
如果m = 1 ,那么我们会有平凡解n n = r 。
下面我们证明,m 是不可能大于 1 的,否则会产生矛盾。
假设有理数r 的最简分数形式是c / b ,于是我们有:
(n / m)n / m = c / b
或者说:
n n · b m = m n · c m
注意到,m n是n n · b m的约数。
然而,m 和n 是互质的,m n与n n没有公共因子,因而m n一定是b m的约数。
同理,b m是m n · c m的约数,但由于b
和c 是互质的,因此b m一定是m n的约数。
m n和b m怎么可能互为对方的约数呢?只有一种可能,就是m n等于b m。
既然m n = b m,说明m 和b 肯定有大于1 的公因数。
假设p 是m 和b 的某个公共质因数。
我们把m 和 b 中的所有质因数p 都提出来,将它们写成m = p i · k 和b = p j · l ,其中k 和l 都不再含有质因数p 。
于是,m n = b m就可以重新写为:
p i·n · k n = p j·m · l m
既然m n是等于b m的,它们一定含有相同数量的质因数p ,因而i·n = j·m ,可知m 是i·n 的约数。
但是m 和n 是互质的,因此m 一定是i 的约数。
最后,注意到p i是m 的约数,从而也就是i 的约数。
于是矛盾产生了:由于p ≥ 2 ,因此p i一定严格地大于i ,不可能是它的约数。
因此,对于所有大于1 的有理数,除非它恰好等于某个整数n 的n 次方,否则它都将是某个无理数 a 的 a 次方。