MSA计数型测量系统分析指导书
MSA-测量系统分析(MSA)作业指导书
测量系统分析(MSA)作业指导书文件编号:RL/WI010共19页编制/日期:杨清松 2018-1-18审核/日期:批准/日期:版本号: 1.00受控状态:发放代码:xxxxxx机械制造有限公司ChongQing RuiLi Machinery Co., Ltd.二○一八年二月一日生效修改控制页目录一、目的 (3)二、参考文件 (3)三、术语 (3)四、测量系统分析 (3)(一)分析的原则 (3)(二)稳定性分析 (4)(三)偏倚分析 (4)(四)线性分析 (6)(五)双性(GRR或R&R)分析 (8)(六)计数型量具的测量系统分析 (16)一、目的为公司各类简单的计量型、计数型量具的测量系统分析提供指导。
二、参考文件测量系统分析参考手册第三版三、术语1、测量系统误差模型:本作业指导书采用的误差模型为S.W.I.P.E模型,该模型指出测量系统变差来源于以下几大方面:标准(Standard)、零件(Work)、仪器(I)、人员/程序(Person/Procedure)、环境(E)2、测量系统:对测量单元进行量化或对被测的特性进行评估,所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合。
3、分辨力:测量装置和标准的测量解析度、刻度限制、或最小可检出的单位。
与最小可读单位研究,即通常所说的最小刻度值,但当仪器刻度较粗略时,允许将最小刻度值估读为原来的一半作为仪器的可视分辨力。
4、重复性:当测量条件已被确定和定义——在确定的零件、仪器、标准、方法、操作者、环境和假设之下,测量系统内部的变差。
5、再现性:传统上将再现性称为“评价人之间”的变差(AV)。
指的是不同评价人使用相同的仪器对同一产品上的同一特性,进行测量所得的平均值的变差。
但对于操作者不是变差的主要原因的测量过程,上述说法是不正确的。
ASTM的定义为:现现性是指测量的系统之间或条件之间的平均值变差。
它不但包括评价人的变差,同时还可能包括:量具、试验室及环境的不同,除此之外,还包括重复性。
测量系统分析指导书MSA
1.目的介绍测量系统质量评定的方法,确定测量系统的适用性、经济性、以确保本公司测量数据质量。
2.范围凡列在本公司产品控制计划上的量具均适用。
3.参考《测量系统分析》参考手册。
4.定义4.1 R&R:即“量具重复性和再现性”的缩写。
4.2 重复性:由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时,获得的测量量变差。
4.3 再现性:由不同评价人,采用相同的测量仪器,测量同一零件的同一特性时,测量平均值的变差。
4.4 偏倚:是测量结果的观察平均值与基准值的差值。
4.5 稳定性:是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量总变差。
4.6 线性:是在量具预期的工作范围内,偏倚值的差值。
5.作业内容5.1 概述5.1.1 对测量数据最有影响的是测量系统的变差。
其主要因素有:量具的偏椅/重复性/再现性/稳定性/线性等。
这些都起因于量具的磨损、劣化、操作程序、操作环境、操作员等。
5.1.2 评价测量数据的信赖性时,上述5.1.1要素中,重复性和再现性对数据特别重要的影响,本指导书将予以重点介绍,与之同时对其余要素作一般介绍。
5.2 量具的重复性和再现性5.2.1 计量型测量系统评价方法—均值和极度差法。
使用记录《量具重复性和再现性数据表》。
5.2.1.1 数据的收集A.随机采取包含十个零件的一个样本,且样本中零件的规格及公差要求相同。
B.按1至10给零件编号,同时指定评价人A、B、C三名(要求熟悉或从事此类工作者),要求使评价人不能看到这些数字。
C.让评价人A以随机的顺序测量10个零件并让另一个观测人将结果记录在第一行对应列内,让评价人B和C测量10个零件且互相不看对方数据,然后将结果分别填入相应的记录单中。
D.使用不同的随机测量顺序重复C步骤操作过程,E.将所有的数据统一输入电脑,由系统自动计算结果及图表,同时打印报告。
5.2.1.2量具的重复性和再现性的判定基准如下:A.小于10%的误差(%R&R)—可接受的测系统;B. 10%~30%的误差—基于应用的重要性,测量装置的成本,维修成本等可能是可接受的;C.大于30% —认为是不可接受—应努力改良的测量系统。
