初一常用几何证明的定理
(完整版)初中几何几个著名定理及证明
① AC(BP+DP)=AD ・ BC+AB ・ DC ・ 即 AC ・ BD=AB ・ CD+AD ・ BC.2.托勒密定理的逆定理若一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这 个凸四边形內接于一圆。
己知:在凸四边形ABCD 中,AB • CD+AD • BC 二 BD • AC 。
求证:A 、B 、C 、D 四点共圆。
证明:分别以E 、A 为顶点,在 四边形ABCD初屮见何甩个著名炙龌及证明 识玻堵泗阳展療口屮曇蒐疋屮 一.托勒密定理 1.托勒密定理 圆內接四边形中,两条对角线的乘积等于两组对边乘积之和。
己知:圆內接四边形AECD,求证:AC ・BD 二AB • CD+AD ・BC 。
证明:如图所示,过C 作CP 交BD 于P, 使Z1=Z2,又Z3=Z4, AACD^ABCP. 冴 BP BC EP • AC 二 AD • BC 又 ZACB=ZDCP, Z5= Z6,,即 •:A ACB S A DCP . 得需=舘,即DP ・AC =AB ・DC内,作ZABF= ZDBC> ZBAF=ZBDC,—=—=> AB CD^BD-AF则厶ABF^ADBC 〜Ar CDAH _Bn亦—斎又•,• ZABD = Z ABF +ZEBF= ZEBF + ZDBC = ZFBC•'•△ABD S A FB C =x> —=—=>JD-/R-=Hzrc/--HC CF•••AB ・ CD+AD ・ BC=BD* (AF+CF)又VAB・CD+AD ・BC=BD・AC (己知〉,•••AC=AF + CF;「.A、F、C三点共线;ZBAC=ZBAF = ZBDC;:4、B、C、D 四点共圆。
3.托勒密不等式在任意凸四边形中,两组对边乘积的和不小于其两条对角线的乘积。
〈托勒密定理可视作托勒密不等式的特殊情况。
)即在任意凸四边形ABCD中,必有AC ・BDWAB • CD+AD * BC,当且仅当A、B、C、D四点共圆(托勒密定理)或共线(欧扌立几何定理)时取等号。
初中几何证明方法
初中几何证明方法
1. 直角三角形定理证明:利用勾股定理证明直角三角形的特征。
2. 等边三角形定理证明:通过三条边全等证明三角形的三个角都是60度。
3. 同位角证明:沿着一组平行线切割两条平行线,证明同位角相等。
4. 对顶角证明:利用两组平行线切割一条横线,证明对顶角相等。
5. 三角形内角和定理证明:通过将三角形分解成三个直角三角形,证明三角形的内角和为180度。
6. 圆的面积公式证明:通过四个等腰直角三角形的组合和排列得出圆的面积公式。
7. 相似三角形定理证明:通过两个三角形的对应角相等,证明两个三角形相似。
8. 等腰三角形定理证明:通过证明两个底角相等,证明等腰三角形的另外两条边相等。
9. 正方形定理证明:通过证明正方形的四个角都是直角且四条边相等,证明正方形的特征。
10. 角平分线定理证明:利用角平分线将一个角分成两个相等的角,证明相邻的角互补且对顶角相等。
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。
在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。
以下是初中几何中常用的公理和定理。
一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。
2.同位角公理:同位角互等。
3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。
4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。
二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。
2.三角形内角和定理:三角形内角的和为180°。
3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。
4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。
5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。
6.等边三角形定理:等边三角形的三条边相等。
7.三角形外角定理:三角形外角等于其对应内角的和。
8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。
10.等周定理:等周的两角相等,反之亦成立。
11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。
12.周长定理:四边形周长等于各边长的和。
13.三角形周长定理:三角形的周长等于三边长的和。
14.三角形中线定理:三角形中线等分中位线,且平分第三边。
15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。
16.五边形内角和定理:五边形的内角和是540°。
17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。
18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。
19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。
20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。
初中几何证明口诀
初中几何证明口诀在初中几何中,证明是学习的重要内容之一、通过证明,可以巩固和提高自己对几何知识的理解和应用能力。
以下是一些常用的初中几何证明口诀:1.三角形的内角和定理:三角形内角和为180度。
可以通过绘制平行线、共线线段等方法证明。
2.外角定理:三角形的外角等于其余两个内角的和。
可以通过绘制平行线等方法证明。
3.垂直角定理:垂直角相等。
可以通过绘制平行线、共线线段等方法证明。
4.同位角定理:同位角相等。
可以通过平行线等方法证明。
5.三角形的相似性定理:相似三角形的对应角相等,对应边成比例。
可以通过AA、SSS、SAS等方法证明。
6.圆周角定理:圆周角是圆心角的两倍。
可以通过绘制弧、使用同位角等方法证明。
7.弦切角定理:弦切角等于其对应的弧的一半。
可以通过绘制切线、弧等方法证明。
8.正方形的特性:正方形的四条边相等,四个角为直角。
可以通过对角线等方法证明。
9.等腰三角形的特性:等腰三角形的两边相等,两个底角相等。
可以通过绘制高线等方法证明。
10.平行四边形的特性:平行四边形的对边相互平行,对角线相互平分。
可以通过角平分线等方法证明。
11.三角形的中线定理:三角形的三个中线交于一点,且这点距离三个顶点的距离是各边长的一半。
可以通过线段等方法证明。
12.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
可以通过平行四边形等方法证明。
