深圳培英文武实验学校七年级上册数学期末试题及答案解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳培英文武实验学校七年级上册数学期末试题及答案解答
一、选择题
1.已知max
{
}
2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,
max {}{
}2
2,,max 9,9,9x x x ==81.当max {
}
21
,,2
x x x =
时,则x 的值为( ) A .14
-
B .
116
C .
14
D .
12
2.根据等式的性质,下列变形正确的是( )
A .若2a =3b ,则a =23
b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣
3a =2﹣3b
D .若
23
a b
=,则2a =3b 3.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a -
4.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .6
5.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3
P ⋯,如图所示排列,根据这个规律,点2014P 落在( )
A .射线OA 上
B .射线OB 上
C .射线OC 上
D .射线OD 上
6.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2 B .8 C .6 D .0 7.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3y
B .-10x +3y
C .10x -9y
D .10x +9y
8.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 9.已知105A ∠=︒,则A ∠的补角等于( )
A .105︒
B .75︒
C .115︒
D .95︒
10.下列图形中,哪一个是正方体的展开图( ) A .
B .
C .
D .
11.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )
A .45人
B .120人
C .135人
D .165人
12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为
( )
A .8
B .12
C .18
D .20
二、填空题
13.=38A ∠︒,则A ∠的补角的度数为______. 14.写出一个比4大的无理数:____________. 15.若3750'A ∠=︒,则A ∠的补角的度数为__________. 16.单项式﹣
22
πa b
的系数是_____,次数是_____.
17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.
18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 19.如果一个数的平方根等于这个数本身,那么这个数是_____. 20.若∠1=35°21′,则∠1的余角是__.
21.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.
22.8点30分时刻,钟表上时针与分针所组成的角为_____度.
23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是
2400米高的山上的气温是____________________.
24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .
三、压轴题
25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.
(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求
α.
26.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .
(1)分别求a ,b ,c 的值;
(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.
i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.
ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.
27.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
28.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.
(1)求出数轴上B 点对应的数及AC 的距离.
(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)
②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .
③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数
29.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;
(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.
30.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.
(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?
31.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)
(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.
32.射线OA 、OB 、OC 、OD 、OE 有公共端点O .
(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;
(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 利用max
{
}
2,,x x x 的定义分情况讨论即可求解.
【详解】 解:当max {
}
21
,,2
x x x =
时,x ≥0 x 1
2,解得:x =14
x >x >x 2,符合题意; ②x 2=
12,解得:x =22
x x >x 2,不合题意;
③x =
1
2
x >x 2,不合题意;
故只有x =
1
4
时,max }
21,2
x x =
. 故选:C . 【点睛】
此题主要考查了新定义,正确理解题意分类讨论是解题关键.
2.C
解析:C 【解析】 【分析】
利用等式的性质对每个式子进行变形即可找出答案. 【详解】
解:A 、根据等式性质2,2a =3b 两边同时除以2得a =3
2
b ,原变形错误,故此选项不符合题意;
B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;
C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3
a =2﹣3b
,原变形正
确,故此选项符合题意;
D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】
本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.
3.B
解析:B 【解析】 【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
解析:C 【解析】 【分析】
同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】
解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】
本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.
5.A
解析:A 【解析】 【分析】
根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,
1P 到5P 顺时针,5P 到9P 逆时针,
()2014182515-÷=⋯,
∴点2014P 落在OA 上,
故选A . 【点睛】
本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.
6.B
解析:B 【解析】 【分析】
由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可. 【详解】 ∵2018÷4=504…2, ∴32018﹣1的个位数字是8, 故选B . 【点睛】
本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.
解析:B
【解析】
分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.
详解:原式=2x﹣3y﹣12x+6y
=﹣10x+3y.
故选B.
点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
8.A
解析:A
【解析】A. 3x+1=4x是一元一次方程,故本选项正确;
B. x+2>1是一元一次不等式,故本选项错误;
C. x2−9=0是一元二次方程,故本选项错误;
D. 2x−3y=0是二元一次方程,故本选项错误。
故选A.
9.B
解析:B
【解析】
【分析】
由题意直接根据互补两角之和为180°求解即可.
【详解】
解:∵∠A=105°,
∴∠A的补角=180°-105°=75°.
故选:B.
【点睛】
本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.
10.D
解析:D
【解析】
【分析】
根据由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;
B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.
故答案是D.
【点睛】
本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.
解析:D
【解析】
试题解析:由题意可得:
视力不良所占的比例为:40%+15%=55%,
视力不良的学生数:300×55%=165(人).
故选D.
12.A
解析:A
【解析】
【分析】
根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.