MSA分析作业指导书
稳定性分析作业指导书定义:稳定性:是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。
作业流程:1.选择基准,可选择经确认的标准样件作为基准,或任意选择一产品,用高等级的测量仪器测量十次,取平均值作为基准,基准值要求落在产品的过程范围中程附近;2.由日常检查员或该仪器操作人员每天测量标准样本5次,连续测量25个工作日,技术品证部计量担当负责记录并收集测量结果;3.数据收集完成后由计量担当负责做 X & R 图,并分析结果;4.判定准则:如控制图稳定受控,无任何异常因素存在,说明测量系统满足要求;5.如控制图不稳定,说明测量系统稳定性不足,必要时可组织多方论证小组,计量担当应查明并解决不稳定的产生原因。
偏倚分析作业指导书定义:偏倚:是测量结果的观测平均值与基准值的差值。
作业流程:1.选择基准,可选择经确认的标准样件作为基准,或任意选择一产品,用高等级的测量仪器测量十次,取平均值作为基准,基准值要求落在产品的过程范围中程附近;2.由日常检查员或该仪器操作人员测量标准样本15次,技术品证部计量担当负责记录并收集测量结果;3.数据收集完成后由计量担当负责做直方图,并分别求:X=∑x i/n偏倚= X –基准高值=偏倚 + [d2σb(t v,1-α/2)/d2*低值=偏倚 - [d2σb(t v,1-α/2)/d2*其中α=0.05,t、v、d2、d2* 分别在相关表中查,4.判定准则:如0落在1-α置信区间(高值与低值范围内);偏倚可接受。
5.如顾客要求时,敏感度水平α应按顾客要求计算;6.如不满足时,说明测量系统偏倚不符合要求,必要时可组织多方论证小组,计量担当应查明原因并解决问题。
线性分析作业指导书定义:线性:在量具预期的工作范围内,偏倚值的差值。
作业流程:1.选择基准,可选择经确认的5件标准样件作为基准,或任意选择5件产品,用高等级的测量仪器测量十次,取平均值作为基准,基准值要求落在产品的过程范围附近并覆盖过程范围;2.由日常检查员或该仪器操作人员随机测量标准样本,每件测量5次,技术品证部计量担当负责记录并收集测量结果;3.数据收集完成后由计量担当负责做分析图,并计算:偏倚i,j =Xi,j– (基准值)i偏倚i = ∑偏倚i,j/m求出最佳拟合直线:yi =axi+ba=[∑xy-(∑x∑y/g/m)]/[∑x2-(∑x)2/g/m] b= y – a xs= (∑yi 2 - b∑yi- a∑xiyi)/(gm-2)低值= b+ax-[ t v,1-α/2(1/gm+(x0-x)2/∑(x i-x)2)1/2s]高值= b+ax+[ t v,1-α/2(1/gm+(x0-x)2/∑(x i-x)2)1/2s]∣t∣=∣a∣/[s/ ∑(xi-x)2 ]4.判定准则:如所有偏倚i落在1-α置信区间(高值与低值范围内),且∣t∣≤t v,1-α/2时线性可接受。
MSA测量系统分析作业指导书
5.3.1均值极差法(X—R)
5。3。1。1选择2—3个操作员抽取5-10个样品进行盲测,每个操作员对同一样品的同一特性重复测量2—3次;
贵州恒航华盛科技有限公司
文件编号
HHHHS—10.4.1
测量系统分析规定
页次
第1页共4页
版次
A/0
1.目的:对测量系统变差进行分析评估,以确定测量系统是否满足规定要求,以达到确保产品质量的目的。
2。范围:适用于本公司用以证实产品符合规定要求的所有量具测量系统分析的管理。
3。职责
3。1技术质量部部负责制订测量系统分析计划,负责对统计分析结果进行评估。
B.由一位操作员(评价人)以常规的方式对每个样品测量10次,并计算10次的平均值,此值即为“观测平均值”。
C.计算偏倚=观察平均值-基准值
过程变差=6δ
偏倚
偏倚%=×100%
过程变差
过程变差无法求得时,可用规格公差代替,这样“偏倚%”的计算公式中分母使用“规格公差”代替。
5。5。2偏倚接受准则:
A.对测量重要特性的系统偏倚%≤10%时接受。
5。3重复性和再现性分析(P&R或GR&R)
1)确定研究对象、工序、量具、产品和质量特殊性采用下列方法进行分析,但对测量系统的重复性和再现性分析前,必须对被分析的量具进行零件间评价人平均值和重复性极差分析,同时分析结果必须受控方可进行重复性、再现性的分析工作,否则测量系统不能检查出零件间变差,且不能用于过程控制中.