13.外切圆定理:三角形的外接圆的圆心是三个顶点的垂直平分线的交点。
可以通过角平分线、圆心角等方法证明。
14.圆的切线定理:切线与半径垂直。
可以通过绘制切线、使用垂直角等方法证明。
15.纵横切割定理:两条平行线被一条截线切割,那么两个内角和为180度。
可以通过平行线等方法证明。
这些口诀可以帮助初中生记住一些重要的初中几何证明定理,并引导他们学习如何使用特定的几何性质进行证明。
同时,更重要的是理解定理的证明过程,培养逻辑思维能力和几何推理能力。
初等几何五大ZB定理
初等几何五大ZB定理某日,燕尾模型讲毕,一六年级学霸级学生说,其可用燕尾模型证梅涅劳斯定理,大惊,问其如何得之,其说:一老师讲的。
六年级学生学梅涅劳斯定理,ZB大于实用。
既然学生感兴趣,咱就一装到底。
一、梅涅劳斯定理梅涅劳斯:古希腊数学家。
梅涅劳斯定理指的是:一条直线(红线)与一个三角形的三边或延长线相交,三角形的三个顶点按顺时针或逆时针方向,三条边顶点到交点的比值的积为1.其证明方法很多,相似三角形即可证明。
下面咱们用小学奥数的“燕尾模型”证明一下。
二、塞瓦定理塞瓦:意大利数学家、水利工程师,该定理于1678年发表于《直线论》一书。
塞瓦定理:可以简单记为三线共点的充要条件是:顺时针或逆时针的分线段的比值积为1.该定理可以用上面的梅涅劳斯定理证明。
三、斯坦纳定理斯坦纳:瑞士几何学家斯坦纳定理:两内角平分线相等的三角形必为等腰三角形。
早在2000多年前,《几何原本》就有定理:等腰三角形的两底角平分线的长相等。
可是它的逆定理书上却只字未提,估计作者也不会,呵呵。
直到1840年,莱默斯请求斯图姆给予纯几何证明,可斯图姆也不会,最后斯坦纳给出了证明,因此该定理也称作:斯坦纳——莱默斯定理。
现在很多高中生也能证明。
大家可以试试有没有难度。
四、托勒密定理托勒密定理:圆内接凸四边形的对边积的和等于对角线的积。
用相似可以证明五、西姆松定理西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边所在直线垂线,则三垂足在一点直线上,这条直线我们称作西姆松线。
这些定理一般的中考都不考,一和四和中学的相似联系比较紧密,尽量掌握,培优课上可能会有,感兴趣的同学可以看看。
几何定理证明:几何定理的证明
几何定理证明:几何定理的证明几何定理是数学中非常重要的一部分,它们是建立和推导几何关系的基础。
在几何学中,定理的证明是确保定理的正确性和可靠性的关键步骤。
本文将介绍几何定理的证明过程,并以几个典型的几何定理为例进行详细阐述。
一、直角三角形的勾股定理证明勾股定理是几何中最经典且重要的定理之一,它声称:直角三角形的两条直角边的平方和等于斜边的平方。
该定理的证明可以通过几何方法或代数方法来展开。
几何方法证明:以直角三角形ABC为例,其中∠B为直角。
我们可以通过画图来证明勾股定理。
1. 以BC为边,作一个正方形BCDE。
2. 连接AC和AE。
3. 证明四边形ABED是一个平方。
4. 由于正方形的性质,我们可以得出AE和BD是相等的。
5. 观察三角形ACD和三角形ABC,它们的两个角分别相等,并且一边相等,所以它们是全等三角形。
6. 根据全等三角形的性质,我们可以得出AD和AB相等。
7. AD是直角边的平方,AB是斜边的平方,因此AD的平方加上AB的平方等于斜边AC的平方,从而证明了勾股定理。
代数方法证明:我们可以使用代数方法证明勾股定理。
设直角三角形ABC中,∠B为直角,AB=a,BC=b,AC=c。
根据直角三角形的定义,我们可以得到两个关系式:a² + b² = c²(1)tan(∠B) = a/b (2)将式(2)代入式(1),得到:a² + (a/tan(∠B))² = c²经过变形和化简,我们最终可以得到:(1 + tan²(∠B))a² = c²由于tan²(∠B) + 1 = sec²(∠B)(余切定理),所以我们可以进一步化简为:sec²(∠B) a² = c²最后,我们得到了勾股定理的形式。
二、等腰三角形底角定理证明等腰三角形是指两边相等的三角形。
在等腰三角形中,底角定理成立,即等腰三角形的底角是两个顶角的一半。
初中数学所有几何证明定理
初中数学所有几何证明定理初中数学中的几何证明定理有很多,下面列举一些较为常见和重要的:1.垂线定理:如果两条直线相交,且其中一条直线垂直于另一条直线,那么相交的两条直线分成的两对相邻角互为互补角。
证明:假设直线AB与直线CD相交于点O,且直线AB垂直于直线CD,那么∠AOC和∠BOD构成一对互补角,同时∠AOD和∠BOC构成一对互补角。
2.同位角定理:如果两条平行线被一条横截线相交,那么相交的各对同位角相等。
证明:假设平行线AB与CD被平行于它们的条横截线EF相交于点O,那么∠AEO和∠COF,∠FEO和∠DOF互相等。
3.对顶角定理:如果两条直线AB和CD相交,那么由相交而分成的四个角中的相邻角互为对顶角。
证明:假设直线AB与直线CD相交于点O,那么∠AOB和∠COD、∠BOC和∠AOD互为对顶角。
4.垂直角定理:如果两条直线AB和CD相交,那么由相交而分成的四个角中的互为相对角的两对角中,有一对互为垂直角。
证明:假设直线AB与直线CD相交于点O,那么∠AOC和∠BOC互为相对角,如果直线AB与直线CD垂直,那么∠AOC和∠BOC互为垂直角。
5.三角形的内角和定理:一个三角形的内角的和等于180°。
证明:假设三角形的三个顶点为A、B、C,以AB为边作一个封闭的三角形ABC,再以BC为边作一个封闭的三角形ACB。
根据同位角定理,∠BAC+∠BCE=∠ACB+∠ACD,即∠BAC+∠ACB+∠BCE=∠ACB+∠ACD+∠BCE,因此∠BAC+∠ACB+∠BCE=∠ACB+∠ACB,即∠BAC+∠ACB+∠ACB=180°。
6.线段的三等分定理:对于线段AB上的任意一点C,如果AC与CB 的长度相等,那么AC与CB将线段AB分为三个相等的部分。
证明:利用数学归纳法,首先取一点D在线段AB上,并且AD的长度为BD的两倍,那么根据线段的加法性质,我们有AB=AD+BD=AD+AD=2AD。
空间几何的基本定理和证明
空间几何的基本定理和证明空间几何是研究空间中点、线、面和体之间的位置、形态、大小、相对位置等性质的数学分支。
在空间几何中,有一些基本定理是我们必须要了解和掌握的。
本文将介绍几个常见的空间几何基本定理,并给出相应的证明。
一、平行线定理:平行线是位于同一平面内且不相交的两条直线。
在空间几何中,平行线间的关系有着重要的应用。
平行线定理如下:定理1:如果两条直线与第三条直线相交,且与第三条直线分别平行,则这两条直线互相平行。
证明:设直线l和m与直线n相交,且l与n平行,m与n平行。
我们需证明直线l与m平行。
根据平行线的定义,我们可以得到以下两组对应角相等关系:∠1 = ∠2,∠1 = ∠3;∠4 = ∠5,∠4 = ∠6。
现在我们来证明∠2 = ∠3 = ∠5 = ∠6,这样就证明了直线l与m平行。
根据同位角定理,我们可以得到:∠2 + ∠4 = 180°,∠3 + ∠6 = 180°。
将上述两个等式相加并整理得:∠2 + ∠4 + ∠3 + ∠6 = 360°。
