数列求和优秀教案设计
中学数学数列求和教案
![中学数学数列求和教案](https://img.taocdn.com/s3/m/5b40928eab00b52acfc789eb172ded630b1c9889.png)
中学数学数列求和教案一、教学目标1. 理解数列的基本概念,并能正确判断是否为等差数列或等比数列。
2. 掌握等差数列和等比数列的通项公式,并能正确计算相应的数值。
3. 理解数列的求和公式,并能运用求和公式计算数列的和值。
二、教学准备教师:备好黑板、粉笔,准备好习题和板书内容。
学生:纸、铅笔、计算器等。
三、教学过程1. 知识点引入教师向学生展示一些数字序列(如1, 3, 5, 7, 9...)并问学生如何判断它们是否为等差数列。
引导学生发现其中的规律,并引入等差数列的概念。
2. 等差数列的定义和性质教师将等差数列的定义和性质进行讲解,并帮助学生掌握等差数列的通项公式 an = a1 + (n-1)d。
3. 等差数列的求和公式教师引导学生思考如何求等差数列的和值,并引出等差数列的求和公式 Sn = n/2 (a1+an)。
4. 例题演练教师出示一个等差数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。
全班共同讨论,并解释结果的意义。
5. 等比数列的定义和性质教师将等比数列的定义和性质进行讲解,并帮助学生掌握等比数列的通项公式 an = a1 * r^(n-1)。
6. 等比数列的求和公式教师引导学生思考如何求等比数列的和值,并引出等比数列的求和公式 Sn = a1 * (1 - r^n) / (1 - r)。
7. 例题演练教师出示一个等比数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。
全班共同讨论,并解释结果的意义。
8. 综合练习教师布置一些综合性的练习题,让学生运用所学知识解答,并及时给予指导和纠正。
9. 课堂总结教师对本节课的重点内容进行总结,并强调数列求和在数学及现实生活中的应用价值。
四、巩固练习教师布置相关题目作为课后作业,要求学生用所学知识独立解答,并在下节课前交给教师检查。
五、教学拓展教师鼓励学生积极参与数学竞赛、参观数学实验室等拓展活动,加深对数列求和的理解和应用。
初中数列求和计算教案
![初中数列求和计算教案](https://img.taocdn.com/s3/m/442e07754a35eefdc8d376eeaeaad1f34793111e.png)
初中数列求和计算教案教学目标:1. 理解数列求和的概念及意义;2. 掌握等差数列和等比数列的求和公式;3. 能够运用数列求和公式解决实际问题。
教学重点:1. 数列求和的概念及意义;2. 等差数列和等比数列的求和公式。
教学难点:1. 数列求和公式的运用;2. 解决实际问题。
教学准备:1. 数列求和的相关知识;2. 教学课件或黑板。
教学过程:一、导入(5分钟)1. 引导学生回顾数列的概念,复习等差数列和等比数列的定义;2. 提问:我们已经学习了数列的概念,那么数列的和有什么意义呢?二、新课讲解(15分钟)1. 讲解数列求和的概念,即数列中所有项的和;2. 介绍等差数列求和公式:S = n/2 * (a1 + an),其中S为数列的和,n为项数,a1为首项,an为末项;3. 介绍等比数列求和公式:S = a1 * (1 - q^n) / (1 - q),其中S为数列的和,a1为首项,q为公比,n为项数;4. 通过例题讲解求和公式的运用。
三、课堂练习(15分钟)1. 布置练习题,让学生运用求和公式计算;2. 引导学生独立思考,解答问题;3. 挑选学生回答问题,并给予评价和指导。
四、拓展应用(15分钟)1. 引导学生思考实际问题,如计算一组连续自然数的和;2. 让学生运用求和公式解决实际问题,并解释结果的意义;3. 引导学生总结数列求和在实际生活中的应用。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结数列求和的概念和意义;2. 强调数列求和公式的运用和实际应用。
教学反思:本节课通过讲解数列求和的概念和公式,让学生掌握等差数列和等比数列的求和方法,并在实际问题中运用。
在教学过程中,要注意引导学生独立思考,培养学生的解题能力。
同时,通过拓展应用环节,让学生感受数列求和在实际生活中的意义,提高学生的学习兴趣。
《 数列求和》优秀教案
![《 数列求和》优秀教案](https://img.taocdn.com/s3/m/4e81b36171fe910ef02df8c8.png)
第4讲数列求和考纲要求:1熟练掌握等差、等比数列的前n项和公式2掌握非等差、等比数列求和的几种常见方法考点1公式法与分组求和法1公式法直接利用等差数列、等比数列的前n项和公式求和1等差数列的前n项和公式:S n=错误!=2等比数列的前n项和公式:S n=错误!2.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.考点2倒序相加法与并项求和法1.倒序相加法如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.2.并项求和法在一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=-1n fn类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=1002-992+982-972+…+22-12=100+99+98+97+…+2+1=5050考点3裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.考点4错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.经典习题:1 [课本改编]数列{1+2n-1}的前n项和为A 1+2nB 2+2nC n+2n-1D n+2+2n2 [课本改编]设函数f是一次函数,若f0=1,且f3是f1,f8的等比中项,则f2+f4+…+f2n 等于A n2n+3B n3n+4C 2n2n+3D 3nn+43 [2021·保定模拟]在10到2021之间,形如2n n∈N*的各数之和为A 1008B 2021C 2021D 20214 [2021·河南郑州市质量预测]在正项等比数列{a n}中,a1=1,前n项和为S n,且-a3,a2,a4成等差数列,则S7的值为A 125B 126C 127D 1285 [2021·金版创新]设直线n+n+1=错误!n∈N*与两坐标轴围成的三角形面积为S n,则S1+S2+…+S2021的值为A 错误!B 错误!C 错误!D 错误!。
数列求和公式教案
![数列求和公式教案](https://img.taocdn.com/s3/m/3b3b7411f11dc281e53a580216fc700aba685273.png)
数列求和公式教案教案标题:数列求和公式教案教案目标:1. 了解数列的概念和特点。
2. 掌握数列求和公式的推导和应用。
3. 培养学生的逻辑思维和数学推理能力。
教学重点:1. 数列求和公式的推导过程。
2. 数列求和公式的应用。
教学难点:1. 数列求和公式的推导过程。
2. 复杂数列求和公式的应用。
教学准备:1. 教师准备:白板、黑板笔、教材、多媒体课件。
2. 学生准备:课本、笔记工具。
教学过程:Step 1: 引入(5分钟)教师通过提问和示例引入数列的概念,引发学生对数列的兴趣,并与学生一起总结数列的特点。
Step 2: 数列求和公式的推导(15分钟)2.1 教师给出一些简单的数列,引导学生观察规律,并引导学生尝试推导数列求和公式。
2.2 教师给出数列求和公式的推导过程,逐步解释每个步骤的原因和意义。
2.3 学生进行小组合作,尝试推导其他数列的求和公式,并与全班分享他们的思路和答案。
Step 3: 数列求和公式的应用(20分钟)3.1 教师通过多个实际问题引导学生将数列求和公式应用于实际情境中。
3.2 学生进行个人或小组练习,解决与数列求和相关的问题。
3.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 4: 拓展与延伸(10分钟)4.1 教师提供一些复杂的数列求和问题,引导学生运用已学知识进行解决。
4.2 学生进行个人或小组探究,解决更具挑战性的数列求和问题。
4.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 5: 总结与评价(5分钟)教师与学生一起总结数列求和公式的推导过程和应用方法,并对学生的学习成果进行评价和反馈。