测量系统分析作业指导书MSA
测量系统分析作业指导书MSA测量系统分析作业指导书1. 目的为正确进行测量系统分析工作提供操作指导。
2. 工作程序2.1 编制测量系统分析计划2.1.1 确定测量系统分析项目,根据技术部的控制计划和特殊特性清单编制《测量系统分析计划》。
2.1.2确定评价人,由于目的是评价全部的测量系统,评价人应该从那些正常操作该检测设备的人员中选择。
2.1.3 确定被测特性,当一个检测设备使用于较多个产品测量特性时,应选择被测产品特性要求最严格的特性进行测量系统分析。
2.1.4 确定分析方法,根据测量系统实际使用要求选择适宜的研究方法。
2.2 测量系统的研究工作2.2.1 选择基准样件,基准样件的选择对适当的分析是很关键的,对计量型检测设备,被测零件的选择应尽可能覆盖整个预期的过程变差。
2.2.2根据《测量系统分析计划》中规定的日期、评价人、分析方法等,由质量部组织测量系统使用部门实施测量系统分析。
当实际情况偏离年度计划时,根据实际情况进行适当调整。
3、测量系统分析方法3.1计量型检测设备宽度误差的分析方法,主要是采用平均值和极差法(X&R)研究测量系统的重复性与再现性(GRR)。
3.1.1术语3.1.1.1重复性——又称设备变差(符号EV),是指在固定和规定的测量条件下由一位测量者使用一种测量仪器,连续(短期)多次测量同一试样的同一特性时获得测量变差。
它是系统内变差。
3.1.1.2再现性——又称评价人变差(符号A V),是指由不同的评价人使用相同的测量仪器,测量同一试样的同一特性时测量平均值的变差。
它是系统间变差。
3.1.1.3GRR——又称量具重复性和再现性,它是对测量系统重复性和再现性合成变差的估计。
3.1.1.4零件变差——符号PV,指零件与零件之间的变差。
3.1.1.5分级数——符号ndc,指覆盖预期的产品变差所用不重叠的97%置信区间的数量。
3.1.2研究前的准备3.1.2.1样本的选取选择同型号规格的10个试样,这10个试样必须能代表实际的过程变差范围,即这批试样应包含这个规格的从最大到最小的不同值。
MSA测量系统分析作业指导书
1、目的提供一种评定测量系统质量的方法,从而对必要的测量系统进行评估,以保证本公司所使用的测量系统均能满足于正常的质量评定活动。
2、范围适用于证实产品符合规定要求的所有测量系统。
3、职责品质部负责确定MSA项目,定义测量方法及对数据的处理和对结果的分析。
APQP小组负责协助质量管理员完成测量系统的分析和改进。
4、定义4.1测量设备:实现测量过程所必需的测量仪器,软件,测量标准,标准样品或辅助设备或它们的组合。
4.2测量系统:是对被测特性赋值的操作、程序、量具、设备、软件、环境以及操作人员的集合。
4.3偏倚:对相同零件上同一特性的观测平均值与真值(参考值)的差异。
4.4稳定性:经过一段长期时间下,用相同的测量系统对同一基准或零件的同一特性进行测量所获得的总变差。
4.5线性:在测量设备预期的工作(测量)量程内,偏倚值的差异。
4.6重复性:用一位评价人使用相同的测量仪器对同一特性,进行多次测量所得到的测量变差。
4.7再现性:不同评价人使用相同的测量仪器对同一产品上的同一特性,进行测量所得的平均值的变差。
4.8零件间变差:是指包括测量系统变差在内的全部过程变差。
4.9评价人变差:评价人方法间差异导致的变差。
4.10总变差:是指过程中单个零件平均值的变差。
4.11量具:任何用来获得测量结果的装置,包括判断通过/不通过的装置。
5、工作程序5.1 测量系统分析实施时机5.1.1新产品在生产初期,参见“产品实现策划控制程序”HNFH QP-08。
5.1.2控制计划中指定的检验项目每年需做MSA。
5.1.3客户有特殊要求时,按客户要求进行。
5.1.4测量系统不合格改善后需重新进行分析。
5.2测量设备的选择a) 有关人员在制定控制计划及作业指导书时,应选择适宜的测量设备,既要经济合理,又要确保测量设备具有足够的分辩率,使用测量结果真实有效。
b) 选择测量设备时,建议其可视分辩率应不低于特性的预期过程变差的十分之一(即可取过程公差的十分之一,例如:特性的变差为0.1,测量设备应能读取0.01的变化),关键特性可按此规定选择合适精度的测量设备。
MSA操作指导书
MSA操作指导书2006-1-191. 目的规定测量系统分析和评价方法,以及明确测量系统的接收准则,从而确保测量数据的有效性2. 范围2.1 检测设备每次校准之后2.2 APQP试生产控制计划中规定使用的检测设备并且需最近一次MSA评价半年以上者。
3. 定义3.1 MSA:测量系统分析3.2 EV:重复性—设备变差3.3 A V:再现性—评价人变差3.4 R&R:重复性与再现性3.5 PV:零件变差3.6 TV:总变差4. 职责由品管科负责完成5. 内容5.1 计量型测量系统分析(均值和极差法)5.1.1 本公司计量型检测设备见《计量器具台帐》5.1.2 计量型测量系统分析方法采用均值和极差法5.1.3 具体操作步骤5.1.3.1 检测设备的选定由品管科按《检测和测量设备周期检定计划表》及试生产控制计划来选定。
其最小读数需为公差范围的1/105.1.3.2 评价人的选定由品管科从日常操作该检测设备的人员中挑选2~3人进行测量。
另外,品管科负责MSA 研究的人员进行记录和计算评价。
