2014年复旦附中自主招生测试数学试卷和答案
答案版上海市复旦大学附属中学2014-2015学年高一上学期期中考试数学试卷(2)
D. f x
x2 9 , g x x 3 x3
【解析】A 选项对应关系不同, f x x , g x x2 x ;C、D 选项定义域不相同.
x 3 x y 6 14、 是 成立的( y 3 x y 9
2 x x 1
的定义域为_______.
【答案】 2,1
1, 2 ; 1,2 ,本题需注意定义域只能写成区间
2 x 0 2 x 2 【解析】由 ,即 x 2,1 x 1 x 1 0
或是集合的形式,避免写不等式的形式. 4、已知集合 A 1, 2,3, 4 , B 1, 2 则满足 A C B C 的集合 C 有_______个. 【答案】4; 【解析】由条件 A C B C 可知, B B
复旦大学附属中学 2014-2015 学年第一学期 高一年级数学期中考试试卷
(时间 90 分钟,满分 120 分) 一、填空题(每小题 4 分,共 44 分)
6 1、用列举法表示集合 A a N* , a Z _______. 5 a
【答案】 1, 2,3, 4 ;
充要条件是“ a b 0 ”. 其中,正确结论的个数 是_______. .. 【答案】3 个; 【解析】①正确,由于 2015 能够被 5 整除;②错误, 3 1 5 2 ,故 3 2 ;③正确, 将整数按照被 5 除分类,刚好分为 5 类;④正确. 10、某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费 p (万元)与仓库 到停车库的距离 x (公里)成反比,而每月库存货物的运费 k (万元)与仓库到停车库的距 离 x (公里)成正比. 如果在距离停车库 18 公里处建仓库,这两项费用 p 和 k 分别为 4 万元 和 144 万元,那么要使这两项费用之和最小,仓库到停车库的距离 x _______公里. 【答案】 2 ; 【解析】 设 p 所以 p
2014上中自主招生数学试题
F ED C A 2014上中自主招生数学试题一、填空题1.已知b a b a +=+111,则=+ba ab ______. 2.有______个实数x ,可以使得x -120为整数?.3.在△ABC 中,AB=AC ,CD=BF ,BD=CE ,用含∠A 的式子表示∠EDF ,∠EDF 应为=______.4.在直角坐标系中,抛物线)0(4322>-+=m m mx x y 与x 轴交于A 、B 两点,若A 、B 两点到原点的距离分别为OA 、OB ,且满足3211=-OA OB ,则m=__________.5.定圆A 的半径为72,动圆B 的半径为r ,r<72且r 是一个整数,动圆B 保持内切于圆且沿圆A 的圆周滚动一圈,若动圆B 开始滚动时的切点与结束时的切点是同一点,则r 共有__________个可能的值.6.学生若干人租游艇若干只,如果每船坐4人,就余下20人;如果每船坐8人,那么就有一船不空也不满,则学生共有______人?7.对于各数互不相等的正整数组(a 1,a 2,…,a n )(n 是不小于2的正整数),如果在i<j 时有a i >a j ,则称a i 与a j 是该数组的一个“逆序”.例如数组(2,4,3,1)中有逆序“2,1”“4,3”“4,1”“3,1”,其逆序数为4,现若有各数互不相同的正数组(a 1,a 2,a 3,a 4,a 5,a 6)的逆序数为2,则(a 6,a 5,a 4,a 3,a 2,a 1)的逆序数是___________________.8.若n 为自然数,则使得关于x 的不等式19102111<+<n x n 有唯一的整数解的n 的最大值为________.二、选择题9.已知x 2+ax-12能分解成两个整系数的一次因式的积,则符合条件的整数a 的个数为( )A .3B .4C .6D .810.如图,D 、E 分别为△ABC 的底边所在直线上的两点,DB=EC ,过A 点作直线l ,作DM ∥AB 交l 于M ,作EN ∥AC 交l 于N ,设△ABM 面积为S 1,△ACN 面积为S 2,则( )A .S 1>S 2B .S 1=S 2C .S 1<S 211.设p 1,p 2,q 1,q 2为实数,则p 1p 2=2(q 1+q 2),若方程甲:x 2+p 1x+q 1=0,乙:x 2+p 2x+q 2=0,则( )A .甲必有实根,乙也必有实根B .甲没有实根,乙也没有实根C .甲、乙至少有一个有实根D . 甲、乙是否总有一个有实根不能确定12.设201310075332112222++++= a ,201510077352312222++++= b ,则以下四个选项中最接近a-b 的整数为( )A .252.B .504C .1007D .2013三、解答题13.直角三角形ABC 和直角三角形ADC 有公共斜边AC(B 、D 位于AC 的两侧),M 、N 分别是AC 、BD 中点,且M 、N 不重合.(1)线段MN 与BD 是否垂直?证明你的结论;(2)若∠BAC=30°,∠CAD=45°,AC=4,求MN 的长.14.是否存在m 个不相等的正数a ,a 2,…,a m (m≥7),使得它们能全部被摆放在一个圆周上,每个数都等于其相邻两数的乘积?若存在,求出所有这样的m 值;若不存在,说明理由.。
2014复旦附中自招测试题
12014年复旦大学附属中学自主招生测试数学试卷一.填空题1.已知998a =,997b =,996c =,则2a ab ac bc --+= ▲ .2.已知:23a =,32b =,则1111a b +=++ ▲ . 3.在△ABC 中,10AB =,16AC =,BAC ∠的角平分线为AN ,BN 和AN 垂直,垂直为N ,M 为BC 的中点,则MN = ▲ .4.方程2354235x x x x +=----的根为 ▲ . 5.已知一次函数y kx b =+经过点(1,1),且2k >,则该函数不经过第 ▲ 象限.6.已知,,,,,a b c d e f 为实数,满足0ace ≠,已知ax b cx d ex f +++=+对于任意x 都成立,则ad bc -= ▲ .7.已知:222212310011352001A =++++L ,222212310013572003B =++++L ,则与A B -最接近的整数是 ▲ .二.解答题28.已知,x y 是正整数,且2014x y >>,1112014x y xy++=,试求x y -的最大值. 9.在△ABC 中,BF 和CE 分别是ABC ∠和ACB ∠的平分线,O 是内心(角平分线的交点),满足OE OF =,求证:△ABC 是等腰三角形或60A ∠=︒.10.从1、2、3、4、…、2014这2014个数中,抽取n 个数,放入集合A 中,从A 中任意取3个数后,总有一个数能够整除另一个,试求n 的最大值.2014年复旦大学附属中学自主招生测试数学试卷参考答案和评分标准一.填空题1.2 2.1 3.3 4.0;4;43 5.二 6.0 7.501二.解答题8.解:由1112014x y xy++= 得1120152014x y x y ⎛⎫++⎛⎫⋅=⎪ ⎪⎝⎭⎝⎭;3即2014201420140xy x y ---=;即(2014)(2014)20142013x y --=⨯;得:min ()402840271x y -=-=.9.证明:在AC 上截取'AE AE =①如果E'和F 重合,那么△AOE ≌△AOF ,△BOE ≌△COF ;因此AB AE BE AF CF AC =+=+=;故△ABC 是等腰三角形;②如果E'和F 不重合,易知△AOE'≌△AOF ;ABC EF (E')O第9题图①ABCEE' OF 第9题图②4于是'OE OF =;即''OFE OE F BEC ∠=∠=∠;由12BEC A C ∠=∠+∠,12AFO B C ∠=∠+∠推出11()(180)22B C A A ∠+∠=︒-∠=∠; 即60A ∠=︒.10.解:首先构造两个数列:{}1,2,4,8,16,32,64,128,256,512,1024; {}3,6,12,24,48,96,192,384,768,1512.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数.因此:21n ≤.5如果21n >,则构造如下集合:{}1,{}2,3,{}4,5,6,7,{}8,9,10,,15L ,…,{}1024,1025,,2014L ;共11个集合,如果21n >,至少有某个集合中被选了大于等于3个数,而这个集合中不可能存在一个数是另一个数的倍数.矛盾.故n 的最大值为21.。
上海市复旦大学附属中学2014-2015学年高一下学期期末数学试题(原卷版)
上海市复旦附中2014-2015高一年级期末考试数学试卷分析第二部分优秀试题精讲1.已知数列{}n a 满足:*434121,0,,N n n n n a a a a n --===∈,则2014a =___________.2.等差数列{n a }前n 项和为n S .已知1m a -+1m a +-2m a=0,21m S -=38,则m=_______.3.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________.4.设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = . 5.若数列{a n }前8项的值各异,且a n+8=a n 对任意n ∈N *都成立,则下列数列中可取遍{a n }前8项值的数列为 ( ) A. {a 2k+1}B. {a 3k+1}C. {a 4k+1}D. {a 6k+1}6.已知点11,3⎛⎫⎪⎝⎭是函数()(0,1)xf x a a a =>≠图象上一点,等比数列{}n a 的前n 项和为()f n c -,数列{}()0n n b b >的首项为c ,且前n 项和n S 满足:当2n ≥时,都有1n n S S --=(1)求c 的值;(2)求证:为等差数列,并求出n b . (3)若数列11n n b b +⎧⎫⎨⎬⎩⎭前n 项和为n T ,是否存在实数m ,使得对于任意的*N n ∈都有n T m ≥,若存在,求出m 的取值范围,若不存在,说明理由.