【详解】
解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,
长方体的容积是4×2×1=8,
故选:A.
【点睛】
本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.
二、填空题
13.【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
解析:142︒
【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
∠=,
38
A
∴A
∠的补角的度数为:18038142
-=,
故答案为:142︒.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
14.答案不唯一,如:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】
一个比4大的无理数如.
故答案为.
【点睛】
本题考查了估算无理数的大小,实数的
解析:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4
.
【点睛】
本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.
15.【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵,
∴的补角=180°-=.
故填.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒
︒
解析:14210'
【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
解:∵3750'A ∠=︒,
∴A ∠的补角=180°-3750'︒=14210'︒.
故填14210'︒.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒是60进制.
16.﹣; 3.
【解析】
【分析】
根据单项式的次数、系数的定义解答.
【详解】
解:单项式﹣的系数是﹣,次数是2+1=3,
故答案是:﹣;3.
【点睛】
本题考查了单项式系数、次数的定义
解析:﹣
2
π; 3. 【解析】
【分析】 根据单项式的次数、系数的定义解答.
【详解】 解:单项式﹣
22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣
2
π;3. 【点睛】
本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 17.-22
【解析】
【分析】
将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.
【详解】
解:当m ﹣2n =2时,
原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )
=2×(﹣2)3
解析:-22
【分析】
将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.
【详解】
解:当m﹣2n=2时,
原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)
=2×(﹣2)3﹣3×2
=﹣16﹣6
=﹣22,
故答案为:﹣22.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
18.56
【解析】
【分析】
由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案
【详解】
样本容量为80,某组样本的频率为0.7,
该组样本的频数=0.7×80
解析:56
【解析】
【分析】
由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案
【详解】
样本容量为80,某组样本的频率为0.7,
该组样本的频数=0.7×80=56
故答案为:56
【点睛】
此题考查频率分布表,掌握运算法则是解题关键
19.0
【解析】
【分析】
由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.
【详解】
∵±=±0=0,
∴0的平方根等于这个数本身.
故答案为0.
【点睛】
解析:0
【解析】
【分析】
由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.
【详解】
∵=±0=0,
∴0的平方根等于这个数本身.
故答案为0.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
20.54°39′.
【解析】
试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.
考点:1.余角和补角;2.度分秒的换算.
解析:54°39′.
【解析】
试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.
考点:1.余角和补角;2.度分秒的换算.
21.72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
解析:72
【解析】
【分析】
用360度乘以C等级的百分比即可得.
【详解】
观察可知C等级所占的百分比为20%,
所以C等级所在扇形的圆心角为:360°×20%=72°,
故答案为:72.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 22.75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
解析:75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
23.【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是
-︒
解析:18.4C
【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,
故答案为:-18.4℃.
【点睛】
本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.
24.5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.
考点:几何体的三视图.
解析:5
【解析】
【分析】
【详解】
根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.
考点:几何体的三视图.
三、压轴题
25.(1)80°;(2)140°
【解析】
【分析】
(1)根据角平分线的定义得∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,再根据角的和差得
∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定
义∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,
∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=1
2
∠AOB+
1
2
∠BOD=
1
2
(∠AOB+∠BOD).
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=1
2
×160°=80°;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
∵∠MON=∠MOC+∠BON-∠BOC,
∴∠MON=1
2
∠AOC+
1
2
∠BOD -∠BOC=
1
2
(∠AOC+∠BOD )-∠BOC.
∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,
∴∠MON=1
2
(∠AOB+∠BOC+∠BOD )-∠BOC=
1
2
(∠AOD+∠BOC )-∠BOC,
∵∠AOD=α,∠MON=60°,∠BOC=20°,
∴60°=1
2
(α+20°)-20°,
∴α=140°.
【点睛】
本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 26.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s 【解析】
【分析】
(1)根据非负数的性质求得a、b、c的值即可;
(2)i)根据3BC-k•AB求得k的值即可;
ii)当AC=1
3
AB时,满足条件.
【详解】
(1)∵a、b满足(a-1)2+|ab+3|=0,
∴a-1=0且ab+3=0.
解得a=1,b=-3.
∴c=-2a+b=-5.
故a,b,c的值分别为1,-3,-5.
(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.
所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,
所以存在常数m,m=6这个不变化的值为26.
ii)AC=1
3 AB,
AB=5+t,AC=-5+3t-(1+2t)=t-6,
t-6=1
3
(5+t),解得t=11.5s.
【点睛】
本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;
(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;
②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.