5.1.3.3 测量参数的选定由品管科选定,并填写在《量具重复性与再现性报告》的表格中。
5.1.3.4 被测零件的选定由品管科研究人员和评价人一起选取具有代表整个生产过程的10个零件(有时,每天取一个,连续10天);然后由研究人员按1到10给零件编号,在测量时评价人不能看到这些编号,可测量2~3次。
5.1.3.5 让评价人A以随机的顺序测量10个零件,由研究人员计入附件一的第一行;再让评价人B和C测量这10个零件并互相不看对方的数据,由研究人员记录于附件一的第六行和第十一行。
5.1.3.6 使用不同的随机测量顺序重复上述操作达成,把数据填入第二、七和十二行。
如果需试验三次,则重复上述操作,记录于第三、八和十三行中。
5.1.3.7 如果评价人在不同的班次,可以使用一个替换的方法。
让评价人A测量10个零件,并将读数记录于第一行;然后让评价人A按不同的顺序重新测量,由研究人员将结果记录于第二行和第三行,评价人B和C也同样做.5.1.4 量具重复性和再现性数据表(附件一)的计算按照附件一的格式计数出相应数据,然后将R、XDIFF及RP数值入附件二中。
MSA计数型测量系统分析指导书
5
10
93% 97% 90% 93% 97% 90%
84% 90% 80% 84% 90% 80%
71% 78% 66% 71% 78% 66%
来源 总受检数 符合的 错误的拒收(由于评价人偏移造成的拒收) 错误的接受(由于评价人偏移造成的接受) 不相配 95%上限 计算得分 95%下限
系统有效结果%
见表1
JT/C-7.6J-004
表1-计数型研究数据表
零 A- A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 参 参考值 代
件1
考
码
1 1 1 1 1 1 1 1 1 1 1 0.476 901 2 1 1 1 1 1 1 1 1 1 1 0.509015 3 0 0 0 0 0 0 0 0 0 0 0.576459 - 4 0 0 0 0 0 0 0 0 0 0 0.566152 - 5 0 0 0 0 0 0 0 0 0 0 0.57036 - 6 1 1 0 1 1 0 1 0 0 1 0.544 951 7 1 1 1 1 1 1 1 1 1 1 0.465454 8 1 1 1 1 1 1 1 1 1 1 0.502295 9 0 0 0 0 0 0 0 0 0 0 0.437817 - 10 1 1 1 1 1 1 1 1 1 1 0.515573 11 1 1 1 1 1 1 1 1 1 1 0.488905 12 0 0 0 0 0 0 0 0 0 0 0.559918 13 1 1 1 1 1 1 1 1 1 1 0.542704 14 1 1 0 1 1 1 1 0 0 1 0.454518 15 1 1 1 1 1 1 1 1 1 1 0.517377 16 1 1 1 1 1 1 1 1 1 1 0.531939 17 1 1 1 1 1 1 1 1 1 1 0.519694 18 1 1 1 1 1 1 1 1 1 1 0.484167 19 1 1 1 1 1 1 1 1 1 1 0.520496 20 1 1 1 1 1 1 1 1 1 1 0.477236 21 1 1 0 1 0 1 0 1 0 1 0.452310 22 0 0 1 0 1 0 1 0 1 0 0.545604 23 1 1 1 1 1 1 1 1 1 1 0.529065 24 1 1 1 1 1 1 1 1 1 1 0.514192 25 0 0 0 0 0 0 0 0 0 0 0.599581 - 26 0 1 0 0 0 0 0 0 1 0 0.547204 27 1 1 1 1 1 1 1 1 1 1 0.502436 28 1 1 1 1 1 1 1 1 1 1 0.521642 29 1 1 1 1 1 1 1 1 1 1 0.523754
MSA计数型测量系统分析指导书
(MSA)计数型测量系统研究分析作业指导书批准:审核:编制:受控状态:分发号:XXXXXXXXXXXX发布XXXXXXXXX实施计数型测量系统研究分析作业指导书1目的为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对计数型测量系统进行分析研究,使测量结果的不确定度已知,为准确评定产品提高质量保证。
2适用范围适用于公司使用的计数型测量仪器的测量系统的分析研究。
3职责3.1检验科负责确定过程所需要的计数型测量仪器,并定期校准和检定,对使用的测量系统进行研究分析,对存在的异常情况及时采取纠正预防措施。
3.2工会负责根据需要组织和安排计数型测量系统分析所需应用技术的培训。
3.3生产科配合对测量仪器进行测量系统分析。
4计数型测量系统简介计数型测量系统是一种测量数值为一有限的分类数量的测量系统,它与能获得一连串数值结果的计量型测量系统截然不同。
通/止规(go/no go gage )是最常用的量具,它只有两种可能的结果;其它的计数型测量系统,目标 如目视标准,可能产生五到七个分类,如非常好、好、 一般、差、非常差。
所以,针对计量性测量系统所描述的分析方法不能用于评价这样的系统。
当使用任何测量系统进行决策时,都存在一定程度的风险。
这些方法不能量化测量系统变异性,只有当顾客同意的情况下才能使用。