第三部分 试卷展示大学附属中学2014学年第二学期高一年级数学期来考试试卷一、填空题(每题4分,共48分7.求值:2sin arccos 3⎡⎤⎛⎫-= ⎪⎢⎥⎝⎭⎣⎦_____.8.等比数列{}n a 中,若245,20a a ==,则6a =__________.9.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前10项和10S =________. 10.函数arccos 2y x =-的反函数为__________.11.已知数列{}n a 满足:*434121,0,,N n n n n a a a a n --===∈,则2014a =___________.12.等差数列{n a }前n 项和为n S .已知1m a -+1m a +-2m a =0,21m S -=38,则m=_______.13.已知函数13()2sin 122f x x x ππ⎛⎫=+<< ⎪⎝⎭,1()f x -为()f x 的反函数,则112f -⎛⎫= ⎪⎝⎭_______(用反三角形式表示).14.方程sin 2cos ,[0,2]x x x π=∈的解集是____________. 15.函数y =的定义域为____________.16.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________.17.当01x ≤≤时,不等式sin 2xkx π≥成立,则实数k 的取值范围是______________.18.设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = . 二、选择题(每题4分,共16分)19.不等式tan 2x <<的解集是( ) A. |arctan 2,3x k x k k Z πππ⎧⎫-<<+∈⎨⎬⎩⎭B. 2|arctan 2,3x k x k k Z πππ⎧⎫+<<+∈⎨⎬⎩⎭C. |22arctan 2,3x k x k k Z πππ⎧⎫-<<+∈⎨⎬⎩⎭ D. 2|2arctan 22,3x k x k k Z πππ⎧⎫+<<+∈⎨⎬⎩⎭20.对数列{}n a ,“0n a >对于任意*N n ∈成立”是“其前n 项和数列{}n S 为递增数列”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 非充分非必要条件21.设{(,)|cos(arccos )},{(,)|arccos(cos )}A x y y x B x y y x ====,则A B =I ( ) A. {(,)|,11}x y y x x =-≤≤ B. 11(,)|,22x y y x x ⎧⎫=-≤≤⎨⎬⎩⎭C. {(,)|,01}x y y x x =≤≤D. {(,)|,0}x y y x x π=≤≤22.若数列{a n }前8项的值各异,且a n+8=a n 对任意n ∈N *都成立,则下列数列中可取遍{a n }前8项值的数列为 ( ) A. {a 2k+1}B. {a 3k+1}C. {a 4k+1}D. {a 6k+1}三、解答题(共5题,共56分)23.解方程:cos2cos sin x x x =+.24.已知方程240x ++=有两个实根12,x x ,记12arctan ,arctan x x αβ==,求αβ+的值.25.已知点11,3⎛⎫ ⎪⎝⎭是函数()(0,1)xf x a a a =>≠的图象上一点,等比数列{}n a 的前n 项和为()f n c -,数列{}()0n n b b >的首项为c ,且前n 项和n S 满足:当2n ≥时,都有1n n S S --=(1)求c 的值;(2)求证:为等差数列,并求出n b . (3)若数列11n n b b +⎧⎫⎨⎬⎩⎭前n 项和为n T ,是否存在实数m ,使得对于任意的*N n ∈都有n T m ≥,若存在,求出m 的取值范围,若不存在,说明理由.26.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n 年(以2016年为第一年),该企业不进行技术改造的年纯利润为n a 万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为n b 万元,求n a 和n b ;(2)设从2016年起的第n 年(以2016年为第一年),该企业不进行技术改造的累计纯利润为n A 万元,进行技术改造后的累计纯利润为n B 万元,求n A 和n B ;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?27.如果有穷数列123,,,m a a a a L (m 为正整数)满足1211,,m m m a a a a a a -===L ,即1(1,2,,)i m i a a i m -+==L ,那么我们称其为对称数列.(1)设数列{}n b 是项数为7的对称数列,其中,1234,,,b b b b 为等差数列,且142,11b b ==,依次写出数列{}n b 的各项;(2)设数列{}n c 是项数为21k -(正整数1k >)的对称数列,其中121,,,k k k c c c +-⋯是首项为50,公差为-4的等差数列.记数列{}n c 的各项和为数列21k S -,当k 为何值时,21k S -取得最大值?并求出此最大值;(3)对于确定的正整数1m >,写出所有项数不超过2m 的对称数列,使得211,2,2,,2m -⋯依次为该数列中连续的项.当1500m >时,求其中一个数列的前2015项和2015S .。
复旦附中自招真题解析
海
7. 已知锐角 ABC 的三边长恰为三个连续正整数,AB BC CA , 若 BC 边上的高为 AD, 则 BD DC ______________. 【答】4. A 【解析】设 AB 、 BC 、 CA 分别为 n 1 、 n 、 n 1 ,则
昂
立
智
立 方
B
C
上
2
2
B
D C
有 c 2 a 2 b2 2b2 c 2b ab 2 b b 2b 2 而 ab 2 a b c 2 0 b b a 5 ,
2 2 b 7b a 7 ,
若 a 5 ,25 c b c b c b 25 ,c b 1 c 13 ,b 12 代入两式验证成立; 若 a 6 , 36 c b c b c b 18 , c b 2 c 10 , b 8 代入两式验证成立;
2
若它们为不同解,则 19m n 19 矛盾 19m n
原式
m 19m 4m 1 19m2 99m 1 95m 5 . 19m 19m
9. 若关于 x 的方程 x 2 x 2 4 x m 0 有三个根,且这三个根恰好可以作为一个三角形 的三边长,则 m 的取值范围是______________. 【答】 3 m 4 . 【解析】显然 x 2 是原方程的根,设另两个根分别为 a 、 b , a b 4 2 ,
15 sin120 a a 2 3 2 4 则 a 2 2a 1 16 sin 60 2 S 2a 2 ABCD 2
2014复旦附中自招测试题
2014年复旦大学附属中学自主招生测试数学试卷一.填空题1.已知998a =,997b =,996c =,则2a ab ac bc --+= ▲ . 2.已知:23a =,32b =,则1111a b +=++ ▲ . 3.在△ABC 中,10AB =,16AC =,BAC ∠的角平分线为AN ,BN 和AN 垂直,垂直为N ,M 为BC 的中点,则MN = ▲ . 4.方程2354235x x x x +=----的根为 ▲ . 5.已知一次函数y kx b =+经过点(1,1),且2k >,则该函数不经过第 ▲ 象限.6.已知,,,,,a b c d e f 为实数,满足0ace ≠,已知ax b cx d ex f +++=+对于任意x 都成立,则ad bc -= ▲ .7.已知:222212310011352001A =++++L ,222212310013572003B =++++L ,则与A B -最接近的整数是 ▲ .二.解答题8.已知,x y 是正整数,且2014x y >>,1112014x y xy++=,试求x y -的最大值.9.在△ABC 中,BF 和CE 分别是ABC ∠和ACB ∠的平分线,O 是内心(角平分线的交点),满足OE OF =,求证:△ABC 是等腰三角形或60A ∠=︒.10.从1、2、3、4、…、2014这2014个数中,抽取n 个数,放入集合A 中,从A 中任意取3个数后,总有一个数能够整除另一个,试求n 的最大值.2014年复旦大学附属中学自主招生测试数学试卷参考答案和评分标准一.填空题1.2 2.1 3.3 4.0;4;4 5.二 6.0 7.501 二.解答题 8.解:由1112014x y xy++= 得1120152014x y x y ⎛⎫++⎛⎫⋅=⎪ ⎪⎝⎭⎝⎭; 即2014201420140xy x y ---=;即(2014)(2014)20142013x y --=⨯;得:min ()402840271x y -=-=.9.证明:在AC 上截取'AE AE = ①如果E'和F 重合,那么△AOE ≌△AOF ,△BOE ≌△COF ;因此AB AE BE AF CF AC =+=+=;故△ABC 是等腰三角形;②如果E'和F 不重合,易知△AOE'≌△AOF ;于是'OE OF =;即''OFE OE F BEC ∠=∠=∠;ABCEF (E')O第9题图① ABCEE' OF第9题图②由12BEC A C ∠=∠+∠,12AFO B C ∠=∠+∠推出11()(180)22B C A A ∠+∠=︒-∠=∠; 即60A ∠=︒.10.解:首先构造两个数列:{}1,2,4,8,16,32,64,128,256,512,1024; {}3,6,12,24,48,96,192,384,768,1512.共21个数,这21个数中任取三个,总有一个数为另一个数的倍数. 因此:21n ≤.如果21n >,则构造如下集合:{}1,{}2,3,{}4,5,6,7,{}8,9,10,,15L,…,{}1024,1025,,2014L ;共11个集合,如果21n >,至少有某个集合中被选了大于等于3个数,而这个集合中不可能存在一个数是另一个数的倍数.矛盾. 故n 的最大值为21.上海中考微信号:shzhongkao1专注于上海中考升学政策、名校招生信息解读,为家长、学生送上第一手中考资讯。