教学延伸:1. 学生可以尝试推导其他类型的数列求和公式,如等差数列、等比数列等。
2. 学生可以通过阅读相关数学文献或书籍,了解更多数列求和公式的应用领域。
教学资源:1. 教材:数学教材相关章节。
2. 多媒体课件:用于展示示例和推导过程等。
教学评价:1. 学生的课堂参与情况。
数列求和免费教案
![数列求和免费教案](https://img.taocdn.com/s3/m/7d13da1f302b3169a45177232f60ddccdb38e657.png)
数列求和免费教案教案标题:数列求和免费教案教学目标:1. 学生能够理解数列的概念和性质。
2. 学生能够应用递推公式求解数列的前n项和。
3. 学生能够解决实际问题中与数列求和相关的计算。
教学准备:1. 教师准备白板、黑板笔、教学投影仪等教学工具。
2. 学生准备纸和笔。
教学过程:步骤一:导入(5分钟)教师通过提问引导学生回顾数列的概念,并与学生一起讨论数列的应用领域,如金融、物理等。
步骤二:概念讲解(10分钟)教师通过示例和图示解释数列的递推公式和通项公式,并与学生一起探讨数列的性质,如等差数列和等比数列的特点。
步骤三:数列求和方法介绍(10分钟)教师向学生介绍数列求和的常用方法,包括等差数列求和公式和等比数列求和公式,并通过实例演示求解数列的前n项和。
步骤四:练习与讨论(15分钟)教师提供一些练习题,要求学生独立解答,并在解答完成后进行讨论和答疑。
教师可以选择一些实际问题,让学生应用数列求和的方法解决问题。
步骤五:拓展应用(10分钟)教师引导学生思考更复杂的数列求和问题,如求解部分项和、求解无穷级数等,并与学生一起探讨解决方法。
步骤六:总结与归纳(5分钟)教师与学生一起总结数列求和的方法和应用,并提醒学生在实际问题中灵活运用数列求和的知识。
步骤七:作业布置(5分钟)教师布置相关的作业,要求学生练习数列求和的应用,并在下节课前完成。
教学延伸:1. 学生可以通过编写程序来计算数列的前n项和,进一步巩固数列求和的概念和方法。
2. 学生可以研究更复杂的数列求和问题,如级数求和、递归数列求和等,拓展数列求和的应用领域。
教学评估:1. 教师通过课堂练习和讨论,观察学生对数列求和的理解和应用能力。
2. 教师可以布置作业来评估学生的数列求和能力,并及时给予反馈。
教学反思:教师可以根据学生的学习情况和反馈,调整教学方法和内容,以提高学生对数列求和的理解和应用能力。
《数列求和》教学设计
![《数列求和》教学设计](https://img.taocdn.com/s3/m/e2c7fe963086bceb19e8b8f67c1cfad6195fe912.png)
《数列求和》教学设计一、教学目标1.知识目标学生能够理解数列求和的基本概念,掌握常用的数列求和公式,能够熟练应用求和公式解决实际问题。
2.能力目标学生能够运用数学思维和方法,分析问题,提出合理的求和方法,并能灵活运用求和公式解决实际问题。
3.情感目标学生能够树立积极的学习态度,发现数列求和的有趣之处,提高数学思维能力和解决问题的能力。
二、教学重点和难点1.教学重点(1)数列求和的基本概念和常用的求和公式;(2)运用求和公式解决实际问题。
2.教学难点(1)问题分析和求解的过程;(2)运用数列求和解决实际问题。
三、教学过程设计1.导入新课(10分钟)(1)向学生提问:“在做加法运算的时候,我们经常会遇到从1开始的连续整数相加的问题,你们知道如何快速求和吗?”(2)引导学生思考,并提示“等差数列”的概念。
(3)分享一个有趣的问题:“小明和小红相约去打篮球,每天他们都会增加一个篮球的练习量,小明从第一天开始每天练习一个篮球,小红从第一天开始每天练习两个篮球,问他们练习30天后总共练习了多少个篮球?”(4)引导学生思考解决问题的方法。
2.板书设计(5分钟)根据导入新课的内容,板书“等差数列”和“数列求和”的概念。
3.概念讲解(20分钟)(1)对等差数列的概念进行详细讲解和举例。
(2)引入数列求和的概念,并通过具体的例子让学生理解求和的含义。
(3)介绍数学家高斯的求和故事,引出等差数列求和公式。
4.基本求和公式(20分钟)(1)教师讲解等差数列求和的基本公式S_n=(a_1+a_n)*n/2,并通过例题进行演练。
(2)介绍等差数列求和公式的推导过程,并通过几个简单例子进行说明。
5.应用题训练(25分钟)(1)学生分组进行应用题训练,训练内容包括常见的等差数列求和问题和实际生活中的应用问题。
(2)学生在小组内共同讨论,解决问题,并由小组代表上台分享解题思路和解题过程。
6.拓展练习(15分钟)(1)给出一些拓展练习,要求学生在规定时间内完成,并进行答案的交流和讨论。
数列求和的七种方法|数列求和教案
![数列求和的七种方法|数列求和教案](https://img.taocdn.com/s3/m/47267d2102d276a200292eb0.png)
数列求和是知识掌握的重点,下面是为大家带来的数列求和教案,希望能帮助到大家!数列求和教案篇一汉滨高中李安锋教学目标:知识目标①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。
能力目标培养学生用联系和变化的观点,结合转化的思想来分析问题和解决问题的能力。
情感目标培养学生用数学的观点看问题,从而帮助他们用科学的态度认识世界. 教学重点与难点教学重点等差等比数列求和及特殊数列求和的常用方法教学难点分析具体数列的求和方法及实际求解过程.教学方法、手段通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析与解决问题的能力,借助幻灯片辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围. 学法指导为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法(1)自主性学习法,(2)探究性学习法,(3)巩固反馈法,教学过程(一)情景导入复习回顾:等差数列和等比数列的前n项和公式?n(a1?an)n(n?1)?na1?d 等差数列求和公式Sn?22(q?1)?na1? 等比数列求和公式Sna1(1?qn)a1?anq ?(q?1)?1?q?1?q 教师引导学生回忆数列几种常见的求和方法?①公式法②分组求和法③裂项相消法④错位相减法(充分发挥学生学习的能动性,以学生为主体,展开课堂教学)(二)自学指导若已知一个数列的通项,如何对其前n项求和?①an?3n ②an?3n?2n?1 ③an?n(n?1)④an?1 ⑤an?n?3n n(n?1)(通过学生对几种常见的求和方法的归纳、总结,结合具体的实例、简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系)巩固检测题(1) a?a2?a3?an?________(2) 1+3+5+?+(2n+1)=(3)12?22?32n2?(复习等差与等比数列的求和公式:(1)中易忘讨论公比是否为1(2)中易错项数(3)与(4)是为用公式法求和作铺垫.)(三)例题展示例设Sn=1-3+5-7+9++101 求Sn分析: 拆并项求和思路? Sn=(1-3)+(5-7)+(9-11)+(97-99)+101=?Sn=1+(-3+5)+(-7+9)+(-11+13)+(-99+101)=? Sn=(1+5++101)-(3+7++99)=意图通过一题多解,开阔学生的思维.,分析①②③培养学生的拆项求和与并项求和的意识, 比较分析①②思考应留下。
高中数学数列的求和教案
![高中数学数列的求和教案](https://img.taocdn.com/s3/m/eccb749c77eeaeaad1f34693daef5ef7ba0d12d4.png)
高中数学数列的求和教案
一、教学目标
1. 知识与技能:了解数列的基本概念与性质,掌握等差数列、等比数列的求和公式,能够熟练计算数列的和。
2. 过程与方法:通过理论学习和实际练习,培养学生的数学思维能力和解决问题的方法。
3. 情感态度:培养学生对数学的兴趣,激发学生学习数学的积极性。
二、教学重点和难点
1. 等差数列、等比数列的求和公式的掌握和应用。
2. 解题方法的灵活应用和实际问题的转化。
三、教学内容
1. 数列的基本概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
四、教学过程
1. 导入:通过提出一个生活中的实际问题,引出数列的概念和重要性。
2. 讲解:介绍数列的基本概念和性质,重点讲解等差数列、等比数列的求和公式。
3. 实例讲解:通过几个具体的例题,讲解如何应用求和公式计算数列的和。
4. 练习:学生独立或分组完成一些练习题,巩固所学知识。