选择和应用于这些技术应以基于一个良好的统计实践,了解影响产品和测量过程变差源,以及错误决定最终顾客的影响。
计数型测量系统的变差来源,应该通过利用了人为因素和人机工程学的研究结果使之最小化。
5研究分析方法5.1某生产过程处于统计受控状态,其性能指数为Pp=PpK=0.5,这是不可接受的。
由于过程正在生产不合格的产品,于是被要求采取遏制措施,以便从生产过程中挑出不可接受的产品。
见图1:图1过程范例5.2具体的遏制行动是,过程小组采用了一个计数型量具,来对每一个零件与一个指定的限定值进行比较。
如果零件满足限定值就可接受该零件,不满足的零件则拒收(如通/止量具)。
MSA操作指导书
MSA操作指导书2006-1-191. 目的规定测量系统分析和评价方法,以及明确测量系统的接收准则,从而确保测量数据的有效性2. 范围2.1 检测设备每次校准之后2.2 APQP试生产控制计划中规定使用的检测设备并且需最近一次MSA评价半年以上者。
3. 定义3.1 MSA:测量系统分析3.2 EV:重复性—设备变差3.3 A V:再现性—评价人变差3.4 R&R:重复性与再现性3.5 PV:零件变差3.6 TV:总变差4. 职责由品管科负责完成5. 内容5.1 计量型测量系统分析(均值和极差法)5.1.1 本公司计量型检测设备见《计量器具台帐》5.1.2 计量型测量系统分析方法采用均值和极差法5.1.3 具体操作步骤5.1.3.1 检测设备的选定由品管科按《检测和测量设备周期检定计划表》及试生产控制计划来选定。
其最小读数需为公差范围的1/105.1.3.2 评价人的选定由品管科从日常操作该检测设备的人员中挑选2~3人进行测量。
另外,品管科负责MSA 研究的人员进行记录和计算评价。
5.1.3.3 测量参数的选定由品管科选定,并填写在《量具重复性与再现性报告》的表格中。
5.1.3.4 被测零件的选定由品管科研究人员和评价人一起选取具有代表整个生产过程的10个零件(有时,每天取一个,连续10天);然后由研究人员按1到10给零件编号,在测量时评价人不能看到这些编号,可测量2~3次。
5.1.3.5 让评价人A以随机的顺序测量10个零件,由研究人员计入附件一的第一行;再让评价人B和C测量这10个零件并互相不看对方的数据,由研究人员记录于附件一的第六行和第十一行。
5.1.3.6 使用不同的随机测量顺序重复上述操作达成,把数据填入第二、七和十二行。
如果需试验三次,则重复上述操作,记录于第三、八和十三行中。
5.1.3.7 如果评价人在不同的班次,可以使用一个替换的方法。
让评价人A测量10个零件,并将读数记录于第一行;然后让评价人A按不同的顺序重新测量,由研究人员将结果记录于第二行和第三行,评价人B和C也同样做.5.1.4 量具重复性和再现性数据表(附件一)的计算按照附件一的格式计数出相应数据,然后将R、XDIFF及RP数值入附件二中。
测量系统分析(MSA)作业指导书
测量系统分析(MSA)作业指导书1.目的 :对所有量具、量测及试验设备实施统计分析, 藉以了解量具系统之准确度与精确度。
2. 范围 :所有控制计划(Control Plan)中包含的/或客户要求的各种量测系统均适用之.3.定义 :3.1 MSA:量测系统分析3.2 量具:是指任何用来获得测量结果的装置。
经常是用在工厂现场的装置,包括通/止规(go/no go device)。
3.3 量测系统:是对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境和假设的集合;也就是说,用来获得测量结果的整个过程。
3.4量具重复性(EV) : 一个评价人多次使用一件测量仪器,对同一零件的某一特性进行多次测量下的变差。
3.5 量具再现性(AV) : 由不同的评价人使用相同的量具,测量一个零件的一个特性的测量平均值的变差。
3.6偏性:同一人使用同一量具在管制计划规划地点与在实验室量测同一产品之相同特性所得平均值与真值之间的差异。
3.7稳定性:指同一量具于不同时间量测同一零件之相同特性所得之变异。
3.8线性:指量具在预期内之偏性表现。
4.权责:4.1量测系统测试的排定、数据分析、仪器操作人员的选择:品保部4.2测试执行:各相关单位4.3 MSA操作人员的培训:品保部5. 执行方法5.1 QA工程师人员依公司PCP文件建立《xx年MSA实施计划表》或客户要求,并依据计划表之排程进行对仪器做量测系统分析。
5.2 取样方法:5.2.1计量型取样:从代表整个工作范围的过程中随机抽取10件样品,但所抽取的10件样品其数值必须涵盖该产品过程分布(也可用之前类似过程的过程能力或者过程标准差代表TV进行计算)。
5.2.2计数型取样:取50PCS样品,其中包含临近值,不良品与合格品。
5.2.3.测量过程中需要考虑盲测,由2或3个测量者随机抽取对每个产品各测量取一定数量样品.5.3计数型:5.3.1被评价的零件的选定随机抽取50个零件,把零件编号,由研究小组给出该50个零件的标准,必须含合格,不合格,模糊品,条件允许的情况下最好各占1/3。
测量系统分析MSA作业指导书
XXXX有限公司测量系统分析(MSA)指导书文件编号:版本:编制:审核:批准:XXX有限公司发布测量系统分析(MSA)作业指导书1目的:评价整个测量系统(即操作、程序、量具、设备、软件及操作人员的集合)是否具有可接受的测量水平,判定该测量系统是否适用。