上海市复旦大学附中2014-2015学年高一上学期期中数学试卷 Word版含解析
2014-2015学年上海市复旦大学附中高一(上)期中数学试卷一、填空题(每小题4分,共44分)1.(4分)用列举法表示集合=.2.(4分)命题“若x2=1,则x=1”的否命题是.3.(4分)函数y=的定义域为.4.(4分)已知集合A={1,2,3,4},B={1,2},则满足A∩C=B∪C的集合C有个.5.(4分)已知x,y∈R+,且x+4y=1,则x•y的最大值为.6.(4分)已知集合P=x,Q={x|(x+1)(2x﹣3)(x﹣4)>0},则P∩Q=.7.(4分)不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是.8.(4分)若关于x不等式ax2+bx+c<0的解集为,则关于x不等式cx2﹣bx+a>0的解集为.(4分)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n 9.∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②﹣3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a﹣b∈[0]”.其中,正确结论的是.10.(4分)某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费p(万元)与仓库到停车库的距离x(公里)成反比,而每月库存货物的运费k(万元)与仓库到停车库的距离x(公里)成正比.如果在距离停车库18公里处建仓库,这两项费用p和k分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x=公里.11.(4分)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.二、选择题(每题4分,共16分)12.(4分)三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“()”的几何解释.A.如果a>b,b>c,那么a>cB.如果a>b>0,那么a2>b2C.对任意实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立D.如果a>b,c>0那么ac>bc13.(4分)设x取实数,则f(x)与g(x)表示同一个函数的是()A.f(x)=x,g(x)=B.f(x)=,g(x)=C.f(x)=1,g(x)=(x﹣1)0D.f(x)=,g(x)=x﹣314.(4分)是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.(4分)在关于x的方程x2﹣ax+4=0,x2+(a﹣1)x+16=0,x2+2ax+3a+10=0中,已知至少有一个方程有实数根,则实数a的取值范围为()A.﹣4≤a≤4 B.a≥9或a≤﹣7 C.a≤﹣2或a≥4 D.﹣2<a<4三、解答题(共6大题,满分60分)16.(8分)解关于x的方程:x2+|2x﹣3|=2.17.(8分)设关于x的不等式:.(1)解此不等式;(2)若2∈,求实数k的取值范围.18.(10分)已知P=,Q={x|x2﹣2x+(1﹣m2)≤0},其中m>0,全集U=R.若“x∈∁U P”是“x∈∁U Q”的必要不充分条件,求实数m的取值范围.19.(10分)现有A,B,C,D四个长方体容器,A,B的底面积均为x2,高分别为x,y;C,D 的底面积均为y2,高分别为x,y(其中x≠y).现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x与y大小的情况下有没有必胜的方案?若有的话,有几种?20.(10分)定义实数a,b间的计算法则如下:a△b=.(1)计算2△(3△1);(2)对x<z<y的任意实数x,y,z,判断等式x△(y△z)=(x△y)△z是否恒成立,并说明理由;(3)写出函数y=(1△x)△x﹣(2△x)的解析式,其中﹣2≤x≤2,并求函数的值域.21.(14分)已知实数a,b,c满足a>b>c.(1)求证:>0;(2)现推广如下:把的分子改为一个大于1的正整数p,使得>0对任意a>b>c都成立,试写出一个p并证明之;(3)现换个角度推广如下:正整数m,n,p满足什么条件时,>0对任意a>b>c都成立,请写出条件并证明之.2014-2015学年上海市复旦大学附中高一(上)期中数学试卷参考答案与试题解析一、填空题(每小题4分,共44分)1.(4分)用列举法表示集合={﹣1,2,3,4}.考点:集合的表示法.专题:集合.分析:由,则必有,解出即可.解答:解:由,则必有,∴a=﹣1,3,2,4.∴A={﹣1,2,3,4}.故答案为:{﹣1,2,3,4}.点评:本题考查了集合的列举法、整数的整除性质,属于基础题.2.(4分)命题“若x2=1,则x=1”的否命题是若x2≠1,则x≠1.考点:四种命题间的逆否关系.专题:简易逻辑.分析:直接利用命题的否命题的定义,写出结果即可.解答:解:命题的否命题是同时对条件与结论进行否定.命题“若x2=1,则x=1”的否命题是:若x2≠1,则x≠1;故答案为:若x2≠1,则x≠1;点评:本题考查命题的否命题的定义,基本知识的考查.3.(4分)函数y=的定义域为[﹣2,1)∪(1,2].考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由式子有意义需使分母和根号有意义,可得x的范围,写成集合的形式可得函数的定义域.解答:解:要使函数的表达式有意义,x须满足:,即x∈[﹣2,1)∪(1,2],故定义域为:[﹣2,1)∪(1,2],故答案为:[﹣2,1)∪(1,2],点评:本题考查了函数的定义域问题,注意分母和根号的特点,本题属于基础题.4.(4分)已知集合A={1,2,3,4},B={1,2},则满足A∩C=B∪C的集合C有4个.考点:交集及其运算;子集与真子集.专题:集合.分析:根据A∩C=B∪C,得到符合条件的集合C的个数即为集合{3,4}的子集的个数,求出即可.解答:解:由条件A∩C=B∪C可知:B⊆(B∪C)=(A∩C)⊆C⊆(B∪C)⊆(A∩C)⊆A,则符合条件的集合C的个数即为集合{3,4}的子集的个数,共4个.故答案为:4点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题关键.5.(4分)已知x,y∈R+,且x+4y=1,则x•y的最大值为.考点:基本不等式.专题:计算题.分析:变形为x与4y的乘积,利用基本不等式求最大值解答:解:,当且仅当x=4y=时取等号.故应填.点评:考查利用基本不等式求最值,此为和定积最大型.6.(4分)已知集合P=x,Q={x|(x+1)(2x﹣3)(x﹣4)>0},则P∩Q=.考点:交集及其运算.专题:集合.分析:先求出不等式的解集即为集合P,根据数轴标根法求出(x+1)(2x﹣3)(x﹣4)>0的解集,即求出集合Q,由交集的运算求出P∩Q.解答:解:由得,,解之1≤x≤2,即P=[1,2],根据数轴标根法,解(x+1)(2x﹣3)(x﹣4)>0得:,即Q=,所以P∩Q=.故答案为:.点评:本题考查了交集及其运算,以及无理不等式、高次不等式的解法,数轴标根法是解高次不等式的重要方法.7.(4分)不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是(﹣2,2].考点:函数恒成立问题;二次函数的性质.专题:计算题.分析:当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立,当a≠2时利用二次函数的性质列出a满足的条件并计算,最后两部分的合并即为所求范围.解答:解:当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立①当a≠2时,则须即∴﹣2<a<2 ②由①②得实数a的取值范围是(﹣2,2]故答案为:(﹣2,2]点评:本题考查不等式恒成立的参数取值范围,考查二次函数的性质.注意对二次项系数是否为0进行讨论.8.(4分)若关于x不等式ax2+bx+c<0的解集为,则关于x不等式cx2﹣bx+a>0的解集为.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:由已知得到ax2+bx+c=0的两个根为﹣2和,利用根与系数关系得到系数的比,变形后得到的值,由此求出方程cx2﹣bx+a=0的两根,则不等式cx2﹣bx+a>0的解集可求.解答:解:∵不等式ax2+bx+c<0的解集为(﹣∞,﹣2)∪(,+∞),∴a<0,且,﹣2为方程ax2+bx+c=0的两根.∴=﹣,(﹣2)=∴,c=a,∴cx2﹣bx+a>0可转化为,∴x2﹣x+1<0,即(x﹣)(x﹣2)<0,解得x<2,即不等式cx2﹣bx+a>0的解集为.故答案为:点评:本题考查了一元二次不等式的解法,以及一元二次方程的根与系数关系,容易出错的地方是忽略c的符号.(4分)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n 9.∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②﹣3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a﹣b∈[0]”.其中,正确结论的是①③④.考点:命题的真假判断与应用.专题:压轴题;新定义.分析:对各个选项进行分析:①∵2011÷5=402…1;②∵﹣3÷5=﹣1…2,③整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4];④从正反两个方面考虑即可得答案.