5. 拓展:带领学生思考更复杂的数列求和问题,引导学生拓展思维。
6. 讲评:对学生的练习情况进行总结和讲评,指导学生做好巩固练习。
五、板书设计
1. 数列的概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
六、教学反思
通过本节课的教学,学生能够较好地掌握数列求和的基本方法和技巧,但是在应用中还存在一定的困难,需要通过更多的实践和练习加以巩固。
下节课可以通过更复杂的案例实践来提高学生的解题能力。
第四节 数列求和 示范课教案
![第四节 数列求和 示范课教案](https://img.taocdn.com/s3/m/1c5046b46aec0975f46527d3240c844769eaa065.png)
数列求和教案【教学目标】1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列,非等比数列求和的几种常见方法.【教学重点】数列求和的几种常见方法【教学难点】非等差数列,非等比数列求和的转化【教学过程】一、知识梳理1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、诊断自测1.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n3572.,9,25,.41.48.49 D.56n n s s s s A B C ===已知等差数列的前项和为若则3.设数列{a n }的前n 项和为S n ,若a n =1n +1+n ,则S 99=() A.7 B.8 C.9 D.104.数列112,314,518,7116,……的前n 项和S n 的值等于( )A.n 2+1-12n B.2n 2-n +1-12n C.n 2+1-12n -1 D.n 2-n +1-12n三、典型例题分析例1.已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n 4(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =4n a n 2n +1,求数列{b n b n +1}的前n 项和T n .例2【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n nb a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.四、课堂小结通过这节课的学习,你有什么收获?。
数列求和优质课教案
![数列求和优质课教案](https://img.taocdn.com/s3/m/dbc40a176edb6f1aff001ffe.png)
数列求和教学目标: 让学生回顾数列基本知识点;让学生能够掌握数列的求和的几种基本方法;锻炼学生的自我思考能力。
教学重难点:对题意的分析以及方法的选择。
学法指导:示范,探究教学过程:※课标展示,强调本节内容及重点一、 回顾数列求和的方法:学生活动:请学生做总结,不全的由其他同学做补充。
通过课件总结方法:1、 公式法2、 分组求和法3、 裂项法4、 错位相加法5、 倒叙相加法二、 互动探究1、(2010重庆)、已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T . 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
2、(2010山东) 已知等差数列{}n a 满足:3577,26a a a =+=.{}n a 的前n 项和为n S 。
(Ⅰ)求n a 及n S ; (Ⅱ)令21()1n n b n N a +=∈-,求数列{}n a 的前n 项和T n . 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
3 学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
4学生活动:学生小组讨论后,由学生对本题题意及解题方法进行讲解,然后由其他组同学进行补充或者更正。
教师活动:通过课件展示整个解题过程,1、点出学生方法中的不足2、强调步骤的严密性3、对例题做出点评。
数列求和优秀教案
![数列求和优秀教案](https://img.taocdn.com/s3/m/431fad1ea216147917112828.png)
题组教学:“探索—研究—综合运用”模式——“数列的裂差消项求和法解题课”教学设计【课例解析】1 教材的地位和作用本节课是人教A版《数学(必修5)》第2章数列学完基础知识后的一节针对数列求和方法的解题课。
通过本节课的教学让学生感受裂差消项求和法在数列求和中的魅力,体会裂项相消的作用,达到提高学生运用裂项相消求和的能力,并把培养学生的建构意识和合作,探索意识作为教学目标。
2 学情分析在此之前,学生学习了数列的一般概念,又对等差、等比数列从定义、通项、性质、求和等方面进行了深入的研究。
在研究过程中,数列求和问题重点学习了通过转化为等差、等比数列求和的方法,在推导等差、等比数列求和公式时用到了错位相减法、倒序相加法和裂差消项求和法,本节课在此基础上进一步对裂差消项求和法做深入的研究。
本节课的内容和方法正处于学生的认知水平和知识结构的最近发展区,学生能较好的完成本节课的教学任务。
【方法阐释】本节课的教学采用心智数学教育方式之“题组教学”模式,分为“创设情景、导入新课,题组探索、自主探究,题组研究、汇报交流,题组综合、巩固提高,归纳总结、提升拓展”五个教学环节.本节课从学生在等比数列求和公式推导过程中用到的裂差消项求和法引入,从课本习题的探究入手展开教学,学生能自主发现裂差消项求和法,并很快进入深层次思维状态。
接下来的研究性题组和综合性题组又从更深更广的层面加强裂差消项求和法的应用。
【目标定位】1 知识与技能目标掌握裂项相消法解决数列求和问题的基本思路、方法和适用范围。
进一步熟悉数列求和的不同呈现形式及解决策略。
2 过程与方法目标经历数列裂差消项求和法的探究过程、深化过程和推广过程。
培养学生发现问题、分析问题和解决问题的能力。
体会知识的发生、发展过程,培养学生的学习能力。
3 情感与价值观目标通过数列裂差消项求和法的推广应用,使学生认识到在学习过程中的一切发现、发明,一切好的想法和念头都可以发扬光大。
激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。
《数列求和》教学设计
![《数列求和》教学设计](https://img.taocdn.com/s3/m/3db8cc05abea998fcc22bcd126fff705cc175cda.png)
第四章数列《数列求和》教学设计1.理解一些常见数列的求和方法.2.会求一些常见数列的前n项和.教学重点:常见数列的求和方法.教学难点:错位相减法求一类数列的和.PPT课件.【新课导入】问题1:等差数列的前n项和公式是什么?设计意图:通过回顾等差数列的前n项和公式,温故知新.问题2:等比数列的前n项和公式是什么?师生活动:学生回顾公式并回答.预设的答案:设计意图:通过回顾公式,引入新课.问题3:如果一个数列既不是等差数列也不是等比数列,如何求它的前n项和呢?常见数列的求和方法有哪些?设计意图:通过该问题,引起学生思考既不是等差数列也不是等比数列的特殊数列求和.【探究新知】知识点一 错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.知识点二 裂项相消法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.知识点三 分组求和法对于求数列的和,其中为等差或等比数列,可考虑用拆项分组法求和.知识点四 倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.知识点五 并项求和法奇偶并项求和的基本思路:有些数列单独看求和困难,但相邻项结合后会变成熟悉的等差数列、等比数列求和.但当求前n 项和而n 是奇数还是偶数不确定时,往往需要讨论. 并项求和一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类型,可采用两项合并求解.【巩固练习】例1 已知数列{a n }的通项公式为a n =(3n +2)·2n ,求该数列前n 项和S n . 师生活动:学生分组讨论,教师讲解. 