2确定方法:2.1计量型量具(如游标卡尺)采用均值和极差法研究量具的重复性和再现性。
2.2计数型量具(如通止规),采用信号探测法或假设检验分析法研究。
2.3根据类型确定相应的计量型或计数型量具或设备,选择相应的研究方法3测量设备选购3.1测量系统必须有足够的灵敏性:3.1.1仪器要具有足够的分辨力:应至少保证仪器的分辨力能将公差分成十份或更多,即第一准则应至少是被测范围的十分之一,最好是保证为过程变差的十份之一。
3.1.2仪器要具有有效的分辨力:应保证仪器对所探测的产品或过程变差在一定的应用及环境下的变化具有足够的灵敏性。
3.2测量系统必须是稳定的:3.2.1在重复性的条件下,仪器变差只归因于普通原因而不是特殊原因。
3.2.2测量分析者必须经常考虑到仪器的稳定性对实际应用和统计的重要性。
3.3统计特性(误差)在预期的范围内一致,并足以满足测量的目的(产品或过程控制)。
4测量系统分析过程4.1采用均值和极差法研究量具的重复性和再现性指导:4.1.1准备工作:4.1.1.1确定评价人数量、被测零件、样品数量及重复读数次数。
4.1.1.1.1评价人:应从日常操作该仪器的人中选择,并且采用盲测(即选定评价人事先不知道本次研究事件),评价人数量至少为3人。
4.1.1.1.2被测零件:零件应从过程中选取并能代表整个工作范围。
对会直接影响测量结果的缺陷零件不应选用。
4.1.1.1.3样品数量和重复读数次数:零件样品数量至少应为5个,重复读数次数即试验次数至少为2次。
对每一个零件进行编号、定位。
注:对大或重的零件可选较少的样品和较多试验次数4.1.1.2制定操作程序和应用表格4.1.1.2.1确保每一位评价人都采用相同的方法,按规定的测量步骤测量特征尺寸。
MSA测量系统分析作业指导书
MSA测量系统分析作业指导书1000字MSA测量系统分析指的是通过统计分析、可重复性、准确性等指标来评估测量系统的能力,以确保测量结果的可信度和准确性。
MSA测量系统分析在实际生产中起着非常重要的作用,它可以帮助我们了解所使用的测量系统的能力,并在必要时进行改进,提高生产效率和质量。
在进行MSA测量系统分析之前,我们需要先了解几个基本的概念。
首先是测量系统,它是由测量仪器、测量程序、测量环境等组成的,在进行实际测量时会对被测物体进行测量,并将结果反馈给系统。
其次是可重复性,它是指在同样的条件下,多次进行测量所得到的结果的差异程度。
再次是测量误差,它是指测量结果与真实值之间的差异。
最后是稳定性,它是指在一段时间内,测量系统的性能是否能够稳定保持在相同的水平上。
在进行MSA测量系统分析时,我们需要根据实际情况选定适合的评估方法。
常用的评估方法包括Range法、平均移动范围法、方差分析法等。
其中,Range法是最简单的评估方法,它通过计算一批数据中最大值和最小值之间的差距来评估测量系统的能力。
平均移动范围法是另一种简单的评估方法,它通过计算连续两次测量结果之间的差距,并取其平均值来评估测量系统的能力。
方差分析法则是一种比较复杂的评估方法,它可以同时考虑多个因素对测量结果的影响。
在使用这些方法进行MSA测量系统分析时,需要注意以下几个方面:1. 样本的选择:样本应具有代表性,可以反映出测量系统在实际生产中所面临的情况。
2. 测试方法的选择:应根据实际情况选择适合的测试方法,并保证测试方法的可重复性和准确性。
3. 数据的收集和分析:应尽可能采用多个组别的数据,以确保评估结果的准确性。
在对数据进行分析时,应采用适当的统计方法,以消除随机误差和系统误差。
4. 结果的解释:整个MSA测量系统分析的结果应该以一种易于理解的方式展示出来,并能够结合实际情况进行合理的解释。
MSA测量系统分析是一个非常重要的质量管理工具,它可以帮助我们提高生产效率和产品质量,减少测量误差和降低生产成本。
测量系统分析(MSA)指导书
测量系统分析(MSA)指导书1、目的通过MSA,了解测量变差的来源,测量系统能否被接受,测量系统的主要问题在哪里,并针对问题适时采取纠正措施。
2、适用范围适用于公司产品质量控制计划中列出的测量系统。
3、职责3.1 质量部计量室负责编制MSA计划并组织实施。
3.2 各相关部门配合做好MSA工作。
4、工作程序4.1 测量系统分析(MSA)的时机4.1.1初次分析应在试生产中且在正式提交PPAP之前进行。
4.1.2一般每间隔一年要实施一次MSA。
4.1.3在出现以下情况时,应适时增加分析频次和重新分析:(1)量具进行了较大的维修;(2)量具失准时;(3)顾客需要时;(4)重新提交PPAP时;(5)测量系统发生变化时。
4.2 测量系统分析(MSA)的准备要求4.2.1制定MSA计划,包括以下内容:(1)确定需分析的测量系统;(2)确定用于分析的待测参数/尺寸或质量特性;(3)确定分析方法:对计量型测量系统,可采用极差法和均值极差法;对计数型测量系统,可采用小样法;(4)确定测试环境:应尽可能与测量系统实际使用的环境条件相一致;(5)对于破坏性测量,由于不能进行重复测量,可采用模拟的方法并尽可能使其接近真实分析(如不可行,可不作MSA分析);(6)确定分析人员和测量人员;(7)确定样品数量和重复读数次数。