解答:解:①∵2011÷5=402…1,∴2011∈[1],故①正确;②∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;③因为整数集中的数被5除的数可以且只可以分成五类,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;④∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a﹣b被5除的余数为0,反之也成立,故“整数a,b属于同一“类”的充要条件是“a﹣b∈[0]”.故④正确.故答案为:①③④点评:本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.10.(4分)某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费p(万元)与仓库到停车库的距离x(公里)成反比,而每月库存货物的运费k(万元)与仓库到停车库的距离x(公里)成正比.如果在距离停车库18公里处建仓库,这两项费用p和k分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x=3公里.考点:函数模型的选择与应用.专题:计算题;应用题;不等式的解法及应用.分析:由题意,设Px=m,(m,n为常数),代入x=18,p=4,k=144求出m,n;从而得到P+k=+8x,利用基本不等式求最值.解答:解:设Px=m,(m,n为常数),由x=18时,p=4,k=144,可得,m=18×4=72,n==8,所以P+k=+8x=8()≥48,(当且仅当,即x=3时,等号成立)故答案为:3.点评:本题考查了实际问题转化为数学问题的能力及基本不等式求最值,属于中档题.11.(4分)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:分类讨论,(1)a=1;(2)a≠1,在x>0的整个区间上,我们可以将其分成两个区间,在各自的区间内恒正或恒负,即可得到结论.解答:解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a=,或a=0(舍去).故答案为:.点评:本题考查不等式恒成立问题,解题的关键是构造函数,利用函数的性质求解.二、选择题(每题4分,共16分)12.(4分)三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“()”的几何解释.A.如果a>b,b>c,那么a>cB.如果a>b>0,那么a2>b2C.对任意实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立D.如果a>b,c>0那么ac>bc考点:基本不等式.专题:不等式的解法及应用.分析:可将直角三角形的两直角边长度取作a,b,斜边为c(c2=a2+b2),可得外围的正方形的面积为c2,也就是a2+b2,四个阴影面积之和刚好为2ab,可得对任意正实数a和b,有a2+b2≥2ab,即可得出.解答:解:可将直角三角形的两直角边长度取作a,b,斜边为c(c2=a2+b2),则外围的正方形的面积为c2,也就是a2+b2,四个阴影面积之和刚好为2ab,对任意正实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立.故选:C.点评:本题考查了基本不等式的性质、正方形的面积计算公式,考查了推理能力,属于基础题.13.(4分)设x取实数,则f(x)与g(x)表示同一个函数的是()A.f(x)=x,g(x)=B.f(x)=,g(x)=C.f(x)=1,g(x)=(x﹣1)0D.f(x)=,g(x)=x﹣3考点:判断两个函数是否为同一函数.专题:常规题型.分析:根据确定函数的三要素判断每组函数是否为同一个函数,即需要确定每组函数的定义域、对应关系、值域是否相同,也可只判断前两项是否相同即可确定这两个函数是否为同一个函数.解答:解:A组中两函数的定义域相同,对应关系不同,g(x)=|x|≠x,故A中的两函数不为同一个函数;B组中两函数的定义域均为所有正数构成的集合,对应关系化简为f(x)=g(x)=1,故B中的两函数是同一个函数;C组中两函数的定义域不同,f(x)的定义域为R,g(x)的定义域为{x|x≠1},故C中的两函数不为同一个函数;D组中两函数的定义域不同,g(x)的定义域为R,f(x)的定义域由不等于﹣3的实数构成,故D中的两函数不为同一个函数.故选B.点评:本题考查函数定义域的求解,函数解析式的化简,考查学生对函数三要素的认识和把握程度,考查学生的转化与化归思想,属于基本的函数题型.14.(4分)是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式之间的关系,结合充分条件和必要条件的定义即可得到结论.解答:解:当时,成立,即充分性成立,当x=10,,满足成立但不成立,即必要性不成立.故是成立充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.15.(4分)在关于x的方程x2﹣ax+4=0,x2+(a﹣1)x+16=0,x2+2ax+3a+10=0中,已知至少有一个方程有实数根,则实数a的取值范围为()A.﹣4≤a≤4 B.a≥9或a≤﹣7 C.a≤﹣2或a≥4 D.﹣2<a<4考点:函数的零点.专题:计算题;函数的性质及应用.分析:可以采用补集思想.三个判别式均小于0的条件下取交集后再取补集即可.解答:解:若关于x的方程x2﹣ax+4=0,x2+(a﹣1)x+16=0,x2+2ax+3a+10=0没有实根,则,解得﹣2<a<4,则关于x的方程x2﹣ax+4=0,x2+(a﹣1)x+16=0,x2+2ax+3a+10=0中,已知至少有一个方程有实数根时,a≤﹣2或a≥4,故选C.点评:本题考查了命题与命题的否定,属于基础题.三、解答题(共6大题,满分60分)16.(8分)解关于x的方程:x2+|2x﹣3|=2.考点:函数的零点.专题:函数的性质及应用.分析:直接去掉绝对值符号,然后求解即可.解答:解:或,解之x=2或.方程的解为:x=2或;点评:本题考查函数的零点与方程的根的知识,基本知识的考查.17.(8分)设关于x的不等式:.(1)解此不等式;(2)若2∈,求实数k的取值范围.考点:其他不等式的解法.专题:计算题;分类讨论;不等式的解法及应用.分析:(1)化简不等式,得到(k﹣2)x≥k2﹣k﹣4,讨论k=2,k>2,k<2,解不等式,即可得到解集;(2)由条件讨论k=2,k>2,k<2,得到不等式组,解出它们,再求并集即可.解答:解:(1),即有(k﹣2)x≥k2﹣k﹣4,所以①当k=2时,不等式的解为R;②当k>2时,不等式的解为,即解集为:[);③当k<2且k≠0时,不等式的解为,即解集为:(﹣∞,];(2)由于,所以k=2符合;结合(1)可以得到:,解之2<k<3;或,解之0<k<2.综上k∈(0,3).点评:本题考查含参不等式的解法,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.18.(10分)已知P=,Q={x|x2﹣2x+(1﹣m2)≤0},其中m>0,全集U=R.若“x∈∁U P”是“x∈∁U Q”的必要不充分条件,求实数m的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的定义和关系,结合不等式的关系,即可得到结论.解答:解:由“x∈∁U P”是“x∈∁U Q”的必要不充分条件,可得∁U P⊋∁U Q,即P⊊Q,P=={x|﹣2≤x≤10},Q={x|x2﹣2x+(1﹣m2)≤0}={x|1﹣m≤x≤1+m},则,即,解得m≥9,故实数m的取值范围[9,+∞).点评:本题主要考查充分条件和必要条件的应用,根据不等式的解法求出集合是解决本题的关键.19.(10分)现有A,B,C,D四个长方体容器,A,B的底面积均为x2,高分别为x,y;C,D 的底面积均为y2,高分别为x,y(其中x≠y).现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x与y大小的情况下有没有必胜的方案?若有的话,有几种?考点:不等式比较大小.专题:不等式的解法及应用.分析:当x>y时,利用不等式的性质可得:x3>x2y>xy2>y3,即A>B>C>D;当x<y时,同理可得:y3>y2x>yx2>x3,即D>C>B>A;又x3+y3﹣(xy2+x2y)>0.即可得出.解答:解:当x>y时,则x3>x2y>xy2>y3,即A>B>C>D;当x<y时,则y3>y2x>yx2>x3,即D>C>B>A;又x3+y3﹣(xy2+x2y)=(x3﹣x2y)+(y3﹣xy2)=(x﹣y)2(x+y)>0.∴在不知道x,y的大小的情况下,取A,D能够稳操胜券,其他的都没有必胜的把握.故只有1种,就是取A,D.点评:本题考查了不等式的基本性质、“作差法”,考查了推理能力,属于基础题.20.(10分)定义实数a,b间的计算法则如下:a△b=.(1)计算2△(3△1);(2)对x<z<y的任意实数x,y,z,判断等式x△(y△z)=(x△y)△z是否恒成立,并说明理由;(3)写出函数y=(1△x)△x﹣(2△x)的解析式,其中﹣2≤x≤2,并求函数的值域.考点:函数解析式的求解及常用方法;函数的值域.专题:计算题.分析:(1)先求出(3△1),再求出2△(3△1)的值即可;(2)分别求出x△(y△z)和(x△y)△z的值,判断即可;(3)分别求出(1△x)△x和(2△x)代入求出即可.解答:解:(1)∵(3△1)=3,∴2△(3△1)=2△3=9;(2)由于y>z,∴(y△z)=y,x△(y△z)=x△y=y2;由于x<y,∴(x△y)=y2,即有(x△y)△z=y2△z,此时若y2≥z,则(x△y)△z=y2;若y2<z,则(x△y)△z=z2.∴等式x△(y△z)=(x△y)△z并不能保证对任意实数x,y,z都成立.(3)由于,2△x=2,所以,函数的值域为[﹣1,2].点评:本题考查了新定义问题,考查了函数解析式的求法,是一道中档题.21.(14分)已知实数a,b,c满足a>b>c.(1)求证:>0;(2)现推广如下:把的分子改为一个大于1的正整数p,使得>0对任意a>b>c都成立,试写出一个p并证明之;(3)现换个角度推广如下:正整数m,n,p满足什么条件时,>0对任意a>b>c都成立,请写出条件并证明之.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:利用分析法,结合综合法,即可证明结论.解答:证明:(1)由于a>b>c,所以a﹣b>0,b﹣c>0,a﹣c>0,要证,只需证明.左边=,证毕.(2)欲使,只需,左边=,所以只需4﹣p>0即可,即p<4,所以可以取p=2,3代入上面过程即可.(3)欲使,只需,左边=,只需,即(m,n,p∈Z+).点评:本题考查不等式的证明,考查分析法与综合法的运用,考查学生分析解决问题的能力,属于中档题.。