预设的答案:S n =5×2+8×22+11×23+14×24+…+(3n -1)·2n -1+(3n +2)·2n ……① 2S n =5×22+8×23+11×24+14×25+…+(3n -1)·2n +(3n +2)·2n +1……② ①-②得:-S n =5×2+3×22+3×23+3×24+…+3·2n -1+3·2n -(3n +2)·2n +1 =10+3(22+23+24+…+2n -1+2n )-(3n +2)·2n +1=10+3(2n +1-4)-(3n +2)·2n +1q {}n n a b ±{}{},n n a b 1()n a a +(1)()nn a f n =-=3·2n +1-(3n +2)·2n +1-2 =(1-3n )·2n +1-2故S n =(3n -1)·2n +1+2. 设计意图:通过该题让学生理解乘公比错位相减法的应用及步骤.发展学生数学抽象、数学运算、数学建模的核心素养.易错点剖析:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)两式相减时最后一项因为没有对应项不要忘记变号;(4)对相减后的和式的结构要认识清楚,中间是n -1项的和;(5)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.例2 已知等差数列为递增数列,且满足,.(1)求数列的通项公式; (2)令,为数列的前n 项和,求.师生活动:学生分析题意,完成(1);师生一起完成(2).预设的答案:(1)由题意知,或为递增数列,,故数列的通项公式为(2). 设计意图:通过该题让学生理解裂项相消法的应用及相消规则.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:等差数列中相邻两项积的倒数构成的数列求和用裂项相消法;常见的通项分解(裂项)有: (1) [一般] {}n a 12a =222435a a a +={}n a *1()(1)(1)n n n b n N a a =∈+-n S {}n b n S 222(22)(23)(24)d d d +++=+23440d d ∴--=2d ∴=23d =-{}n a 2d ∴={}n a 2.n a n =1111()(21)(21)22121n b n n n n ==-+--+11111111[(1)()()...()]2335572121n S n n ∴=-+-+-++--+11(1)221n =-+21nn =+111(1)1n a n n n n ==-++1111()()n a n n k k n n k==-++(2)(3) (4)(5)例3 求和:.师生活动:学生分组讨论,派代表发言;教师完善.预设的答案:原式. 设计意图:通过该问题让学生理解分组求和法,让学生会求一类可转化为等差数列和等比数列的求和的数列求和问题.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和.例4求和 师生活动:学生独立完成,教师完善.预设的答案:设 ①②①+②得,所以.设计意图:通过该题让学生理解倒序相加法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:如果一个数列距离首末两项的和相等,就可以采用倒序相加法. 例5求和12-22+32-42+…+992-1002.师生活动:学生分组讨论,派代表板演,教师完善.预设的答案:12-22+32-42+…+992-1002=(12-22)+(32-42)+…+(992-1002)1111()(21)(21)22121n n n n =--+-+2(2)1111()(21)(21)22121n n a n n n n ==+--+-+1111[](1)(2)2(1)(1)(2)n a n n n n n n n ==--++++n a ==()()()12235435235n n ----⨯+-⨯+⋅⋅⋅+-⨯()()122462353535n n ---=+++⋅⋅⋅+-⨯+⨯+⋅⋅⋅+⨯()()()1215152233152154nn n n nn -----+=-⨯=+---︒++︒+︒+︒89sin 3sin 2sin 1sin 2222 ︒++︒+︒+︒=89sin 3sin 2sin 1sin 2222T ︒++︒+︒+︒=1sin 87sin 88sin 89sin 2222 T ︒++︒+︒+︒=89cos 3cos 2cos 1cos 2222 T 289T =44.5T ==(1-2)(1+2)+(3-4)(3+4)+…+(99-100)(99+100)=-(1+2+3+4+…+99+100)=-5 050.设计意图:通过该题让学生理解并项求和法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:通常数列中的项是正负交替或奇偶项各有规律的,往往采用并项求和法.【课堂总结】1.板书设计:2.总结概括:师生活动:学生总结,老师适当补充.设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力.3.课堂作业:目标检测题【目标检测设计】 1.已知若等比数列满足则( )A .B .1010C .2019D .2020 设计意图:进一步巩固错位相减法.本题综合考查函数与数列相关性质,需要发现题中所给条件蕴含的倒数关系,寻找规律进而求出答案. 2.求数列的前n 项和. 设计意图:进一步巩固错位相减法.该数列为两个数列的积,其中为等差数列,为等比数列,故可考虑用错位相减法求和. 3.求数列前n 项的和.设计意图:让学生进一步巩固裂项相消法. 参考答案: 1.D等比数列满足即2020故选D. 2.①, ②, 22()(),1f x x x=∈+R {}n a 120201,a a =122020()()()f a f a f a +++=201922n n ⎧⎫⎨⎬⎩⎭n S {}n 12n ⎧⎫⎨⎬⎩⎭()()32121n n ⎧⎫⎪⎪⎨⎬-+⎪⎪⎩⎭22()(),1f x x x =∈+R 22222122()11122211f x f x x x x x x⎛⎫∴+=+ ⎪+⎝⎭⎛⎫+ ⎪⎝⎭=+=++{}n a 120201,a a =120202019220201...1,a a a a a a ∴====()()()()()()120202019202012...2f a f a f a f a f a f a ∴+=+==+=122020()()()f a f a f a +++=231123122222n n n n n S --=+++⋅⋅⋅++234111*********n n n n nS +-=+++⋅⋅⋅++①-②得, . 3.∵, .23411111112222222n n n n S +=++++⋅⋅⋅+-1111221212n n n +⎛⎫- ⎪⎝⎭=--111,22n n n +=--11222n n nnS -∴=--()()3311212122121n a n n n n ⎛⎫==-⎪-+-+⎝⎭3111111131311233557212122121n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦。
高中数学数列求和教案模板
![高中数学数列求和教案模板](https://img.taocdn.com/s3/m/d2ece2b8bb0d4a7302768e9951e79b8968026803.png)
高中数学数列求和教案模板
一、教学目标:
1. 知识与技能:掌握数列求和的基本方法,能够运用公式求解数列求和问题。
2. 过程与方法:培养学生分析问题、归纳规律和运用公式求解问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生坚持不懈、勇于探索的学习态度。
二、教学重点和难点:
1. 掌握等差数列求和公式和等比数列求和公式。
2. 解决实际问题中的数列求和问题。
三、教学过程:
1. 导入:通过一个生活中的实际问题引入数列求和的概念,引起学生兴趣。
2. 提出问题:给学生几道数列求和的练习题,让学生自己尝试解答。
3. 教学讲解:介绍等差数列求和公式和等比数列求和公式,讲解求解数列求和的基本方法。
4. 拓展练习:让学生做一些更复杂的数列求和题,巩固所学知识。
5. 实际应用:引导学生应用所学知识解决实际问题,提高学生的综合应用能力。
6. 总结:对本堂课所学内容进行总结,巩固学生的学习成果。
四、课堂作业:
1. 完成课堂练习题。
2. 设计一个与生活相关的数列求和问题,并用公式解决。
五、教学反思:
1. 教学过程中是否引入了生活实例,激发了学生的学习兴趣?
2. 是否根据学生的实际情况,调整了教学内容和难度?
3. 学生能否掌握数列求和的基本方法和公式,是否能够独立解决数列求和问题?