4.2.2量具准备(1)应针对具体尺寸/特性选择有关作业指导书指定的量具,如有关作业指导书未明确规定某种编号的量具,则应根据实际情况对现场使用的一个或多个量具作MSA分析;(2)确保要分析的量具是经校准合格的;(3)起的分辨力i一般应小于被测参数允许查T的1/10,即i<T/10。
在仪器读数中,如有可能,读数应取值最小刻度的一半。
4.2.3测试操作人员和分析人员的选择(1)在MSA分析时,测试操作人员和分析人员不能是同一个人,测试操作(2)人员实施测量并读数,分析人员作记录并完成随后的分析工作;应优先选择通常情况下实际使用所选定的量具实施测试的操作工/检验员作为测试操作人员,以确保测试方法和测试结果与日后的正式生产或过程更改的实际情况相符;(3)应选择熟悉测试和MSA分析方法的人员作为分析人员。
测量系统分析(MSA)作业指导书
测量系统分析(MSA)作业指导书文件编号:共页编制/日期:审核/日期:批准/日期:版本号: A受控状态:发放代码:目录一、目的 (2)二、参考文件 (2)三、术语 (2)四、测量系统分析 (2)(一)分析的原则 (2)(二)稳定性分析 (3)(三)偏倚分析 (3)(四)线性分析 (5)(五)双性(GRR或R&R)分析 (7)(六)计数型量具的测量系统分析 (14)一、目的为公司各类简单的计量型、计数型量具的测量系统分析提供指导。
二、参考文件测量系统分析参考手册第三版三、术语1、测量系统误差模型:本作业指导书采用的误差模型为S.W.I.P.E模型,该模型指出测量系统变差来源于以下几大方面:标准(Standard)、零件(Work)、仪器(I)、人员/程序(Person/Procedure)、环境(E)2、测量系统:对测量单元进行量化或对被测的特性进行评估,所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合。
3、分辨力:测量装置和标准的测量解析度、刻度限制、或最小可检出的单位。
与最小可读单位研究,即通常所说的最小刻度值,但当仪器刻度较粗略时,允许将最小刻度值估读为原来的一半作为仪器的可视分辨力。
4、重复性:当测量条件已被确定和定义——在确定的零件、仪器、标准、方法、操作者、环境和假设之下,测量系统内部的变差。
5、再现性:传统上将再现性称为“评价人之间”的变差(AV)。
指的是不同评价人使用相同的仪器对同一产品上的同一特性,进行测量所得的平均值的变差。
但对于操作者不是变差的主要原因的测量过程,上述说法是不正确的。
ASTM的定义为:现现性是指测量的系统之间或条件之间的平均值变差。
它不但包括评价人的变差,同时还可能包括:量具、试验室及环境的不同,除此之外,还包括重复性。
6、偏倚:对相同零件上同一特性的观测平均值与真值(参考值)的差异。
7、线性:在测量设备预期的工作(测量)量程内,偏倚值的差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莱州市XX机械有限公司作业文件
文件编号:JT/C-7.6J-004版号:A/0
(MSA)计数型测量系统
研究分析作业指导书
批准:
审核:
编制:
受控状态:分发号:
2015年11月15日发布2015年11月15日实施
计数型测量系统研究分析作业指导书 JT/C -7.6J -004
1
目的
为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统
计技术,对计数型测量系统进行分析研究,使测量结果的不确定度已知,为准确评定产品提高质量保证。
2适用范围
适用于公司使用的计数型测量仪器的测量系统的分析研究。
3职责
3.1检验科负责确定过程所需要的计数型测量仪器,并定期校准和检定,对使用的测量系统进行研究分析,对存在的异常情况及时采取纠正预防措施。
3.2工会负责根据需要组织和安排计数型测量系统分析所需应用技术的培训。
3.3生产科配合对测量仪器进行测量系统分析。
4计数型测量系统简介
计数型测量系统是一种测量数值为一有限的分类数量的测量系统,它与能获得一连串数值结果的计量型测
量系统截然不同。
通/止规(go/no go gage )是最常用的
量具,它只有两种可能的结果;其它的计数型测量系统,
如目视标准,可能产生五到七个分类,如非常好、好、 一般、差、非常差。
所以,针对计量性测量系统所描述的分析方法不能用于评价这样的系统。
当使用任何测量系统进行决策时,都存在一定程度的风险。
这些方法不能量化测量系统变异性,只有当顾客同意的情况下才能使用。
选择和应用于这些技术应以基于一个良好的统计实践,了解影响产品和测量过程变差源,以及错误决定最终顾客的影响。
计数型测量系统的变差来源,应该通过利用了人为因素和人机工程学的研究结果使之最小化。
5研究分析方法
5.1某生产过程处于统计受控状态,其性能指数为Pp=PpK=0.5,这是不可
接受的。
由于过程正在生产不合格的产品,于是被要求采取遏制措施,以便从生产过程中挑出不可接受的产品。
见图1:
图1过程范例
5.2具体的遏制行动是,过程小组采用了一个计数型量具,来对每一个零件与一个指定的限定值进行比较。
如果零件满足限定值就可接受该零件,不满足的零件则拒收(如通/止量具)。
许多这样的计数型量具基于一套基准零件来设定接收与拒收。
不象计量型量具,计数型量具不能显示一个零件有多好或多么坏,它只能指示该零件可接受或拒收(即2个分级。
通或不通)。