2021年上海复附自招试卷
a - 2009一、填空题冲刺 17 年自主招生之 2014 复附自主招生试卷1. 若 M = 3x 2 -8xy + 9 y 2 - 4x + 6 y + 13 ( x , y 是实数),则 M 的值一定是( ) A. 零B. 负数C. 正数D. 整数2. 已知sin α < cos α ,那么锐角α 的取值范围是( ) A. 30︒ < α < 45︒ B. 0︒ < α < 45︒ C. 45︒ < α < 60︒D. 0︒ < α < 90︒3. 已知实数 a 满足| 2008 - a | = a ,那么a - 20082 值是( )A. 2009B. 2008C. 2007D. 20064. 如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式 a- b 的值等于( ).cA. - 3 4B. -6C. 3 4D. 65. 二次函数 y = ax 2 + bx + c 的图像如图所示, Q (n ,2) 是图像上的一点,且 AQ ⊥ BQ ,则a的值为( )A. - 13 B. - 12C. -1D. -2ABC 6. 矩形纸片 ABCD中, AB = 3cm , BC = 4cm ,现将纸片折叠压平,使 A 与C 重合,设折叠为 EF ,则重叠部分 AEF 的面积等于( )。
A.73 8 B. 758C.73 16D.75 167. 若 a = b = c= t ,则一次函数y = tx + t 2 的图像必定经过的象限是( ) b + c c + a a + b A. 第一、二象限 B. 第一、二、三象限 C. 第二、三、四象限 D. 第三、四象限8. 如图,以 Rt ABC 的斜边 BC 为一边在 的同侧作正方形 BCEF ,设正方形的中心为O ,连结 AO ,如果 AB = 4, AO = 6 2 ,那么 AC 的长等于( )A. 12B. 16C.D.二、填空题9. 已知 x 2 - -1 = 0 ,那么代数式 x 3 - 2 +1的值是。
2014-2015重点高中自主招生数学试题及答案 (2)
2014-2015重点高中自主招生数学模拟试题一.选择题(每小题5分,共40分)1.一个空间几何体的三视图如图所示,则该几何体的体积为 ( D )A.2π+B .83πC .4πD.2π2.已知A (1x ,1y ),B (2x ,2y )是反比例函数xy 1=在平面直角坐标系xOy 的第一象限上图象的两点,满足2721=+y y ,3512=-x x . 则=∆AOB S ( B ) A .11102 B. 12112 C. 13122 D. 141323.有2 015个整数,任取其中2 014个相加,其和恰可取到1,2,…,2 014这2 014个不同的整数值. 则这2 015个整数之和为( )A .1 004 B. 1 005 C. 1 006 D. 1 0083.设2 015个整数为1x ,2x ,…,2015x .记1x +2x +…+2015x =M.不妨设M-i x =i (i =1,2,…,2014),M-2015x =A.则2014M=1+2+…+2014+A.故A 除以2014的余数为1007.从而,A=1007,M=1008.当i x =1008-i (i =1,2,…,2014),2015x =1时取到.4.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的球的编号互不相同的概率为 ( D )A. 521.B. 27.C. 13D. 8214、解 从10个球中取出4个,不同的取法有410C 210=种.如果要求取出的球的编号互不相同,可以先从5个编号中选取4个编号,有45C 种选法.对于每一个编号,再选择球,有两种颜色可供挑选,所以取出的球的编号互不相同的取法有445C 280⋅=种.因此,取出的球的编号互不相同的概率为80821021=. 故选(D ).5. 使得381n+是完全平方数的正整数n 有 ( B )2 2 2侧(左)视222正(主)视俯视图.A. 0个B. 1个C. 2个D. 3个5、解 当4n ≤时,易知381n +不是完全平方数.故设4n k =+,其中k 为正整数,则38181(31)n k +=+.因为381n +是完全平方数,而81是平方数,则一定存在正整数x ,使得231k x +=,即231(1)(1)k x x x =-=+-,故1,1x x +-都是3的方幂.又两个数1,1x x +-相差2,所以只可能是3和1,从而2,1x k ==.因此,存在唯一的正整数45n k =+=,使得381n +为完全平方数.故选(B ).6.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,C D ⊥AB 于D ,AD=9,BD=4,以C 为圆心,CD 为半径的圆与⊙O 相交于P,Q 两点,弦PQ 交CD 于E ,则PE •EQ 的值是( D )A .24 B. 9 C. 36 D. 277.已知实系数一元二次方程x 2+(1+a)x+a+b+1=0的两实根为x 1,x 2,且0 <x 1<1,x 2>1,则ab 的取值范围( ) A -1<a b 21-≤ B -1<a b <21- C -2<a b 21-≤ D -2<a b <21-8. 图中正方形ABCD 边长为2,从各边往外作等边三角形ABE 、BCF 、CDG 、DAH ,则四边形AFGD 的周长为 ( )A.4+26+22B. 2+26+22C. 4+23 +42 D .4+23+42 二.填空题(每小题6分,共36分) 9.设由1~8的自然数写成的数列为1a ,2a ,…,8a .则32 .由题意记S=21a a -+32a a -+43a a -+54a a -+65a a -+76a a -+87a a -+18a a -. 该式去掉绝对值符号,在这个和的任意加项中,得到一正、一负两个自然数,为了使和达到最大的可能值,只须由1~4取负,由5~8取正,于是,S=2[(8+7+6+5)-(4+3+2+1)]=32.如48-+74-+17-+51-+25-+62-+36-+83-=32.10.记[]x 表示不超过实数x 的最大整数,a k =⎥⎦⎤⎢⎣⎡k 2014(k=1,2,, 100,则在这100个整数中,不同的整数的个数为 6911.设非负实数x,y,z 满足x+y+z=1,则t=29x ++24y ++21z +12.如图所示,线段OA = OB = OC =1,∠AOB = 60º,∠B OC = 30º,以OA ,OB ,OC 为直径画3个圆,两两的交点为M ,N ,P ,则阴影部分的曲边三角形的面积是 .解:如图,连接AC ,AN ,BN ,AM ,BM , MP ,NP ,OM ,ON ,OP ,易知∠OP A =∠OPC =90º,∠ANO =∠BNO = 90º,∠BMO =∠CNO = 90º,所以A ,P ,C 共线;A ,N ,B 共线;B ,M ,C 共线.由OA =OB =OC =1,可知P ,M ,N 分别是AC ,BC ,AB 的中点,MPNB 为平行四边形,BN =MP ,BM =NP ,所以BN 与MP 长度相等,BM 与NP 长度相等,因此,曲边三角形MPN 的面积= S MPNB =12S △ABC , 而 S △ABC = S AOCB – S △AOC = S△AOB + S △BOC – S△AOC 1142-所以,曲边三角形MPN 的面积=12S △ABC 13. 将一个44⨯棋盘中的8个小方格染成黑色,使得每行、每列都恰有两个黑色方格,则 有 不同的染法.(用数字作答)解:第一行染2个黑格有24C 种染法.第一行染好后,有如下三种情况: (1)第二行染的黑格均与第一行的黑格同列,这时其余行都只有一种染法;(2)第二行染的黑格与第一行的黑格均不同列,这时第三行有24C 种染法,第四行的染法随之确定; (3)第二行染的黑格恰有一个与第一行的黑格同列,这样的染法有4种,而在第一、第二这两行染好后,第三行染的黑格必然有1个与上面的黑格均不同列,这时第三行的染法有2种,第四行的染法随之确定. 因此,共有染法为()9024616=⨯++⨯种.填90.14.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周顺时针滚动。
【中考数学】历年各校自招数学真题及参考答案
1 1 10.定义 min a, b, c 表示实数 a, b, c 中的最小值,若 x, y 是任意正实数,则 M min x, , y 的最大 x y
值是 .
二、计算题(20 分) (10 分) 11.四个不同的三位整数的首位数字相同,并且它们的和能被它们中的三个数整除,求这些数.
12.如图,已知 PA 切 O 于 A , APO 30 , AH PO 于 H ,任作割线 PBC 交 O 于点 B 、 C ,计算
HC HB 的值.(10 分) BC
2.定义①1*1=1,②(n+1)*1=n*1+1,求 n*1=_________;
3. f ( x)
(a 1) x 2 (a 3) x 2a 8 的定义域为 D, f ( x)>0 在定义域 D 内恒成立,求 a 的取值范围? (2a 1) x 2 (a 1) x a 4
3 3 3
.
3.若有理数 a, b 满足
21 3 3 a b ,则 a b 4
.
4.如图, △ABC 中,AC=3,BC=4,AB=5,线段 DE⊥AB,且 △BDE 的面积是 △ABC 面积的三分之一, 那么,线段 BD 长为 。
5.二次函数 y ax 2 bx c 的图像与 x 轴有两个交点 M,N,顶点为 R,若 △MNR 恰好是等边三角形, 则 b 2 4ac 。
7.如图所示,正方形 ABCD 的面积设为 1, E 和 F 分别是 AB 和 BC 的中点,则图中阴影部分的面积 是 .