六、板书设计:
1. 等差数列求和公式:Sn = n(a1 + an)/2
2. 等比数列求和公式:Sn = a1(1-q^n)/(1-q)
七、教学反馈:
通过课堂练习和作业的批改,及时了解学生对数列求和知识的掌握情况,做好巩固和拓展工作。
数列求和教案
![数列求和教案](https://img.taocdn.com/s3/m/df47fcd7541810a6f524ccbff121dd36a32dc4d6.png)
数列求和教案教案标题:数列求和教案教案目标:1. 理解数列的概念和性质。
2. 掌握数列求和的方法和技巧。
3. 运用数列求和的知识解决问题。
教案步骤:1. 引入数列的概念和性质a. 使用具体生活例子引起学生对数列的兴趣,如斐波那契数列、等差数列等。
b. 解释数列的定义:数列是按照一定规律排列的数字的集合。
c. 解释数列的基本性质,如公差、首项、通项公式等。
2. 解决等差数列求和的问题a. 解释等差数列的概念和性质,包括公差和通项公式。
b. 引导学生理解等差数列求和公式的推导过程。
c. 给予学生一些具体的等差数列求和问题,并引导他们运用所学的知识解决问题。
3. 解决等比数列求和的问题a. 解释等比数列的概念和性质,包括公比和通项公式。
b. 引导学生理解等比数列求和公式的推导过程。
c. 给予学生一些具体的等比数列求和问题,并引导他们运用所学的知识解决问题。
4. 解决其他类型数列求和的问题a. 引导学生思考其他类型数列的求和方法,如斐波那契数列、等差数列的和等。
b. 给予学生一些具体的其他类型数列求和问题,并引导他们找到解决问题的方法和技巧。
5. 总结和拓展a. 总结数列求和的基本方法和技巧。
b. 提供更多的数列求和问题,让学生加深对所学知识的理解和运用。
c. 鼓励学生在课后拓展数列求和的应用,如数学竞赛等。
扩展练习:1. 对于等差数列 {3, 7, 11, 15, ...},求前10项的和。
2. 对于等比数列 {2, 4, 8, 16, ...},求前5项的和。
3. 对于斐波那契数列 {1, 1, 2, 3, 5, ...},求前8项的和。
评估方式:1. 在课堂上布置练习题,检查学生对数列求和的理解和运用能力。
2. 考察学生解决数列求和问题的思路和方法。
3. 鼓励学生在课后通过编写文章或讲解视频来展示对数列求和知识的理解深度。
教案提供的专业指导将帮助教师详细规划教学内容和步骤,确保学生能够深入理解数列求和的概念和运用方法。
高中数学数列求和的教案
![高中数学数列求和的教案](https://img.taocdn.com/s3/m/e292cdb1900ef12d2af90242a8956bec0975a531.png)
高中数学数列求和的教案
教学目标:学生能够理解数列的概念,能够通过已知数列的通项公式求和,并能够通过数列的性质推导出求和公式。
教学重点和难点:数列的求和公式的推导及应用。
教学准备:
1. 知识点讲解:数列、等差数列、等比数列、通项公式、求和公式。
2. 教学工具:黑板、彩色粉笔、课件、习题。
教学步骤:
Step 1:引入
通过引入一个简单的数列例子开始本节课的教学,让学生理解数列的概念和特点。
Step 2:等差数列求和公式的推导及应用
1. 讲解等差数列的性质和通项公式,引导学生通过对数列进行分组求和,推导等差数列求和的公式。
2. 给出练习题让学生尝试应用等差数列求和公式进行计算。
Step 3:等比数列求和公式的推导及应用
1. 讲解等比数列的性质和通项公式,引导学生通过求和两个等比数列的公式,推导等比数列求和的公式。
2. 给出练习题让学生尝试应用等比数列求和公式进行计算。
Step 4:总结与拓展
1. 总结本节课所学内容,强化数列的概念和求和公式的应用。
2. 给出拓展练习题,加深学生对数列求和公式的理解和应用能力。
Step 5:作业布置
布置作业,要求学生完成相关练习题并检查答案。
教学反馈:通过课堂练习和作业检查,检查学生对数列求和公式的掌握情况并及时进行反馈。
教学延伸:引导学生进一步理解数列的性质和应用,拓展更多数列求和的相关知识。
教学评价:通过课堂教学和作业完成情况评估学生对数列求和公式的掌握情况,及时调整教学方法和内容,帮助学生提高数学能力。
高中数学数列求和方法教案
![高中数学数列求和方法教案](https://img.taocdn.com/s3/m/f1454699185f312b3169a45177232f60ddcce7f8.png)
高中数学数列求和方法教案
目标:学生能够熟练掌握数列求和的基本方法并应用于实际问题中。
教学内容:
1. 数列的概念及常见数列的表示方法
2. 等差数列求和公式的推导及应用
3. 等比数列求和公式的推导及应用
4. 各种数列求和的实际应用问题解题
教学步骤:
1. 引入问题:通过展示一段数列并让学生猜测下一个数的规律,引出数列求和的概念。
2. 探究数列求和方法:介绍等差数列和等比数列的定义,推导相应的求和公式并演示应用。
3. 练习:让学生通过练习题巩固所学知识,强化数列求和的运算技巧。
4. 实际应用:设计几个实际问题,让学生运用所学方法解决数列求和问题。
5. 总结:总结本节课学习的内容,强调数列求和方法的重要性和实际应用。
教学资源:教材、练习题、黑板、彩色粉笔
评估方式:开展小测验或出一些综合性问题让学生自主解答,检测他们对数列求和方法的
掌握程度。
拓展延伸:让学生自行搜索一些其他类型的数列求和方法,并进行分享,拓展学生的数学
思维。
教学反思:及时寻找学生在数列求和方法中的困难点并进行讲解,促进学生的学习效果。
注:本教案仅作参考,教师可根据实际情况灵活调整教学内容和步骤。
高中数学《数列求和方法》公开课优秀教学设计
![高中数学《数列求和方法》公开课优秀教学设计](https://img.taocdn.com/s3/m/6d84a56331b765ce050814aa.png)
教学设计数列求和方法3——错位相减一.教学内容分析本节内容是《普通高中课程标准实验教科书数学》人教A版必修5第二章中,学生在学习了等差数列和等比数列的通项公式以及前n项和公式的基础上,学习了求和方法:公式法、分组求和法之后的第3种求和方法,主要体现数学中的转化思想。
即将不能直接求和的问题通过错位相减,转化为能用等比求和的问题。
重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n 项和。
难点:错位相减后的项数、符号问题,以及对转化数学思想的理解。
二.教学目标分析1.知识与技能:会用错位相减求通项为等差数列与等比数列对应项乘积的数列前n项和。
2.过程与方法:通过两等式错位相减,将不能求和的问题转化成能用等比数列求和的问题,在探究的过程中让学生体会数学的转化思想。
3.情感、态度与价值观:在问题导练的过程中,培养学生的探究能力、化归能力、运算能力。
三.学情分析本节课之前学生已经学习了等差和等比数列前n项和公式,数列求和方法:公式法、分组求和法,在推导等比数列前n项和公式时,错位相减法已经使用过,本节课需要再次阅读课本,探究方法,通过学生自己的努力学会错位相减的流程,但是错位相减的目的、错位相减后的项数及符号需要在学生尝试练习、巩固练习之后通过老师的引导、点评才能理解掌握。
同时转化的数学思想更需要在老师的启发中得以理解。