1)小组使用了一个%GRR为公差的25%的特定量具。
由于这还没有被小组文件化,于是需要对这测量系统进行研究。
小组已决定从过
程中随机地选取50个零件,以获得涵盖了整个过程范围的零件。
2)使用三名评价人,每位评价人对每个零件评价三次。
3)设定1表示可接受的决定;0为不可接受的决定。
表1中所示的参考决定和计量参考值在一开始还没有确定。
表1还显示了“代码”列,
还分别用“-”、“+”、“×”代表零件是否在第I区、II区、及III区。
见表1
JT/C-7.6J-004
5.3假设试验分析-交叉表法范例
★由于小组不知道零件的参考判断值,他们开展了了交叉表格(cross-tabuiations)来比较每个评价人与其它人之间的结果。
★这些表格的目的在与确定评价人之间一致性的程度。
为确定评价人一致性的程度,小组使用了(cohen科恩的)kappa,这是用来衡量两个评价人对同一物体进行评价时,其评定结论的一致性。
Kappa为1时,表示有完全的一致性。
为0时,表示一致性不比可能性来的好。
Kappa仅用于表格,表中两个变数有相同的分类值,且两个变数具有相同的分类数量。
★Kappa一种对评价人内部一致性的测量。
它测量在诊断区(获得相同评定的零件)中的数量与那些具与可能性期望的数量是否有差别。
设Po = 对角栏框中,观测比例的总和
Pe = 对角栏框中,期望部分的总和
则Kappa =(Po - Pe)/(1 - Pe)
★Kappa是一种程度而不是检验。
通过使用一种渐进和标准误差以形成一个t统计值来判断其大小。
通用的比例法则是Kappa值大于0.75,则表示很好的一致性(最大的Kappa值=1);Kappa值小于0.4则表示一致性不好。
Kappa不考虑评价人间的不一致量有多大,只考虑他们之间是不是一致。
★通过以上对评价人计算了Kappa程度,小组得到以下结论:
这分析表明所有评价人与其它评价人之间有良好的一致性。
这种分析用来确定评价人之间是否有差异的需求。
但不能告诉我们这测量系统从坏零件中挑出好零件的能力。
在本分析范例中,小组使用一计量型测量系统来评价零件,并应用其结果来确定其参考决定。
★使用新的信息建立了另一组交叉表,以便将每个评价人与参考决定进行比较。
A与基准判断交叉表
B与基准判断交叉表
C与基准判断交叉表
★小组也计算了Kappa值以确定每个评价人与参考决定之间的一致性。
以上这些数据可被解释为每个评价人与标准之间有很好的一致性。
然后,过程小组计算了这测量系统的有效性。
有效性=作出正确判断的次数/ 总决定次数
JT/C -7.6J -004
★ 每对评价人间多次试验的的假设可用零假设来表示:
Ho :两个评价人一致的有效性。
★ 经计算,由于每位评价人结果的计算值均落在其它人的置信度区间 内,小组决定不能拒绝零假设。
这结论进一步证实了Kappa 测量得到的结论。
来源 总受检数 符合的
不相配 95%上限 计算得分 95%下限 95%95%
JT/C-7.6J-004
★为进一步分析,小组的一名成员得出下列数据表格,为每个评价人的结果提供指南:
对他们所已得到的所有信息进行汇总,小组得出以下结论:
这些结果显示,各个评价人对于该测量系统,在有效性、错误率与错误警报率上都有不同程度的结果;在所有三个项目中,没有一位评价者是以被接受的。
是否需要为这过程更改其接收标准?这些风险可以被接受吗?评价者是否要更好的培训?测量的环境可不可以被改善?重要的是:顾客对着测量系统与其研究结果会有什么看法?顾客原本预期的情况是什么?
顾客是否接受这些风险。
★关注点:
1)关于可接受的风险,并没有以理论为基础的决策准则。
以上指南是探索性的。
并且是基于怎样才是“接受”的个别“信念”下所发展的。
最终的决定准则应该取决于对后续过程和最终顾客的影响(如风险)。
这是一个客观事物的决定-而不是统计上的决定。
2)上述分析是以数据为依据的。
例如,如果过程能力指数为Pp=Ppk=1.00,那么所有的结论都可能是正确的,因为不会有零
JT/C-7.6J-004
件落在测量系统的II区(“灰色”区域)中。
图3 Pp=Ppk=1.00的过程范例
在这新情况下,可以得出这样的结论:所有的评价人都是可被接受的,因为将不会有决定的误差。
★通常对于交叉的结果的实际意义有一误解。
以B的结果为例:
B 参考交叉表
由于检验的目的在于找出所有的不合格零件,许多人视左上角处一个测量找到坏零件的有效性。
这个百分比表示将已经是坏的零件判定坏的零件的可能性:
Pr(称为坏零件一个坏零件)
假设过程已经被改进到Pp=Ppk=1.00,生产者关心的的概率是:
Pr(零件是坏的被称为怀的)
JT/C -7.6J -004
★ 从上面的数据中确定以上结果,必须应用贝叶斯Baye 的理论。
Pr (不合格\ 判不合格)= Pr (不合格\ 判不合格)=
Pr (不合格\ 判不合格)= .11
也就是说,以上这些结果指出,如果某零件被判定为坏的,实际上它只有十分之一的可能是坏的。
★ 这种分析不必使用计量型数据信息,即是参考决定值已被确定,且为可获得时,也不需要安排这些相关的资料。
Pr (判不合格\ 判不合格)* Pr (不合格) Pr (判不合格\ 判不合格)+ Pr (判不合格\ 判不合格)* Pr (不合格) .938 * (.0027) .938 * (.0027)+.020 * (.9973)。