自招真题合集
8.在直角梯形 ABCD 中, ABC BAD 90o , AB 16 ,对角线 AC 与交 BD 于点 E ,过 E 作 EF AB 于点 F , O 为边 AB 的中点,且 FE EO 8 ,则 AD BC 的值为 .
2014-2015学年上海市复旦附中高一(下)学期期中数学试卷 (解析版)
2014-2015学年上海市复旦附中高一第二学期期中数学试卷一、填空题(每题4分,共48分)1.已知角α的顶点在坐标原点,始边在x 轴的正半轴上,其终边上有一点P (5,﹣12),则sec α= .2.已知扇形的圆心角为2弧度,面积为9cm 2,则该扇形的弧长为 cm . 3.若cos α=−13,则sin(3π2−α)= .4.若cos α=−45,α∈(π2,π),则cos(α−π4)= . 5.已知等腰三角形顶角的余弦值为−725,则这个三角形底角的正切值为 . 6.函数y =sin(π3−2x)的单调递减区间为 .7.函数y =√16−x 2−lgsinx 的定义域为 . 8.函数y =2cosx+12cosx−1的值域为 .9.在△ABC ,设角A ,B ,C 的对边分别为a ,b ,c ,且cosC cosB=2a−c b,则角B = .10.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为 .11.函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π)的部分图象如图所示,则该函数的解析式为f (x )= .12.为了使函数y =sin ωx (ω>0)在区间[0,1]上仅出现10次最大值,则ω的取值范围是 .二、选择题(每题5分,共20分)13.下列函数中,既是奇函数,又是以π为周期的函数是( ) A .y =x 3tan x B .y =|sin x |C .y =﹣2sin x cos xD .y =tan|x |14.在△ABC 中,下列命题中,真命题的个数为( )①∠A >∠B 是sin A >sin B 的充要条件;②∠A >∠B 是cos A <cos B 的充要条件; ③∠A >∠B 是tan A >tan B 的充要条件;④∠A >∠B 是cot A <cot B 的充要条件.A .1B .2C .3D .415.要得到y =cos (2x −π4)的图象,只要将函数y =sin2x 的图象( ) A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位16.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )A .B .C .D .三、解答题(共5题,共计52分)17.作出函数y =tan x +sin x ﹣|tan x ﹣sin x |,x ∈(π2,3π2)的图象,并写出函数的单调区间(不必证明)18.已知tan(α+π4)=3,求下列各式的值:(1)cos(π+α)−cos(π2−α)sin(π−α)+sin(3π2+α); (2)sin2α﹣2cos 2α.19.已知函数f(x)=1﹣cos2(x−5π12),g(x)=1+12sin2x.(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值;(2)求函数h(x)=f(x)+g(x)在x∈(−π2,0)上的值域.20.在△ABC中,角A,B,C的对边分别为a,b,c,已知c=2,C=π3.(1)若△ABC的面积为√3,求a,b;(2)若sin C+sin(B﹣A)=sin2A,求a,b.21.设函数f(x)是定义在R上的偶函数,且f(1+x)=f(1﹣x)对任意的x∈R恒成立,且当x∈[0,1]时,f(x)=x2.(1)求证:f(x)是以2为周期的函数(不需要证明2是f(x)的最小正周期);(2)对于整数k,当x∈[2k﹣1,2k+1]时,求函数f(x)的解析式;(3)对于整数k,记M k={a|f(x)=ax在x∈[2k﹣1,2x+1]有两个不等的实数根},求集合M2015.2014-2015学年上海市复旦附中高一第二学期期中数学试卷参考答案一、填空题(每题4分,共48分)1.已知角α的顶点在坐标原点,始边在x 轴的正半轴上,其终边上有一点P (5,﹣12),则sec α=135.【分析】利用条件直接利用任意角的三角函数的定义求得cos α的值,然后求解sec α. 解:由题意可得 x =5,y =﹣12,r =|OP |=13,∴cos α=x r =513, ∴sec α=135. 故答案为:135.【点评】本题主要考查任意角的三角函数的定义,属于基础题.2.已知扇形的圆心角为2弧度,面积为9cm 2,则该扇形的弧长为 6 cm . 【分析】利用扇形的面积求出扇形的半径,然后由弧长公式求出弧长的值. 解:设扇形的弧长为l ,圆心角大小为α(rad ),半径为r ,扇形的面积为S ,则:r 2=2S α=2×92=9.解得r =3∴扇形的弧长为l =r α=3×2=6l =r α=3×2=6cm . 故答案为:6.【点评】本题考查扇形面积、扇形的弧长公式的应用,考查计算能力,属于基础题. 3.若cos α=−13,则sin(3π2−α)= 13. 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 解:∵cos α=−13,则sin(3π2−α)=−cos α=13, 故答案为:13.【点评】本题主要考查利用诱导公式进行化简求值,属于基础题. 4.若cos α=−45,α∈(π2,π),则cos(α−π4)= −√210.【分析】由题意和同角三角函数的基本关系可得sin α,代入两角差的余弦公式计算可得. 解:∵cos α=−45,α∈(π2,π),∴sin α=2α=35, ∴cos(α−π4)=cos αcos π4+sin αsin π4=−45×√22+35×√22=−√210 故答案为:−√210.【点评】本题考查两角和与差的余弦公式,涉及同角三角函数的基本关系,属基础题.5.已知等腰三角形顶角的余弦值为−725,则这个三角形底角的正切值为 34.【分析】设等腰三角形顶角为α,由条件利用同角三角函数的基本关系、诱导公式、二倍角的余弦公式求得cos α2的值,可得sin α2和tan α2的值,从而求得这个三角形底角的正切值为tan (π2−α2)的值.解:设等腰三角形顶角为α,则这个三角形底角为π−α2=π2−α2,且cos α=−725,∴α为钝角. 再根据cos α=−725=2cos 2α2−1,求得cos α2=35,∴sin α2=45,tan α2=43, ∴这个三角形底角的正切值为tan (π2−α2)=cot α2=1tanα2=34,故答案为:34.【点评】本题主要考查同角三角函数的基本关系、诱导公式、二倍角的余弦公式的应用,属于基础题.6.函数y =sin(π3−2x)的单调递减区间为 [k π−π12,k π+5π12],k ∈Z . 【分析】先根据正弦函数的单调性求得函数y =sin (2x −π3)的单调增区间,进而求得函数 y =sin (π3−2x )的单调递减区间.解:由题意可得:y =sin (π3−2x )=﹣sin (2x −π3),由正弦函数的单调性可知y =sin (2x −π3)的单调增区间为[2k π−π2,2k π+π2],k ∈Z即[k π−π12,k π+5π12],k ∈Z所以y =sin (π3−2x )=﹣sin (2x −π3)的减区间为[k π−π12,k π+5π12],k ∈Z ,故答案为:[k π−π12,k π+5π12],k ∈Z .【点评】本题主要考查了正弦函数的单调性.考查了学生对正弦函数基本性质的理解,属于基本知识的考查.7.函数y =√16−x 2−lgsinx 的定义域为 [﹣4,﹣π)∪(0,π) .【分析】根据函数y =√16−x 2−lgsinx ,列出使解析式有意义的不等式组,求出解集即可. 解:∵函数y =√16−x 2−lgsinx , ∴{16−x 2≥0sinx >0, 解得{−4≤x ≤42kπ<x <π+2kπ,k ∈Z ,即﹣4≤x <﹣π或0<x <π;∴y 的定义域为[﹣4,﹣π)∪(0,π). 故答案为:[﹣4,﹣π)∪(0,π).【点评】本题考查了根据觳觫的解析式求函数定义域的应用问题,是基础题目. 8.函数y =2cosx+12cosx−1的值域为 (﹣∞,13]∪[3,+∞) .【分析】此为y =acosx+bccosx−d型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 【解答】解法一:原函数变形为y =1+22cosx−1,∵|cos x |≤1,可直接得到:y ≥3或y ≤13.则函数的值域为(﹣∞,13]∪[3,+∞).解法一:原函数变形为cosx =y+12(y−1), ∵|cos x |≤1,∴|y+12(y−1)|≤1,∴y ≥3或y ≤13.则函数的值域为(﹣∞,13]∪[3,+∞).故答案为:(﹣∞,13]∪[3,+∞).【点评】本题主要考查余弦函数的值域,考查分式函数含三角函数的值域的求法,考查运算能力,属于中档题.9.在△ABC ,设角A ,B ,C 的对边分别为a ,b ,c ,且cosC cosB=2a−c b,则角B =π3.【分析】利用正弦定理将2a−c b转化为2sinA−sinCsinB,再利用两角和与差的正弦函数即可求得角B .解:∵在△ABC ,cosC cosB=2a−c b,由正弦定理a sinA=b sinB=c sinC=2R 得:2a−c b=2sinA−sinCsinB ,∴cosCcosB=2sinA−sinCsinB,∴sin B cos C =2sin A cos B ﹣sin C cos B ,∴sin (B +C )=2sin A cos B ,又在△ABC ,B +C =π﹣A , ∴sin (B +C )=sin A ≠0,∴cos B =12,又B ∈(0,π),∴B =π3. 故答案为:π3.【点评】本题考查正弦定理与两角和与差的正弦,考查转化思想与运算能力,属于中档题. 