由于∠2 = ∠3,∠4 = ∠5,∠5 = ∠6,代入上式我们可以得到:2∠2 + 2∠5 = 360°。
化简得:∠2 + ∠5 = 180°。
根据同位角的定义,∠2 + ∠5是直线l与m的内错角。
据直线外角定理,直线l与m的内错角相等,即∠2 + ∠5 = 180°。
因此,我们证明了直线l与m平行。
二、垂直定理:在空间几何中,垂直是指两个直线或线段相交时,交点的四个周围角都是直角(90°)。
垂直定理如下:定理2:直线和平面垂直的等价条件是直线上的任意一条直线垂直于平面。
证明:我们设直线l与平面P相交于点A,我们需要证明l上的任意一条直线垂直于平面P。
取直线l上任意一点B,连接OB。
构造平面Q,使得平面Q 过直线l且垂直于平面P。
则由垂直平面的性质得知,直线l就在平面Q内。
初一下册几何知识点总结归纳
初一下册几何知识点总结归纳一、初中数学几何知识点1、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短4、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合6、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8、直角三角形定理定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9、多边形内角和定理定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10、平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11、矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形12、菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13、正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14、中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15、等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16、中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h17、相似三角形定理相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18、三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19、圆的定理定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20、比例性质定理比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b二、数学知识点总结热冰时间在学习中流逝着,不觉间又一学期走了一半,七下数学的几何部分也告一段落,故将一些重要的和易错的知识点总结于此,供日后学习完善!此内容仅限于人教版内容顺序平行线与相交线部分1过两点有且只有一条直线(强调唯一性和存在性)2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补尺规作图(这是重难点)作线段等于已知线段和作角等于已知角(1)理解尺规作图的含义①只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.②基本作图:a.用尺规作一条线段等于已知线段;b.用尺规作一个角等于已知角.利用这两个基本作图,可以作两条线段或两个角的和或差.(2)熟练掌握尺规作图题的规范语言Ⅰ.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;Ⅱ.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.(3)尺规作图题的步骤:①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°(掌握证明此定理的两种方法)附加:画三角形的高时,只需向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边上的高.(易错点)注意:(1)三角形的高是线段,垂线段.(2)锐角三角形的高都在三角形内部;直角三角形仅斜边上的高在三角形内部,另两边上的高为三角形的两条直角边;钝角三角形仅一条高在三角形内部,另两条高在三角形外部.(3)三角形三条高所在直线交于一点.且这点叫做三角形的垂心.三角形的三条中线交于三角形内部,这一点叫做三角形的重心.三角形三条角平分线交于三角形内部,这一点叫做三角形的内心.四边形内容部分18定理四边形的内角和等于360°19四边形的外角和等于360°20多边形内角和定理 n边形的内角的和等于(n-2)×180°21推论任意多边的外角和等于360°22多边形对角线公式n (n-3)/21点、线、面、体知识点三、几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
推导初中几何定理的推导过程
推导初中几何定理的推导过程几何学是数学的一个分支,主要研究图形、形状以及与之相关的性质和关系。
在初中阶段,学生开始接触几何定理的推导过程,这有助于培养他们的逻辑思维和证明能力。
本文将探讨一些常见的初中几何定理及其推导过程。
一、等角三角形定理的推导过程定理:等角三角形的两个对应边成比例。
推导过程:设△ABC和△DEF是等角三角形,其中∠A = ∠D,我们需要证明AB/DE = AC/DF。
△ABC和△DEF是等角三角形,所以角A和角D相等。
根据三角形内角和定理,我们知道∠B = 180° - ∠A,∠E = 180° - ∠D。
根据角度的性质,∠B和∠E也相等。
根据等角三角形的定义,我们得知∠B = ∠E。
因此,△ABC和△DEF中的角B和角E相等。
根据AA相似定理,我们可以得出△ABC和△DEF相似。
因此,根据相似三角形的性质,我们可以得出AB/DE = AC/DF。
所以,等角三角形的两个对应边成比例,推导完毕。
二、等腰三角形定理的推导过程定理:等腰三角形的两个底角相等。
推导过程:设△ABC是等腰三角形,其中AB = AC,我们需要证明∠B = ∠C。
△ABC是等腰三角形,所以边AB和边AC相等。
假设∠B > ∠C,根据角度的性质,我们可以得出180° - ∠B < 180°- ∠C。
根据等腰三角形的定义,我们得知BC = AC = AB。
根据三角形内角和定理,∠B + ∠C + ∠A = 180°。
将上述等式代入前面的不等式中,得到∠A + ∠B > ∠A + ∠C。
根据三角形内角和定理,我们知道∠A + ∠B + ∠C = 180°。
将上述等式代入前面的不等式中,得到180° > 180°,这是一个矛盾。
因此,假设错误,实际上∠B = ∠C。
所以,等腰三角形的两个底角相等,推导完毕。