四.教学策略分析数列求和方法3---错位相减,需要学生在不断的尝试练习、巩固练习中得到掌握,此方法在等比数列前n项和公式推导过程中已经运用过,按照知识的发生、发展过程和学生的思维规律,本节课首先给出用公式法和分组求和法能够解决的两道练习题,对前一节内容进行复习,然后对第一道练习题目进行变式,设置障碍,创设情境,把学生的注意力引到再读课本,探究方法,引出课题,再次尝试,提炼方法,限时训练,互命试题,让学生在层层练习中掌握方法,整个设计过程中学生是学习的主体,老师仅仅是帮助者、服务者,这样设计重视了新旧知识实质性联系,让重点知识和重要数学思想方法得到螺旋式巩固和提高。
数列求和问题教案
![数列求和问题教案](https://img.taocdn.com/s3/m/a7727c3b55270722192ef7a1.png)
数列求和问题·教案教学目标1.初步掌握一些特殊数列求其前n项和的常用方法.2.通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,以及转化的数学思想.教学重点与难点重点:把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和.难点:寻找适当的变换方法,达到化归的目的.教学过程设计(一)复习引入师:等差数列和等比数列既是最基本的数列又是最重要的数列.我们已经推出了求其前n项和的公式,公式分别是什么?师:我们学习新知识不仅要记住其结论,正确地运用它解决问题,而且要善于在学习新知识的过程中体会研究问题的方法,逐渐地学会思考、学会学习.(不失时机地对学生进行学法指导非常必要)回忆一下推导这两个公式的方法,你有什么收获?(留给学生回忆及思考的时间)生甲:推导等差数列前n项和公式所用的方法是:先把S n中各项“正着”写出来,再把S n中各项次序反过来写出,两式相加.由于对应项和都为(a1+a n),所以2S n=n(a1+a n),进而求出S n.师:推导方法是将要解决的问题通过“逆序相加”的方法转化为我们熟悉的常数列求和问题.(渗透转化的思想)生乙:推导等比数列前n项和所用的方法是:将S n的各项依次写出,再把这个式子的两边同时乘以q,然后两式“错项相减”,相减后等号右边只剩下两项,进而求得S n.师:解决此问题需要同学们有敏锐的观察能力.把S n=a1+a1q+…+a1q n-2+a1q n-2的两边分别乘以公比q,就得到各项后面相邻的一项,因而用“错项相减”的方法就可以消去相同的项.以上两种求和的思路在解决某些特殊数列求和问题时经常用到.这节课我们就来研究既非等差数列又非等比数列的一些特殊数列的求和问题.(板书课题)(二)新课例1 求分母为3,包含在正整数m与n(m<n)之间的所有不可约的分数之和.师:分母为3,包含在正整数m与n之间的所有不可约分数有哪些?师:本题实质上让我们解决什么问题?生:求由这些分数构成的数列的各项和.此数列是我们熟悉的等差数列或等比数列吗?(稍微停顿)都不是.请同学们观察此数列有什么特点,可用什么方法求和?生甲:此数列的第一项与最后一项的和是m+n,第二项与倒数第二项的和也是m+n,依此类推.根据此数列的特点,可以用刚才复习过的“逆序相加法”求和.(学生叙述解法一,教师板书)解法1:将上式各项次序反过来写出:两式相加得所以S=(m+n)(n-m)=n2-m2生乙:我观察此数列的所有奇数项组成公差为1的等差数列,所有偶数项也组成公差为1的等差数列,它们分别都有(n-m)项.可以转化成等差数列求和问题.(学生叙述解法2,教师板书)解法2:师:解法2是将原数列的各项重新组合,使它转化为等差数列求和(学生进一步体会)师:无论是“逆序相加法”还是“分组求和法”都是通过适当的变换把某些既非等差数列又非等比数列的特殊数列转化为等差或等比数列的求和问题.看下面数列又怎样转化呢?例2 求数列1,3a,5a2,7a3,…(2n-1)a n-1,…(a≠1)的前n项和.师:我们还是从观察数列特点入手.此数列各项有何特点?生:此数列每一项中的字母部分a0,a1,a2,…,a n-1构成以a为公比的等比数列,每一项中的系数部分1,3,5,…,(2n-1)构成以2为公差的等差数列.师:我们不妨把这种数列称为“差比数列”{c n},c n=a n·b n,其中{a n}为等差数列,{b n}为等比数列.联想我们曾遇到过的数列,有没有“差比数列”呢?生:任何一个等比数列都是特殊的差比数列.师:等比数列求和公式是怎样推导的?生:用错项相减法.师:假如我们也使用错项相减法,把S n=1+3a+5a2+7a3+…+(2n-1)a n-1的两边也同时乘以公比a,却不得各项后面相邻的一项,两式错项相减,并未达到消去绝大部分项的目的.用此法还行吗?生:虽然没消去绝大部分项,却把问题转化成为一个等比数列求和问题.(学生叙述,教师板书)解:因S n=1+3a+2a2+7a3+…+(2n-1)a n-1,(1)(1)×a得aS n=a+3a2+5a3+…(2n-3)a n-1+(2n-1)a n.两式相减得(1-a)S n=1+2a+2a2+2a3+…+2a n-1-(2n-1)a n=2(1+a+a2+a3+…+a n-1)-(2n-1)a n-1师:让我们来回顾一下,错项相减后的式子中只留下第一项和最后一项,其它各项构成等比数列,把未知问题转化成已知的等比数列求和问题.由解题过程可见,此方法可解决哪类数列的求和问题?生:错项相减法可解决差比数列求和问题.师:也就是说,可解决这类数列{c n}的求和问题,c n=a n·b n,其中{a n}为等差数列,{b n}为等比数列.例如求数列{2n-1}×0.1n}的前n项和,你能解决此问题吗?(学生进一步体会)师:这是一个通项是分数形式的数列,分母是相邻两个自然数的积,且相邻两项的分母中有相同因数.(稍微停顿)既然有相同的成分,那么我们能否消去它们,促成求和呢?(留给学生思考的时间)师:正像前面我们推导等差数列通项公式使用叠加法.(板书)a2-a1=da3-a2=da4-a3=d……a n-1-a n-2=da n-a n-1=d.将上面n-1个式子的等号两边分别相加得到a n-a1=(n-1)d,消去了绝大部分的项,只留下了第一项a1和最后一项a n.对于这个题目,同学们能否类似地实现求和呢?(让学生学会类比的思维方法)(学生讨论)生:要达到消去的目的,必须出现差的形式.观察数列的第一项可(学生叙述,教师板书)师:这位同学的解法非常漂亮.他把通项是分数形式的数列的每一项,分裂成两个分数之差,这些分数的和,除首末两项(有时也可能是首末若干项)外,其余各项前后抵消,实现了求和.我们把这种方法叫做裂项求和法.这种方法,在解决通项是分数形式的数列求和问题时经常用到.下面请看第(2)小题.(学生先练习,然后师生共同讨论)师:这个数列有何特点?考虑用什么方法求和?生:这个数列中的每一项都有规律的分数形式,不妨试试裂项求和法解题.师:怎样裂项?师:先从通项入手进行分析,具有一般性,很好.分析裂项时,需师:由(*)式的变形过程可知4是由(4k-3)-(4k+1)得来的.观察数列1,5,9,13,…,4n-3,…是什么数列?生:公差为4的等差数列.生:凑的系数恰为数列1,5,9,…,4n-3,…的公差的倒数.师:能不能推广成更具一般性的结论?(学生讨论)生:如果{a n}为等差数列,d为公差,则师:这样就全面了.同学们得出具有共性的结论.我们要善于解题后回顾与反思,多题归一.当然,有的不具有此规律的分数数列裂项并师:怎样求得A,B,C?生:可用待定系数法.师:课后同学们可继续探讨.例4 求和S n=13+23+33+…+n3(n∈N+).(学生议论)师:同学们还记得S n=1+3+5+…+(2n-1)=n2可用哪个图形表示出来吗?(学生甲在黑板上画出图形,如图6-2)师:对于S n=13+23+33+…+n3(n∈N+)同学们能否类似地用一图形表示并猜想其结果?