10.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为 √2 .【分析】设x =a 与f (x )=sin x 的交点为M (a ,y 1),x =a 与g (x )=cos x 的交点为N (a ,y 2),求出|MN |的表达式,利用三角函数的有界性,求出最大值. 解:设x =a 与f (x )=sin x 的交点为M (a ,y 1), x =a 与g (x )=cos x 的交点为N (a ,y 2), 则|MN |=|y 1﹣y 2|=|sin a ﹣cos a | =√2|sin (a −π4)|≤√2. 故答案为:√2.【点评】本题考查三角函数的图象与性质,在解决三角函数周期等问题时,我们往往构造函数,利用函数的图象解题.11.函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π)的部分图象如图所示,则该函数的解析式为f (x )= 4sin (π6x −2π3) .【分析】根据三角函数的图象确定A ,ω和φ的值即可得到结论. 解:由图象知A =4,T =2[4﹣(﹣2)]=12, 则T =2πω=12,即ω=π6, 则f (x )=4sin (π6x +φ), 由五点对应法得π6×4+φ=0,即φ=−2π3, 故f (x )=4sin (π6x −2π3),故答案为:f (x )=4sin (π6x −2π3).【点评】本题主要考查三角函数解析式的求解,根据三角函数图象确定A ,ω和φ的值是解决本题的关键.12.为了使函数y =sin ωx (ω>0)在区间[0,1]上仅出现10次最大值,则ω的取值范围是 [37π2,41π2) .【分析】根据正弦函数的周期性和最大值的性质,建立不等式关系进行求解即可. 解:若函数y =sin ωx (ω>0)在区间[0,1]上仅出现10次最大值, 则满足9T +T 4≤1,且10T +T4>1, 即T ≤437且T >441, 即441<T ≤437,441<2πω≤437,解得37π2≤ω<41π2, 故答案为:[37π2,41π2),【点评】本题主要考查了三角函数的周期性及其求法.注意对三角函数基础知识如周期相,对称性,单调性等知识的点熟练掌握. 二、选择题(每题5分,共20分)13.下列函数中,既是奇函数,又是以π为周期的函数是( ) A .y =x 3tan x B .y =|sin x |C .y =﹣2sin x cos xD .y =tan|x |【分析】由条件利用二倍角公式,三角函数的奇偶性和周期性,逐一判断各个选项是否满足条件,从而得出结论.解:由于y =x 3tan x 为偶函数,故排除A ;由于y =|sin x |是偶函数,故排除B ; 由于y =﹣2sin x cos x =﹣sin2x 是奇函数,且还是以π为周期的函数,故满足条件; 由于y =tan|x |是偶函数,故排除D , 故选:C .【点评】本题主要考查二倍角公式,三角函数的奇偶性和周期性,属于基础题. 14.在△ABC 中,下列命题中,真命题的个数为( )①∠A >∠B 是sin A >sin B 的充要条件;②∠A >∠B 是cos A <cos B 的充要条件; ③∠A >∠B 是tan A >tan B 的充要条件;④∠A >∠B 是cot A <cot B 的充要条件. A .1B .2C .3D .4【分析】根据充分条件和必要条件的定义分别进行判断即可.解:①∠A >∠B ⇔a >b ⇔sin A >sin B ,故①∠A >∠B 是sin A >sin B 的充要条件成立,故①正确,;②y =cos x 在(0,π)上为减函数,∴∠A >∠B ⇒cos A <cos B ,反之也成立,故②正确; ③若∠A =120°,∠B =45°,满足∠A >∠B ,但tan A >tan B 不成立,即充分性不成立,故③错误;④y =cot x 在(0,π)上为减函数,∴∠A >∠B ⇒cot A <cot B ,反之也成立,故④正确; 故真命题的个数为3, 故选:C .【点评】本题主要考查命题的真假判断,利用充分条件和必要条件的定义是解决本题的关键. 15.要得到y =cos (2x −π4)的图象,只要将函数y =sin2x 的图象( )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位【分析】利用三角函数的诱导公式,化简得y =cos (2x −π4)=sin (2x +π4),再根据函数图象平移的公式加以计算,可得本题答案.解:∵y =cos (2x −π4)=sin[(2x −π4)+π2]=sin (2x +π4),∴若函数y =sin2x =f (x ),则函数g (x )=sin (2x +π4)=sin[2(x +π8)]=f (x +π8). 因此,将函数y =sin2x 的图象向左平移π8个单位,可得y =sin (2x +π4)的图象,即函数y =sin2x 的图象向左平移π8个单位,得到y =cos (2x −π4)的图象.故选:A .【点评】本题给出形状相同的两个三角函数图象,要我们求从一个图象到另一个图象所要平移的距离.着重考查了三角函数的诱导公式和函数图象平移的公式等知识,属于基础题. 16.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )A .B .C .D .【分析】函数f (x )=1+a sin ax 的图象是一个正弦曲线型的图,其振幅为|a |,周期为2π|a|,周期与振幅成反比,从这个方向观察四个图象. 解:对于振幅大于1时,三角函数的周期为:T =2π|a|,∵|a |>1,∴T <2π, 而D 不符合要求,它的振幅大于1,但周期小于2π. 对于选项A ,a <1,T >2π,满足函数与图象的对应关系, 故选:D .【点评】由于函数的解析式中只含有一个参数,这个参数影响振幅和周期,故振幅与周期相互制约,这是本题的关键. 三、解答题(共5题,共计52分)17.作出函数y =tan x +sin x ﹣|tan x ﹣sin x |,x ∈(π2,3π2)的图象,并写出函数的单调区间(不必证明)【分析】由题意作出函数y =tan x +sin x ﹣|tan x ﹣sin x |,x ∈(π2,3π2)的图象,从而由图象写出函数的单调区间.解:作函数y =tan x +sin x ﹣|tan x ﹣sin x |,x ∈(π2,3π2)的图象如下,结合图象可知,函数y =tan x +sin x ﹣|tan x ﹣sin x |在(π2,π)上单调递增,在(π,3π2)上单调递减.【点评】本题考查了学生的作图能力及数形结合的思想应用,同时考查了函数图象的应用,属于中档题.18.已知tan(α+π4)=3,求下列各式的值:(1)cos(π+α)−cos(π2−α)sin(π−α)+sin(3π2+α);(2)sin2α﹣2cos2α.【分析】由tan(α+π4)=3可求得tanα=12,(1)利用诱导公式化简cos(π+α)−cos(π2−α)sin(π−α)+sin(3π2+α)=cosα+sinαcosα−sinα,再“弦”化“切”即可;(2)利用二倍角的正弦将sin2α﹣2cos2α化为2sinαcosα﹣2cos2α,再将分母除以1=sin2α+cos2α,“弦”化“切”即可.解:∵由tan(α+π4)=1+tanα1−tanα=3得tanα=12,于是:(1)cos(π+α)−cos(π2−α)sin(π−α)+sin(3π2+α)=−cosα−sinαsinα−cosα=cosα+sinαcosα−sinα=1+tanα1−tanα=3;(2)sin2α﹣2cos2α=2sinαcosα﹣2cos2α=2sinαcosα−2cos2αsin2α+cos2α=2tanα−2tan2α+1=−45.【点评】本题考查同角三角函数基本关系式及变形公式的应用,利用诱导公式及sin2α+cos2α=1实现角α的正弦、余弦的互化、利用tanα可以实现角α的弦切互化是关键,属于中档题.19.已知函数f(x)=1﹣cos2(x−5π12),g(x)=1+12sin2x.(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值;(2)求函数h(x)=f(x)+g(x)在x∈(−π2,0)上的值域.【分析】(1)利用三角函数对称轴的性质确定x0的值,然后代入求值即可.(2)求出函数h(x)=f(x)+g(x)的解析式,由x∈(−π2,0),可得2x+π3的范围,由正弦函数的图象和性质即可得解.解:(1)f(x)=cos2(x+π12)=12+12cos(2x+π6),由2x+π6=kπ,k∈Z得所以函数的对称轴为x=kπ2−π12,k∈Z.因为x=x0是函数y=f(x)图象的一条对称轴,所以x0=kπ2−π12,k∈Z.所以g(x0)=1+12sin2(kπ2−π12)=1+12sin(kπ−π6),若k 是偶数,则g (x 0)=1+12sin (−π6)=34,若k 是奇数,则g (x 0)=1+12sin (5π6)=54.(2)h (x )=f (x )+g (x )=12+12cos (2x +π6)+1+12sin2x =32+12sin (2x +π3). 因为x ∈(−π2,0),所以:2x +π3∈(−2π3,π3),sin (2x +π3)∈[﹣1,√32),所以:h (x )∈[1,6+√34).【点评】本题主要考查三角函数的化简以及倍角公式,辅助角公式的应用,综合性较强,属于中档题.20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积为√3,求a ,b ; (2)若sin C +sin (B ﹣A )=sin2A ,求a ,b .【分析】(1)由余弦定理可得:4=a 2+b 2﹣ab ,①,由△ABC 的面积公式可得:√3=12ab sin C ,解得:ab =4,②,②代入①可解得:a +b =4,③,由②③可解得b ,a 的值. (2)利用两角和与差的正弦函数化简已知等式可得cos A (sin B ﹣sin A )=0,可得:cos A =0或sin B =sin A ,当cos A =0时,结合0<A <π,可得A 为直角,结合已知即可求得a ,b 的值,当sin B =sin A 时,由正弦定理可得a =b ,由余弦定理即可得解. 