三、勾股定理的推导过程定理:直角三角形的两条边的平方和等于斜边的平方。
初中几何定理的证明
初中几何定理的证明几何定理是数学中的基本定理之一,它们是通过推导和证明得出的,以确保它们的正确性。
本文将介绍一些常见的初中几何定理以及它们的证明。
1.三角形内角和定理:三角形的三个内角和等于180度。
证明:设三角形的三个内角分别为A、B、C,连接线段AB、AC,将三角形ABC分成两个三角形ABD和ACD。
根据直线与角平分线垂直的性质,可得出∠BAD=∠CAD。
由AD是角ABC的平分线,可得出∠BAD=∠DAC。
所以,∠DAC=∠CAD,即角ADC是个等角。
同理,通过连接线段BC可以得知∠ACB=∠ABC。
在三角形ABC中,∠ADC+∠ACD+∠BAC=180度。
根据等角的性质,可得出∠ADC=∠BAC,∠ACD=∠ABC。
所以,∠ADC+∠ACD+∠BAC=∠BAC+∠ABC+∠ACB。
由此,我们得出三角形内角和等于180度的结论。
2.三角形外角定理:三角形的一个外角等于与它不相邻的两个内角的和。
证明:设三角形的一个外角为∠ABC,连接线段AC,延长线段BA得到点D。
由延长线段与直线的交角性质,可得出∠ACB和∠ABC相等。
在三角形ABC中,∠ACB+∠CAB+∠ABC=180度。
我们已知∠ACB+∠CAB=180度,所以∠ABC+∠ACB=180度。
这就证明了三角形外角等于与它不相邻的两个内角的和的定理。
3.相似三角形的性质:两个三角形的相对应的角相等,则它们相似;若两个三角形的对应边成比例,则它们相似。
证明:(1)若两个三角形的相对应的角相等,则它们相似。
设两个三角形分别为△ABC和△DEF,且∠A=∠D,∠B=∠E。
在△ABC和△DEF中,由于∠A=∠D,∠B=∠E,所以∠C=∠F。
根据角对应定理,可得出△ABC与△DEF相似。
(2)若两个三角形的对应边成比例,则它们相似。
设两个三角形分别为△ABC和△DEF,且AB/DE=AC/DF=BC/EF。
在△ABC和△DEF中,由于AB/DE=AC/DF=BC/EF,根据边对应定理,可得出△ABC与△DEF相似。
立体几何证明8条定理
立体几何证明8条定理立体几何是几何学的一个分支,研究的是在三维空间中的图形和体的性质。
在立体几何中有许多定理,其中一些重要的定理包括平行线定理、垂直线定理、欧拉定理、等角定理、切线定理、割线定理、同位角定理和三角形内角和定理等。
下面将详细讨论这些定理:1.平行线定理:如果两条平行线被一组平行线截断,那么它们的对应线段成比例。
这个定理可以用于证明两条线平行。
2.垂直线定理:如果两条直线相交,且其中一条直线垂直于另一条直线,那么相交处的四个角都是直角。
这个定理可以用于证明两条线垂直。
3.欧拉定理:在任意一个凸多面体中,顶点数、棱数和面数之间存在一个关系:顶点数加上面数等于棱数加上2、这个定理被应用于立体几何中的多面体的计算。
4.等角定理:如果两条线分别与一条平行线相交,且其中一对内错角(相对于平行线的两条线之间的两个角)或一个内错角和一个外错角(与平行线的两条线相交形成的一对内角和一对外角)相等,那么这两条线是平行线。
这个定理可以用于证明平行线。
5.切线定理:给定一个圆和一个与圆相切且通过切点的直线,那么切线的切点与切线所跨越的弦的两个端点之间的角是直角。
这个定理可以用于证明圆的性质。
6.割线定理:给定一个圆和一个与圆相交的直线,那么直线与圆的切线所跨越的弦的两个端点之间的角相等。
这个定理也可以用于证明圆的性质。
7.同位角定理:如果两条平行线被一条截线截断,那么同位角(相对于平行线的两条线的每一对内角)相等。
这个定理可以用于证明平行线。
8.三角形内角和定理:三角形的三个内角的度数之和等于180度。
这个定理是三角形的基本性质,可以用于证明其他三角形的性质。
这些定理是立体几何中的一些基本定理,通过运用它们可以推导出其他一些更复杂的定理。
这些定理不仅在几何学中有重要的应用,而且在物理学、工程学等其他学科中也有广泛的应用。
初中几何证明常用定理
初中几何证明常用定理几何学是一门关于空间形状、大小、位置、变换等的数学学科。
在几何学中,证明常用定理是解决几何问题的关键步骤。
常用定理是几何学中的基本原理,它们通过逻辑推理和几何推理来证明,并且在解决各种几何问题中具有广泛的应用。
下面是几个常用的几何学定理及其证明。
1.直线的性质:定理1:两条垂直直线之间的夹角是90度。
证明:设直线AB和CD相交于点O,要证明∠AOB=90度。
首先,连接OC和OD,由于OC⊥AB且OD⊥AB,所以OC和OD是两条垂直直线。
其次,由∠COD=90度可知OC⊥OD。
因此,由垂直线与直线的性质可知∠AOB=90度。
定理2:两条直线垂直的充分必要条件是它们的斜率的乘积为-1证明:设直线AB的斜率为k1,直线CD的斜率为k2、若直线AB与直线CD垂直,则k1*k2=-1、反之,若k1*k2=-1,则可由直线的斜率公式得知,直线AB和CD的斜率互为相反数,即两条直线垂直。
2.三角形的性质:定理3:三角形内角和等于180度。
证明:设三角形ABC的三个内角分别为∠A,∠B,∠C。
在边AC上延长一条线段AD,使AD=AB。
则∠ADB=∠ABC。
同时,在边AB上延长一条线段AE,使AE=AC。
则∠AEC=∠ACB。
由于平行线之间的对应角相等,可得∠BAC=∠BDA和∠ABC=∠CAE。
因此,∠BAC+∠ABC+∠ACB=∠BDA+∠ABC+∠CAE=180度。
定理4:三角形的外角等于其不相邻内角之和。
证明:设三角形ABC的外角ACD的度数为x,内角A的度数为∠A,内角B的度数为∠B,内角C的度数为∠C。
由三角形内角和等于180度的性质可知∠A+∠B+∠C=180度。
又由平行线之间的对应角相等可得∠C=∠ACD。
因此,∠A+∠B+∠C+x=180度。
3.圆的性质:定理5:在一个圆上,圆心到圆上任意一点的距离都相等。
证明:设圆O的圆心为O,圆上一点为A。
连接OA,并假设圆上还有另一点B。
初中几何常用定理汇总
初中几何常用定理汇总初中数学的几何部分,有很多定理需要记忆理解,但平时我们对知识点的学习都是分散的,不利于记忆!这里整理了初中三年较重要的一些几何定理↓↓↓这些基本定理对我们解几何题目而言是关键中的关键,一定要牢记哟!一、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短二、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补三、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°四、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等五、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合六、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)七、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