(学生讨论,教师用实物投影展示学生乙的图形,图6-3)生乙:我也用一个正方形表示,左下角的第一格表示13,左下角除表示13的方格外的8个格表示23,左下角除表示13和23以外的27个格表示33,以此类推.前n个自然数的立方和S n为正方形中所有方格个数之和(1+2+3+…+n)2师:同学们借助几何图形及其性质,使问题变得直观、简单,猜想除了猜想一证明的方法外,还有没有其它方法?(稍微停顿)想想前n个自然数的平方和是怎样求出来的?生:用构造法.利用构造的恒等式(k+1)3-k3=3k2+3k+1(k∈N+)实现求和.师:对.当k取1,2,…,n时,得到n个恒等式,把这个n个恒等式两边分别相加,由于左边是两个连续自然数的立方差,叠加后式子左边消去了除(n+1)3与13以外的所有项,右边留下了我们需要的S n与可解决的自然数和以及n个常数1之和.构造恒等式的目的是为了把前n个自然数的平方和问题转化为前n个自然数和的问题.那么,对于前n个自然数的立方和问题又怎样转化呢?生:构造恒等式(k+1)4-k4=4k3+6k2+4k+1(k∈N+),当k取1,2,…,n 时,把n个式子叠加,使问题转化为前n个自然数的平方和与前n个自然数和的问题.师:很好.请同学们课后完成.我们把公式叫做自然数的方幂和公式.利用公式,我们又可以解决一类数列求和问题.例5 求和S n=1×2×3+2×3×4+…n(n+1)(n+2).师:利用公式(1),(2),(3)可解决自然数的方幂和问题,对于各项为n个数的积的形式的数列怎样能实现求和?生:先分析数列的通项,最好是化为n个数的和或差的形式.(学生叙述,教师板书)例因为n(n+1)(n+2)=n3+3n2+2n,则S n=13+3×12+2×1+23+3×22+2×2+…n3+3n2+2n=(13+23…+n3)+3(12+22+…+n2)+2(1+2+…+n)师:请同学们归纳一下,利用公式(1),(2),(3)可解决哪类数列求和问题?生:如果数列{a n}的通项是关于n的多项式或通项可以转化为关于n的多项式就可以利用公式求数列的前n项的和.(三)小结师:数列求和是一个很有趣的问题.最基本的方法是:对于等差数列或等比数列求其前n项和,直接用前n项和公式求得,我们把这种方法叫做直接法.除直接法外,我们还应总结求一些特殊数列前n项和的间接方法.能举例吗?生:如这节课使用的逆序相加法,分组求和法,错项相减法,构造法等.师:使用这些具体方法的指导思想是什么?生:利用转化的思想,把一些既非等差数列又非等比数列的数列求和转化为等差数列或等比数列求和.师:我们可以把这些具体方法归纳为第一种间接求和法——转化求和法.也就是通过适当的变换,化归成等差数列或等比数列求和.还有什么方法?生:裂项求和法.师:如果一个数列的每一项都能排成两项之差,在求和中,一般除首末两项(也可能是首末若干项)外,其余各项先后抵消,那么这个数列前n项和就容易求出来了.在解决分数数列的求和问题时经常用到.师:我们把它归纳为第二种间接求和法——裂项求和法.还有其他方法吗?生:利用自然数的方幂和公式求和.师:对于通项是关于n的多项式或可化为关于n的多项式的数列可利用此公式求和.我们把它归纳为第三种间接求和法——利用自然数的方幂和公式求和.当然,对于某些数列的求和还可以用归纳-猜想-证明的方法,今后同学们可继续讨论.(四)布置作业A组(A组题检查教学目标是否达到,要求学生独立完成)B组(B组题供学有余力的学生使用)课堂教学设计说明在教学过程中,教师对学生进行必要的学法指导,使学生由“学会”到“会学”是课堂教学中实施素质教育的重要手段.这节课一开始的复习,不仅仅是复习旧知识,而且复习研究问题的方法,由此引入新课,让学生体会怎样学习.在学习裂项求和法时,用推导等差数列通项公式使用的叠加法与要解决的问题进行类比,引导学生发现解决新问题的办法,让学生体会类比的思维方法.在解完例3之后,教师引导学生把结论推广到一般情况,进行例题后的回顾与反思,让学生体验如何加强知识之间的联系,使认识不断升华.利用课堂小结将学生零散的知识系统化,并纳入到自己的认知结构中,与此同时,也培养了学生养成善于总结的良好学习习惯.总之,课堂教学中不失时机地对学生进行必要的学习方法指导,让学生学习“怎样思考”、“怎样学习”其意义远比学会知识本身深远得多.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题组教学:“探索—研究—综合运用”模式——“数列的裂差消项求和法解题课”教学设计【课例解析】1 教材的地位和作用本节课是人教A版《数学(必修5)》第2章数列学完基础知识后的一节针对数列求和方法的解题课。
通过本节课的教学让学生感受裂差消项求和法在数列求和中的魅力,体会裂项相消的作用,达到提高学生运用裂项相消求和的能力,并把培养学生的建构意识和合作,探索意识作为教学目标。
2 学情分析在此之前,学生学习了数列的一般概念,又对等差、等比数列从定义、通项、性质、求和等方面进行了深入的研究。
在研究过程中,数列求和问题重点学习了通过转化为等差、等比数列求和的方法,在推导等差、等比数列求和公式时用到了错位相减法、倒序相加法和裂差消项求和法,本节课在此基础上进一步对裂差消项求和法做深入的研究。
本节课的容和方处于学生的认知水平和知识结构的最近发展区,学生能较好的完成本节课的教学任务。
【方法阐释】本节课的教学采用心智数学教育方式之“题组教学”模式,分为“创设情景、导入新课,题组探索、自主探究,题组研究、汇报交流,题组综合、巩固提高,归纳总结、提升拓展”五个教学环节.本节课从学生在等比数列求和公式推导过程中用到的裂差消项求和法引入,从课本习题的探究入手展开教学,学生能自主发现裂差消项求和法,并很快进入深层次思维状态。
接下来的研究性题组和综合性题组又从更深更广的层面加强裂差消项求和法的应用。
【目标定位】1 知识与技能目标掌握裂项相消法解决数列求和问题的基本思路、方法和适用围。
进一步熟悉数列求和的不同呈现形式及解决策略。
2 过程与方法目标经历数列裂差消项求和法的探究过程、深化过程和推广过程。
培养学生发现问题、分析问题和解决问题的能力。
体会知识的发生、发展过程,培养学生的学习能力。
3 情感与价值观目标通过数列裂差消项求和法的推广应用,使学生认识到在学习过程中的一切发现、发明,一切好的想法和念头都可以发扬光大。
激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。
感悟数学的简洁美﹑对称美。
4教学的重点和难点本节课的教学重点为裂项相消求和的方法和形式。
能将一些特殊数列的求和问题转化为裂项相消求和问题。
本节课的教学难点为用裂项相消的思维过程,不同的数列采用不同的方法,运用转化与化归思想分析问题和解决问题。
【课堂设计】一、创设情景、导入新课教师:请同学们回忆一下,我们在推导数列求和公式时,先后发现了哪几种数列求和的方法?学生1:在等差数列求和公式的推导时我们用到了倒序相加法。
在等比数列求和公式的推导中我们发现了错位相减法、裂差消项求和法。
学生2:在学习求和过程中,我们还发现了分组求和法和通项转换法。
我的思考:在推导等比数列求和公式时,有的小组根据等比数列求和公式的形式,想到用裂差消项求和法。
这节课就是从学生的这种想法开始,使学生体会到自己的一个想法,再继续下去就能解决一类问题。