【详解】
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB﹣OA=4,
点B在原点左边,
∴数轴上点B所表示的数为﹣4;
点P运动t秒的长度为5t,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣5t,
故答案为﹣4,6﹣5t;
(2)①点P运动t秒时追上点Q,
根据题意得5t=10+3t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
28.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4
【解析】
【分析】
(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;
(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;
②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;
③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ
﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数.
【详解】
(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,
∴B 点对应的数为60﹣30=30;
∵C 点到A 点距离是B 点到A 点距离的4倍,
∴AC=4AB =4×30=120;
(2)①当P 点在AB 之间运动时,
∵AP=3t ,
∴BP=AB ﹣AP =30﹣3t .
故答案为30﹣3t ; ②当P 点是A 、B 两个点的中点时,AP =
12AB =15, ∴3t=15,解得t =5;
当B 点是A 、P 两个点的中点时,AP =2AB =60,
∴3t=60,解得t =20.
故所求时间t 的值为5或20;
③相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.
第一次相遇是点Q 从A 点出发,向C 点运动的途中.
∵AQ﹣BP =AB ,
∴5x﹣3x =30,
解得x =15,
此时P 点在数轴上对应的数是:60﹣5×15=﹣15;
第二次相遇是点Q 到达C 点后返回到A 点的途中.
∵CQ+BP=BC ,
∴5(x ﹣24)+3x =90,
解得x =1054
, 此时P 点在数轴上对应的数是:30﹣3×
1054=﹣4834. 综上,相遇时P 点在数轴上对应的数为﹣15或﹣48
34
. 【点睛】 本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.
29.(1)图1中∠AOD=60°;图2中∠AOD=10°;
(2)图1中∠AOD=
n m 2+;图2中∠AOD=n m 2
-. 【解析】
【分析】 (1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;
(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=
n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=
n m 2
-. 【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;
图2中∠BOC=∠AOC+∠AOB=120°,
∵OD 是∠BOC 的平分线,
∴∠BOD=12
∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;
(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,
如图1中,
∠BOC=∠AOC ﹣∠AOB=n ﹣m ,
∵OD 是∠BOC 的平分线,
∴∠BOD=
12∠BOC=n m 2
﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+;
如图2中,
∠BOC=∠AOC+∠AOB=m+n ,
∵OD 是∠BOC 的平分线, ∴∠BOD=
12∠BOC=n m 2
+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2
-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.
30.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒
【解析】
【分析】
(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;
(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .
(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;
【详解】
解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,
∴数轴上点B 表示的数为10-30=-20;
∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,
∴点P 表示的数为10-5t ;
故答案为-20,10-5t ;
(2)线段MN 的长度不发生变化,都等于15.理由如下:
①当点P 在点A 、B 两点之间运动时,
∵M 为线段AP 的中点,N 为线段BP 的中点,
∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;
②当点P 运动到点B 的左侧时:
∵M为线段AP的中点,N为线段BP的中点,
∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,
∴综上所述,线段MN的长度不发生变化,其值为15.
(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.
①点P、Q相遇之前,
由题意得4+5t=30+3t,解得t=13;
②点P、Q相遇之后,
由题意得5t-4=30+3t,解得t=17.
答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
31.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)10
3
或4(4)线段MN的长度不
发生变化,都等于11
【解析】
【分析】
(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;
(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;
(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8-22=-14,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-4t.
故答案为-14,8-4t;
(2)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC-BC=AB,
∴4x-2x=22,
解得:x=11,
∴点P运动11秒时追上点Q;
(3) ①点P、Q相遇之前,4t+2+2t =22,t=10
3
,
②点P、Q相遇之后,4t+2t -2=22,t=4,
故答案为10
3
或4
(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=1
2
AB=
1
2
×22=11
②当点P运动到点B的左侧时:
MN=MP﹣NP=1
2
AP﹣
1
2
BP=
1
2
(AP﹣BP)=1
2
AB=11
∴线段MN的长度不发生变化,其值为11.
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根
据题意画出图形,注意分两种情况进行讨论.
32.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,
∠COD,∠DOE;(2)∠BOD=54°;(3)
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】
【分析】
(1)根据角的定义即可解决;
(2)利用角平分线的性质即可得出∠BOD=1
2∠AOC+1
2
∠COE,进而求出即可;
(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.
【详解】
(1)如图1中小于平角的角
∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.
(2)如图2,
∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),
∴∠BOD=1
2
∠AOD﹣
1
2
∠COE+
1
2
∠COE=
1
2
×108°=54°;
(3)如图3,
∠AOE=88°,∠BOD=30°,
图中所有锐角和为
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE
=4∠AOB+4∠DOE=6∠BOC+6∠COD
=4(∠AOE﹣∠BOD)+6∠BOD
=412°.
【点睛】
本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,。