初中数学所有几何证明定理精编版
初中数学所有几何证明定理精编版一、直线垂直定理定理:如果两条直线互相垂直,那么它们的斜率乘积为-1证明:设直线L1的斜率为k1,直线L2的斜率为k2、由于两条直线互相垂直,则L1与L2的斜率乘积为-1,即k1×k2=-1二、垂直平分线定理定理:如果一条直线垂直平分一条线段,那么它必过这条线段的中点。
证明:设直线L垂直平分线段AB,即将线段AB分成等长的线段AC和CB。
假设直线L不过线段AB的中点D,那么必然存在一点E在线段AB的另一侧,使得直线LE与线段AB垂直,这与直线L垂直平分线段AB的前提相矛盾,所以直线L必过线段AB的中点D。
三、三角形角平分线定理定理:三角形中,角的平分线上的点到边的距离成比例。
证明:设三角形ABC的角A的平分线交边BC于点D,AD是直线BC的角A平分线。
利用三角形相似性可以得到以下等式:AD/BD=AC/BCAD/CD=AB/BC将两个等式相加得到(AD/BD)+(AD/CD)=(AC/BC)+(AB/BC),化简后可得到AD/BD+CD=AC/BC+AB/BC,再进一步整理得到AD/(BD+CD)=AC/BC,即AD和BC上的点到边的距离成比例。
四、三角形相似条件定理定理:如果两个三角形的对应角相等,则这两个三角形相似。
证明:设△ABC和△DEF是两个具有对应相等角A,B,C和D,E,F的三角形。
根据角度相等和三角形内角和为180°的性质,可知∠A+∠B+∠C=∠D+∠E+∠F=180°。
再根据第三个内角为180°的三角形内角和为180°的性质,得知∠C=∠F。
因此,这两个三角形具有两对相等角,所以根据三角形相似的定义,△ABC和△DEF相似。
五、等腰三角形性质定理定理:等腰三角形的两个底角相等。
证明:设△ABC是一个等腰三角形,AB=AC。
假设∠A≠∠B,那么根据三角形内角和为180°的性质,必存在一个角∠C使得∠A+∠B+∠C=180°。
平面几何 五大定理及其证明
平面几何 定理及其证明一、 梅涅劳斯定理1.梅涅劳斯定理及其证明定理:一条直线与∆ABC 的三边AB 、BC 、CA 所在直线分别交于点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,则有1AD BE CFDB EC FA⨯⨯=. 证明:如图,过点C 作AB 的平行线,交EF 于点G .因为CG // AB ,所以CG CFAD FA =————(1) 因为CG // AB ,所以CG ECDB BE = ————(2) 由(1)÷(2)可得DB BE CFAD EC FA=⋅,即得1AD BE CF DB EC FA ⋅⋅=. 2.梅涅劳斯定理的逆定理及其证明定理:在∆ABC 的边AB 、BC 上各有一点D 、E ,在边AC 的延长线上有一点F ,若1AD BE CFDB EC FA⋅⋅=,那么,D 、E 、F 三点共线. 证明:设直线EF 交AB 于点D /,则据梅涅劳斯定理有//1AD BE CFD B EC FA⋅⋅=. 因为 1AD BE CF DB EC FA⋅⋅=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.二、 塞瓦定理3.塞瓦定理及其证明定理:在∆ABC 内一点P ,该点与∆ABC 的三个顶点相连所在的三条直线分别交∆ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是∆ABC 的顶点,则有1AD BE CFDB EC FA⋅⋅=. 证明:运用面积比可得ADCADP BDP BDCS S AD DB S S ∆∆∆∆==. 根据等比定理有ADC ADC ADP APCADP BDP BDC BDC BDP BPCS S S S S S S S S S ∆∆∆∆∆∆∆∆∆∆-===-, ABCDEFPABCD EFD /ABCD EFG所以APC BPC S AD DB S ∆∆=.同理可得APB APC S BE EC S ∆∆=,BPC APB S CF FA S ∆∆=.三式相乘得1AD BE CFDB EC FA⋅⋅=. 4.塞瓦定理的逆定理及其证明定理:在∆ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是∆ABC 的顶点,若1AD BE CFDB EC FA⋅⋅=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有//1AD BE CFD B EC FA⋅⋅=. 因为 1AD BE CF DB EC FA⋅⋅=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线.三、 西姆松定理5.西姆松定理及其证明定理:从∆ABC 外接圆上任意一点P 向BC 、CA 、AB 或其延长线引垂线,垂足分别为D 、E 、F ,则D 、E 、F 三点共线.证明:如图示,连接PC ,连接 EF 交BC 于点D /,连接PD /.因为PE ⊥AE ,PF ⊥AF ,所以A 、F 、P 、E 四点共圆,可得∠FAE =∠FEP .因为A 、B 、P 、C 四点共圆,所以∠BAC =∠BCP ,即∠FAE =∠BCP .所以,∠FEP =∠BCP ,即∠D /EP =∠D /CP ,可得C 、D /、P 、E 四点共圆.所以,∠CD /P +∠CEP = 1800。
几何定理的证明
几何定理的证明几何学是数学的一个分支,研究空间中的形状、位置、大小关系以及它们的性质和变化规律。
在几何学中,定理是通过严密的逻辑推导得出的结论,用于解决各种几何问题。
在本文中,将对几何学中的一些重要定理进行证明。
一、勾股定理的证明勾股定理是初中数学中最为人所熟知的定理之一,表述如下:直角三角形的两直角边的平方和等于斜边的平方。
也可以表示为 a² + b² = c²,其中a、b为两直角边的长度,c为斜边的长度。
证明:设直角三角形的两直角边为a、b,斜边为c。
根据勾股定理的定义,可以得到以下等式:a² + b² = c²二、圆的面积公式的证明圆是一个非常重要的几何形状,具有许多独特的性质和定理。
其中,圆的面积公式是指圆的面积S与其半径r之间的关系,表达式为S = πr²,其中π为圆周率,约等于3.14159。
证明:要证明圆的面积公式,我们可以利用数学归纳法。
首先,我们将圆分成许多小的扇形,并将这些扇形分别展开成弧和射线,形成一个近似于矩形的形状。
然后,我们计算这个近似的矩形的面积,并将其与原来圆的面积进行比较。
通过将这个过程重复无限次,我们可以得出结论,即圆的面积公式成立。
三、正方形的对角线长度的证明正方形是一种具有特殊性质的四边形,它的四条边相等且四个角都为直角。
一个重要的定理是正方形的对角线长度相等。
证明:设正方形的边长为a,其中一条对角线为d₁,另一条对角线为d₂。
根据正方形的性质,可以得到以下等式:d₁² = a² + a² = 2a²d₂² = a² + a² = 2a²由于d₁² = d₂²,所以d₁ = d₂。
因此,正方形的对角线长度相等。
四、相似三角形的比例关系的证明在几何学中,相似三角形是指具有相同形状但大小不同的三角形。
初中几何公式定理大全146条