等比数列求和公式用裂差消项求和法证明如下:.1≠q Θ)11()11()11()11(111312121111qq a q q a q q a q q a q q a q q a q q a q a S nn n ---++---+---+---=∴-Λ =qq a q q a q a n n --=---1)1(11111 二、题组探索、自主探究教师:请同学们思考下列探索性题组中问题解法:出示探索性题组(多媒体投影)求和:1.)1n 1n 1)4131()3121()211(+-++-+-+-=(Λn s 2.()11541431321211+⨯++⨯+⨯+⨯+⨯=n n s n Λ 3.()12)12(1971751531311+⨯-++⨯+⨯+⨯+⨯=n n s n Λ 4.()23)13(11181851521+⨯-++⨯+⨯+⨯=n n s n Λ 学生独立思考后,各小组讨论交流各自的想法,各小组选派代表在全班交流。
学生3;第一题去掉括号后,除第一项和最后一项外,其余各项都能消去。
1111+=+-=n n n s n 学生4:第2题的每一项与第一题相同,每一项都可裂成两项,数列通项(),11111+-=+⨯=n n n n a n 所以,111111141313121211+=+-=⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n n s n Λ 教师:用()2n 1n 12n n 1a n +-=+⨯=对吗?为什么? 学生5:不行了,很明显,左右是不相等的关系。
教师:怎样改变呢?学生5:待定系数法,配平系数,达到平衡。
应该乘以21! 和第2题相似,每一项也可裂成两项实现裂差消项求和。
数列的项()),211(2121+-=+⨯m m m m 所以,⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=1211212141312131212121121n n s n Λ =,12)1211(21+=+-n n n 学生6:第4题的变形与第3题类似()()⎪⎭⎫ ⎝⎛+--=+-=2311313123131n n n n a n ⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=231131311118131815131512131n n s n Λ)23(22312131+=⎪⎭⎫ ⎝⎛+-=n n n变式问题:求和)1)()1(1(1)31)(21(1)21)(1(1)1(11nk k n k k k k k s n +-++++++++++⨯=Λ 学生7:每一项同样可裂成两项,通过裂差消项求和法求和:⎪⎪⎭⎫ ⎝⎛+--+++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-=nk k n k k k k k k s n 11)1(1112111111111Λ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--+++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-=nk k n k k k k 11)1(11211111111Λnkn nk k +=+-=1)111(1 教师:通过以上探索性题组我们发现什么结论呢?(学生表述,教师点评,补充。
)结论:一般地,{n a }是公差为d 的等差数列, 则:13221111++++=n n n a a a a a a S Λ ⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+13221111111111n na a d a a d a a d Λ 1111111++=⎪⎪⎭⎫ ⎝⎛-=n n a a n a a d 教师小结:分母为等差数列的某相邻两项之积,而分子为常量的分式型数列的求和,将它的每一项分解为两项差的形式,前一项的减数恰与后一项的被减数相同,求和时中间项互相抵消,这种数列求和的方法就是裂差消项求和法。
三、题组研究、汇报交流出示研究性题组1. 求数列⎭⎬⎫⎩⎨⎧+)2(1n n 的前n 项和。
2.求数列ΛΛ,)3n 2)(1n 2(1,,951,731,511+-⨯⨯⨯的前n 项和? 3.求和:)12)(12()2(534312222+-++⨯+⨯=n n n S n Λ (学生分组讨论解题思路,教师巡回,对个别学生问题进行指导,师生共同讨论。
)教师:观察研究性题1和探索性问题的解法有何不同呢?学生8:有所不同,消去的项不一样了。
前面和后面各有两项没有消去,前面是两正项,后面是两负项。
解:数列的通项公式可变形为:()⎪⎭⎫ ⎝⎛+-=+⨯=2112121n n n n a n ()())2)(1(4)53(2132232121112112121151314121311212112151312141212131121所以+++=⎪⎪⎭⎫ ⎝⎛+++-=⎪⎭⎫ ⎝⎛+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=n n n n n n n n n n n n n s n ΛΛ: 学生9:方法与第1题类似 解:通项)3n 211n 21(41)3n 2)(1n 2(1a n +--=+-= )3n 2)(1n 2(3)5n 4(n )3n 211n 21311(41)3n 211n 21()1n 213n 21()9151()7131()511[(41S n +++=+-+-+=+--++--++-+-+-=∴Λ 教师分析:研究性题3中数列的分子是偶数的平方,分母是奇数列相邻两项的乘积;从上面的经验看:该数列求和使用“裂项相消法”的可能性较大,那就看分子能否化为常数。
注意到该数列的通项公式的特征:分子、分母同次且没有一次项;考虑到1)12)(12(11)2()2(22++-=+-=n n n n 所以使用处理分式函数的常用手段,分离常数法即可把分子化为常数。
变形如下:学生10:解:)1n 2)(1n 2(11)1n 2)(1n 2(112)n 2()1n 2)(1n 2(2)n 2(n a +-+=+-+-=+-= )121121(211+--+=n n∴+=n S n )12)(12(1531311+-++⨯+⨯n n Λ=12)1211(21++=+-+n n n n n (学生说题,锻炼学生的表述能力,思维能力)教师:以上裂项求和类型大家掌握的比较好了,我们一起看下面的问题:四、题组综合、巩固提高1.求数列⎭⎬⎫⎩⎨⎧+)11lg(n 前n 项的和。
2.求数列⎭⎬⎫⎩⎨⎧++n 1n 1的前n 项和 3.已知数列{}n a ,()()211++=n n n a n 求数列的前项和n s (分组讨论解题思路,教师做适当点拨和引导,学生展示解题过程。
)学生11:n n nn n lg )1lg(1lg )11lg(-+=+=+所以,)11lg()311lg()211lg()111lg(nS n ++++++++=Λ )1lg()34lg()23lg()12lg(n n +++++=Λ )lg )1(lg()3lg 4(lg )2lg 3(lg )1lg 2(lg n n -+++-+-+-=Λ)1lg()1lg(1lg +=++-=n n学生12:也可不裂项变为各项相乘约项。
解:)11lg()311lg()211lg()111lg(nS n ++++++++=Λ )1lg()34lg()23lg()12lg(nn +++++=Λ )1lg()1342312lg(+=+⨯⨯⨯⨯=n n n Λ 教师:很好,这又是一个好想法,课后同学们可探究一下有哪些数列求和适用这种方法。
教师:对于第2题,很明显,我们没法进行合并,分母也不是两个积的乘积形式,不太符合以上方法。
我们搜寻一下,以前我们见过这种式子吗?对它有什么变形方法?学生13:以前我们处理过这种无理式,可以分母有理化。