一、直线和角度1. 直线的性质2. 同位角、内错角、同旁内角、同旁外角、相交线性质3. 平行线性质4. 角的度量5. 角的性质6. 垂直角与互补角7. 角平分线的性质8. 三角形内角和为180°9. 三角形外角和等于对应的内角和二、平行四边形10. 平行四边形的性质11. 平行四边形对角线的性质12. 平行四边形的判定定理13. 等腰平行四边形性质三、三角形14. 三角形的定义15. 三角形的分类16. 三角形的内角和17. 三角形的外角和18. 等腰三角形的性质19. 等边三角形的性质20. 直角三角形的性质21. 斜角三角形的性质22. 三角形内心、外心、重心、垂心23. 三角形中位线定理24. 三角形的中线定理25. 三角形的高定理26. 三角形的中线定理27. 三角形的角平分线定理28. 三角形的正弦定理29. 三角形的余弦定理30. 三角形的海伦公式四、全等三角形31. 全等三角形的性质32. 三角形全等条件33. 全等三角形的判定定理五、相似三角形34. 相似三角形的性质35. 相似三角形的判定定理36. 相似三角形的应用六、勾股定理和勾股数37. 勾股定理的条件38. 勾股定理的应用39. 勾股数的构造和性质40. 勾股数的判定定理七、平面图形41. 正方形的性质42. 长方形的性质43. 菱形的性质44. 梯形的性质45. 正多边形的性质46. 圆的性质47. 圆的切线定理48. 圆的切割定理49. 圆的弦理论50. 圆的扇形面积八、平行线与比例51. 平行线分线段52. 线段比例定理53. 平行线的中位线定理54. 平行线的高度定理九、数学建模55. 数学建模的概念56. 数学建模的解题步骤57. 数学建模的应用实例十、平面几何命题证明58. 角平分线的性质证明59. 平行线性质证明60. 直角三角形的性质证明61. 狄尼茨定理证明62. 三等分角定理证明63. 正多边形内角和公式证明十一、解决几何问题64. 几何问题的解决方法65. 几何问题的三步走解题法66. 几何问题的类比辅助法67. 几何问题的逆向方法十二、空间图形68. 空间图形的概念69. 空间图形的分类70. 空间图形的性质71. 空间图形的体积公式十三、平面与立体坐标系72. 平面直角坐标系73. 立体坐标系74. 坐标变换定理十四、等差数列和等比数列75. 等差数列的性质76. 等差数列的应用77. 等比数列的性质78. 等比数列的应用十五、向量79. 向量的概念80. 向量的性质81. 向量的加法和减法82. 向量的数量积83. 向量的叉积84. 向量的应用十六、向量的平面几何应用85. 向量的平移86. 向量的夹角87. 向量的垂直和平行88. 向量作为平行四边形的对角线十七、圆锥曲线的方程89. 圆的方程90. 椭圆的方程91. 双曲线的方程92. 抛物线的方程十八、解析几何命题证明93. 直线的方程证明94. 圆的方程证明95. 椭圆的方程证明96. 双曲线的方程证明97. 抛物线的方程证明十九、三角函数98. 三角函数的概念99. 三角函数的正弦、余弦、正切、余切100. 三角函数的性质101. 三角函数的定义域和值域102. 三角函数图像二十、三角函数的一般式103. 三角函数的和差化积104. 三角函数的倍角公式105. 三角函数的半角公式106. 三角函数的和角公式107. 三角函数的差角公式108. 三角函数的积化和差二十一、三角函数的应用109. 三角函数的变量代换110. 三角函数的方程解法111. 三角函数的不等式解法112. 三角函数的应用实例二十二、立体几何113. 立体几何的基本概念114. 立体几何的三视图115. 立体几何的截面图116. 立体几何的投影图二十三、立体几何命题证明117. 立体几何的平行轴定理证明118. 立体几何的旋转定理证明119. 立体几何的平移定理证明120. 立体几何的镜像对称定理证明二十四、空间向量121. 空间向量的概念122. 空间向量的性质123. 空间向量的共线124. 空间向量的垂直125. 空间向量的平行二十五、空间向量运算126. 空间向量的和127. 空间向量的差128. 空间向量的数量积129. 空间向量的叉积二十六、立体几何和向量130. 空间平面的方程131. 空间直线的方程132. 空间平面和直线的位置关系133. 空间立体几何和向量的应用二十七、立体图形的几何性质134. 立体图形的视图和截面135. 立体图形的平面和直线位置关系136. 立体图形的边和面的关系137. 立体图形的三视图和投影图二十八、三视图的绘制138. 正交三视图的绘制139. 斜投影三视图的绘制140. 立体图形的三视图应用二十九、空间几何建模141. 空间几何建模的概念142. 空间几何建模的三步走解题法143. 空间几何建模的应用实例三十、空间曲面的方程144. 圆锥曲线的方程证明145. 曲面的方程证明146. 空间曲面的方程应用在初中阶段,学习几何公式定理是非常重要的,因为它为理解和解决各种几何问题打下了坚实的基础。
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理几何是研究空间形状和大小关系的一门学科,它依赖于一系列公理和定理来构建其理论体系。
下面是初中几何中一些常用的公理和定理,涵盖了线段、角、三角形、四边形和圆等几何概念。
公理1:通过任意两点,可以画一条唯一的直线。
公理2:一条由两点确定的线段可以延长成一条无限长的直线。
公理3:给定一条线段和一点,可以画出与这条线段等长的线段。
公理4:所有直角都相等。
公理5:如果两直线与第三条直线各自交于一个相同的角,则这两条直线是平行的。
公理6:如果两直线分别与第三条直线各自交于两个同位角相等的角,则这两条直线是平行的。
定理1:三角形内两角之和等于180度。
定理2:等腰三角形的两底角相等。
定理3:等边三角形的三个内角均为60度。
定理4:全等三角形的对应的边和对应角均相等。
定理5:直角三角形中,斜边的平方等于两直角边平方和。
定理6:三角形的任一边大于另外两边之差,小于另一两边之和。
定理7:三角形两边之和大于第三边。
定理8:平行线上的对应角相等。
定理9:同位角互补。
定理10:同位角相等。
定理11:平行线截断同位线段成比例线段。
定理12:平行线截断角成等角。
定理13:如果两条直线被一条平行线截断,那么所得的内错角相等,同时所得的外错角也相等。
定理14:在一个给定圆上,取一点和另一点之间的每一对弦都是有相同长度的。
定理15:在一个给定圆上,两端在圆上,而与圆上一点相交的弦不等长。
定理16:在一个给定圆上,通过圆心的每一条弦都是直径。
定理17:在一个给定圆上,圆心角的度数是所对的弧所经过的圆心角的度数的两倍。
定理18:四边形的内角和等于360度。
定理19:矩形的两对边相等且两对角为直角。
定理20:平行四边形的对边相等且两对角分别相等。
定理21:菱形的四条边相等,且对角线相互平分。
定理22:四边形两对相对边的和相等。
这仅仅是初中几何中的一小部分公理和定理,通过这些公理和定理,我们可以建立起几何学中的基础知识和理论体系。
初中数学 几何证明题的知识点总结
几何证明题的知识点总结知识点:一、线段垂直平分线(中垂线)性质定理及其逆定理:定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
MPA BN二、角平分线的性质定理及其逆定理:定理:在角的平分线上的点到这个角两边的距离相等。
逆定理:在一个角的内部(包括顶点)且到这个角两边距离相等的点,定在这个角的平分线上。
三、相交线、平行线1、对顶角相等2、平行线的判定(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行3、平行线的性质(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行四、三角形 1、等腰三角形(1)等腰三角形的性质:等腰三角形的两个底角相等等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合 等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线 (2)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等,这个三角形就是等腰三角形(简称为“等角对等边”) 2、RT 的性质定理:(1)RT 的两个锐角互余。
(2)在RT 中,斜边上的中线等于斜边的一半。
推论:(1)在RT 中,如果一个锐角等于30度,那么这个角所对的边等于斜边的一半。
(2)在RT 中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。
2、勾股定理在直角三角形中,两条直角边的平方和等于斜边的平方即:c b a222=+3、三角形中位线定理:三角形两边中点连线平行于第三边,且等于第三遍的一半。
4、全等三角形的判定定理(1)三组对应边分别相等的两个三角形全等(SSS) (2)有两边及其夹角对应相等的两个三角形全等(SAS) (3)有两角及其夹边对应相等的两个三角形全等(ASA) (4)有两角及一角的对边对应相等的两个三角形全等(AAS)(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL) 5、全等三角形的性质(1)全等三角形的对应角相等(2)全等三角形的对应边、对应中线、对应高、对应角平分线相等五、平行四边形定义:两组对边分别平行的四边形叫做平行四边形 性质定理:(1)平行四边形的对边相等(推论:夹在两条平行线间的平行线段相等、平行线间的距离处处相等) (2)平行四边形的对角相等(3)平行四边形的两条对角线互相平分(4)平行四边形是中心对称图形,对称中心是两条对角线的交点 判定定理:(1)定义:两组对边分别平行的四边形是平行四边形. (2)定理1:两组对角分别相等的四边形是平行四边形. (3)定理2:两组对边分别相等的四边形是平行四边形. (4)定理3:对角线互相平分的四边形是平行四边形. (5)定理4:一组对边平行且相等的四边形是平行四边形.六、矩形定义:有一个角是直角的平行四边形叫做矩形 性质:(1)矩形的四个角都是直角(2)矩形的对角线相等判定定理:(1)有三个内角是直角的四边形是矩形(2)对角线相等的平行四边形是矩形七、菱形定义:有一组邻边相等的平行四边形叫做菱形性质:(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角判定定理:(1)四边都相等的四边形是菱形.(2)对角线互相垂直的平行四边形是菱形.八、正方形定义:有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形性质:(1)正方形的四个角都是直角,四条边都相等.(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.判定定理:(1)判定一个四边形为正方形主要根据定义,途径有两种:①先证它是矩形,再证它有一组邻边相等.②先证它是菱形,再证它有一个角为直角.(2)判定正方形的一般顺序:①先证明它是平行四边形;②再证明它是菱形(或矩形);③最后证明它是矩形(或菱形)九、(等腰)梯形梯形定义:一组对边平行而另一组对边不平行的四边形叫做梯形等腰梯形性质:(1)等腰梯形两腰相等、两底平行.(2)等腰梯形在同一底上的两个角相等.(3)等腰梯形的对角线相等.等腰梯形判定定理:(1)两腰相等的梯形是等腰梯形.(2)在同一底上的两个角相等的梯形是等腰梯形.(3)对角线相等的梯形是等腰梯形.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一常用几何证明的定理总结对顶角相等:几何语言:∵∠1、∠2是对顶角∴∠1=∠2(对顶角相等)垂线:几何语言:正用反用:∵∠AOB=90°∵AB⊥CD∴AB⊥CD(垂直的定义)∴∠AOB=90°(垂直的定义)证明线平行的方法:1、平行公理如果两条直线都与第三条直线平行,那么,这两条直线也平行。
简述为:平行于同一直线的两直线平行。
几何语言叙述:如图:∵AB∥EF,CD∥EF∴AB∥CD(平行于同一直线的两直线平行。
)2、同位角相等,两直线平行。
几何语言叙述:如图:∵直线AB、CD被直线EF所截∠1=∠2∴AB∥CD(同位角相等,两直线平行。
)3、内错角相等,两直线平行。
几何语言叙述:如图:∵直线AB、CD被直线EF所截,∠1=∠2 ∴AB∥CD(内错角相等,两直线平行。
)4、同旁内角互补,两直线平行。
几何语言叙述:如图:∵直线AB、CD被直线EF所截,∠1+∠2=180O ∴AB∥CD(同旁内角互补,两直线平行。
)5、垂直于同一直线的两直线平行。
几何语言叙述:如图:∵直线a⊥c,b⊥c∴a∥b(垂直于同一直线的两直线平行。
)平行线的性质:1、两直线平行,同位角相等。
几何语言叙述:∵AB∥CD∴∠1=∠2(两直线平行,同位角相等。
)2、两直线平行,内错角相等。
几何语言叙述:如图:∵AB∥CD∴∠1=∠2(两直线平行,内错角相等。
)3、两直线平行,同旁内角互补。
几何语言叙述:如图:∵AB∥CD∴∠1+∠2=180O(两直线平行,同旁内角互补。
)证明角相等的其余常用方法:1、余角的性质:同角或等角的余角相等。
例:∵如图∠AOB+∠BOC=90°∠BOC+∠COD=90°∴∠AOB=∠COD(同角的余角相等)2、补角的性质:同角或等角的补角相等。
例:∵如图∠AOB+∠BOD=180°,∠AOC+∠COD=180°且∠BOD=∠AOC∴∠AOB=∠COD(同角的补角相等)三角形中三种重要线段:1、三角形的角平分线:几何语言叙述:∵如图BD 是△ABC 的角平分线∴∠ABD =∠CBD=12∠ABC2、三角形的中线:几何语言叙述:∵如图BD 是△ABC 的中线∴AD =BD =12AB3、三角形的高线:几何语言叙述:∵如图AD 是△ABC 的高 ∴∠ADB =∠ADC =90° 三角形的分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形(按边分)底和腰不等的等腰三角形等腰三角形等边三角形⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形(按角分)锐角三角形斜三角形钝角三角形三角形三边的关系:三角形两边之和大于第三边,两边之差小于第三边。
如图:|AB -AC|<BC<AB +AC三角形内角和定理及推论三角形内角和定理:三角形三个内角的和等于180°几何语言叙述:如图:∠A+∠B+∠C=108°(三角形三个内角的和等于180°)三角形内角和定理推论1:直角三角形的两锐角互余。
几何语言叙述:如图:∵△ABC中,∠C=90°∴∠A+∠B=90°(直角三角形的两锐角互余)三角形内角和定理推论2:三角形的一个外交等于和它不相邻的两内角之和。
几何语言叙述:如图:∵∠ACD是△ABC的外角∴∠ACD=∠A+∠B(三角形的一个外角等于和它不相邻的两内角之和)三角形内角和定理推论3:三角形的一个外角大于任何一个与它不相邻的内角。
几何语言叙述:如图:∵∠ACD是△ABC的外角∴∠ACD>∠B(三角形的一个外角大于任何一个与它不相邻的内角)平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数。
即第一、二象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为正数;第三、四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为负数。
反之,如果点P(a ,b)在x轴上方,则b>0;如果P(a ,b)在x轴下方,则b<0。
(2)y轴将坐标平面分成两部分,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数。
即第二、三象限和x轴的负半轴上的点的横坐标为负数;第一、四象限和x 轴正半轴上的点的横坐标为正数。
(3)规定坐标原点的坐标为(0 ,0)(4)各个象限内的点的符号规律如下表:上表反推也成立。
如:若点P(a ,b)在第四象限,则a>0,b<0(5)坐标轴上的点的符号规律:定义当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
(3)有公共边的,公共边一定是对应边。
(4)有公共角的,角一定是对应角。
(5))1、三组对应边分别相等的两个三角形全等(简称“边边边”),这一条也说明了三角形具有稳定性的原因。
2、.有两边及其夹角对应相等的两个三角形全等“边角边”)。
3、.有两角及其夹边对应相等的两个三角形全等“角边角”)。
4、.有两角及其一角的对边对应相等的两个三角形全等“角角边”)5(HL或“斜边,直角边”)。
注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,属于SSA),这两种情况都不能唯一确定三角形的形状。
性质三角形全等的条件:1.全等三角形的对应角相等。
2.全等三角形的对应边相等3.全等三角形的对应顶点位置相等。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应中线相等。
78.89.全等三角形可以完全重合要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:S.S.S.(Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
R.H.S. / H.L.(Right Angle-Hypotenuse-Side):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。
以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形: A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。
但若是直角三角形的话,应以R.H.S.来判定。
1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、2.利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3SAS找全等三角形。
4.用在实际中,一般我们用全等三角形测相等的距离。
以及相等的角,可以用于工业和军事。
5.三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。
因此我们可以来采取逆思维的方式。
来想要证全等,则需要什么条件要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
有时还需要画辅助线帮助解题。
分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。
例1、如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4,G为AB延长线上一点.求∠EBG的度数和CE的长.分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的∠EBG.(2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得∠EBG等于160°.(3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:CE=CA-AE=BA-AD=6.解:∵△ABE≌△ACD ∠C= 20°(已知)∴∠ABE=∠C =20°(全等三角形的对应角相等)∴∠EBG=180°-∠ABE =160°(邻补角的意义)∵△ABE≌△ACD(已知)∴AC=AB(全等三角形对应边相等)AE=AD(全等三角形对应边相等)∴CE=CA-AE =BA-AD =6(等式性质)例1:(2006·浙江金华)如图1,△ABC与△ABD中,AD与BC相交于O 点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其它字母),使AC=BD,并给出证明。
你添加的条件是: . 证明:分析:要说明AC=BD,根据图形想到先说明△ABC≌△BAD,题目中已经知道∠1=∠2,AB=AB,只需一组对边相等或一组对角相等即可。
解:添加的条件是:BC=AD. 证明:在△ABC与△BAD中,∠1=∠2,AB=AB,∠A=∠A' ∴△ABC≌△BAD(SAS)。
∴ AC=BD. 小结:惟一,若按照以下方式之一来添加条件:①BC=AD,②∠C=∠D,③∠CAD=∠DBC,④∠CAB=∠DBA,都可得△CAB≌△DBA,从而有AC=BD. 二、综合开放型例2:(2006·攀枝花)如图2,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为_______________. 你得到的一对全等三角形是:△≌△ . 证明:分析:在已知条件中已有一组边即可得出全等三角形。
解:所添条件为CE=ED. 得到的一对全等三角形是△CAE≌△DAE. 证明:在△CAE和△DAE中,AC=AD,AE=AE,CE=DE,所以△CAE≌△DAE(SSS)。
小结:本题属于条件和结论同时开放的一道好题目,题目本身并不复杂,但开放程度较高,能激起同学们的发散思维,值得重视.。