解:(1)∵c =2,C =π3.∴由余弦定理可得:4=a 2+b 2﹣ab ,①∵△ABC 的面积为√3=12ab sin C =12×√32ab ,解得:ab =4,②∴②代入①可得:a 2+b 2=8,从而(a +b )2=a 2+b 2+2ab =16,解得:a +b =4,③ ∴由②③可解得:b =2,a =2.(2)∵sin C +sin (B ﹣A )=sin2A ,sin C =sin (A +B )∴sin A cos B +cos A sin B +sin B cos A ﹣cos B sin A =2sin A cos A ,整理可得:cos A (sin B ﹣sin A )=0, ∴可得:cos A =0或sin B =sin A ,∴当cos A =0时,由0<A <π,可得A =π2,又c =2,C =π3,可得:b =ctanC =3=2√33,a =c sinC =232=4√33,当sin B =sin A 时,由正弦定理可得:a =b ,又c =2,C =π3,由余弦定理可得:4=2a 2﹣a 2,解得:a =b =2.【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式及三角函数恒等变换的应用,属于基本知识的考查.21.设函数f (x )是定义在R 上的偶函数,且f (1+x )=f (1﹣x )对任意的x ∈R 恒成立,且当x ∈[0,1]时,f (x )=x 2.(1)求证:f (x )是以2为周期的函数(不需要证明2是f (x )的最小正周期); (2)对于整数k ,当x ∈[2k ﹣1,2k +1]时,求函数f (x )的解析式;(3)对于整数k ,记M k ={a |f (x )=ax 在x ∈[2k ﹣1,2x +1]有两个不等的实数根},求集合M 2015.【分析】(1)因为f (x +2)=f [(x +1)+1]=﹣f (x +1)=﹣[﹣f (x )]=f (x )可得结论. (2)先求出x ∈[﹣1,1]时,f (x )=x 2,设x ∈[2k ﹣1,2k +1],则x ﹣2k ∈[﹣1,1],根据f (x )是以2为周期的函数,即f (x ﹣2k )=f (x )可求解.(3)将方程f (x )=ax 转化为二次函数,利用二次函数根的分布求a 的取值集合. 解:(1)因为f (x +2)=f [(x +1)+1]=﹣f (x +1)=﹣[﹣f (x )]=f (x ) 所以:f (x )是以2为周期的函数;(2)∵当x ∈[0,1]时,f (x )=x 2,函数f (x )是定义在R 上的偶函数 ∴当x ∈[﹣1,0]时,f (x )=x 2, ∴x ∈[﹣1,1]时,f (x )=x 2,∵f (x )是以2为周期的函数,即f (x ﹣2k )=f (x ),k ∈Z 设x ∈[2k ﹣1,2k +1],则x ﹣2k ∈[﹣1,1], ∴f (x ﹣2k )=(x ﹣2k )2,即f (x )=(x ﹣2k )2,x ∈[2k ﹣1,2k +1](k ∈Z ),(3)当k ∈N *,且x ∈I k 时,方程f (x )=ax 化简为x 2﹣(4k +a )x +k 2=0, 设g (x )=x 2﹣(4k +a )x +k 2,使方程f (x )=ax 在I k 上有两个不相等的实数根, 则{△=a(a +8k)>02k −1<k+a 2≤2k +1g(2k −1)=1−2ak +a >0g(2k +1)=1−2ak −a ≥0,解得0<a≤12k+1,当k=2015时,∴集合M2015=(0,14031]【点评】本题主要考查函数周期性的应用,以及二次方程根的分布问题,考查学生的转化能力,综合性较强,属于中档题.。
2014高中自主对外招生数学试卷和答案
高中自主招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,22小题,试卷共4页,另有答题卡;2.答案一律写在答题卡上,否则不能得分.一.选择题(本题有6个小题,每小题4分,共24分.每小题只有一个选项是正确的.) 1. 如果1-=ab ,那么两个实数a ,b 一定是( )A .互为倒数B .-1和+1C .互为相反数D .互为负倒数 2.下列运算正确的是( ) A .()b a ab 33= B .1-=+--ba ba C .326a a a =÷ D .222)(b a b a +=+3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A .平均数是9B .中位数是9C .众数是5D .极差是5 4.长方体的主视图、俯视图如右图所示, 则其左视图面积为( )A .3B .4C .12D .16 5.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、双曲线、圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是( ) A .16 B .13 C .12 D .236.如图,已知⊙O 的半径为r ,C 、D 是直径AB 的同侧圆周上的两点,100AOC ∠=,D 是BC 的中点,动点P 在线段AB 上,则PC +PD 的最小值为 ( ) A .r Br CDr CPDO BA(第6题)二.填空题(本题有8个小题,每小题5分.共40分) 7. 实数b a ,满足0132=+-b a ,则ba 的值为 .9. 在同一坐标系中,图形a 是图形b 向上平移3个单位长度,再向左平移2个单位得到,如果图形a 中A 点的坐标为(4,-2),则图形b 中与A 点对应的A '点的坐标为___ ____. 10.如图,在四边形纸片ABCD 中,∠A =130°,∠C =40°,现将其右下角向内折出∆FGE ,折痕为EF ,恰使GF ∥AD ,GE ∥CD ,则∠B 的度数为 .11.对于实数a 、b ,定义运算⊗如下:=⊗b a ⎪⎩⎪⎨⎧≠≤≠>-)0,()0,(a b a a a b a a b b, 例如1612424==⊗-. 计算 [][]=⊗-⨯⊗2)3(23 .13.已知直线1y x =,213y x =+,633+-=x y 的图象如图所示,无论x 取何值,当y 总取1y 、2y 、3y 中的最小值时, y 的最大值为14. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩恰好有三个整数解,则关于x 的一次函数14y x a=- 的图像与反比例函数32a y x+=的图像的公共点的个数为 . (第12题)G FE DCBA(第10题)三、解答题(本题有8个小题,共86分,解答应写出文字说明,证明过程或推演步骤.) 15.(本题满分7分)计算01( 3.14)(sin30)4cos 45π︒-︒-++-16.(本题满分9分)已知2)2()]2()()[(22=-÷-++--y y x y y x y x .求228242x x y x y---的值.17.(本题满分10分) 如图,直线AB 交双曲线()y 0kx x=>于A ,B 两点, 交x 轴于点C (4,0)a , AB =2BC ,过点B 作BM ⊥x 轴于点M , 连结OA ,若OM =3MC ,S △OAC =8,则k 的值为多少?18. (本题满分10分)如图,在菱形ABCD 中,AB =23,∠A =60°,以点D 为圆心的⊙D 与AB 相切于点E ,与DC 相交于点F . (1)求证:⊙D 与BC 也相切;(2)求劣弧EF 的长(结果保留π).19.(本小题满分12分)某商家计划从厂家采购A ,B 两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)求A 产品的采购数量与采购单价的函数关系式;(2)该商家分别以1760元/件和1700元/件的销售单价出售A ,B 两种产品,且全部售完,在A 产品的采购数量不小于11且不大于15的条件下,求采购A 种 产品多少件时总利润最大,并求最大利润.(第18题)(第17题)ABCCDDEE FFA20.(本小题满分12分)如图,在△ABC 中,∠CAB =90°,D 是斜边BC 上的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF .(1)若AB =AC ,BE +CF =4,求四边形AEDF 的面积。
2014-2015学年上海市复旦大学附属中学高一上学期期中考试数学试卷含详解
复旦大学附属中学2014学年第一学期高一年级数学期中考试试卷一、填空:(每题4分,共44分)1.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.2.命题“若21x =,则1x =”的否命题为__________.3.函数y =__________.4.已知集合1,2,3,4A ={}、1,2B ={},满足A C B C ⋂=⋃的集合C 有___个5.已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____6.已知集合{()()(){}3,12340P x x Q x x x x =-≥=+-->,则P Q = __________.7.若不等式2(2)2(2)40a x a x -+--<对一切x ∈R 成立,则a 的取值范围是__.8.已知关于x 的不等式20ax bx c ++<的解集是1|22x x x ⎧⎫<->-⎨⎬⎩⎭或,则不等式20cx bx a -+>的解集为_________9.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}5,0,1,2,3,4k n k n Z k =+∈=.给出如下四个结论:①[]20111∈,②[]33-∈,③[][][][][]01234Z = ,④整数,a b 属于同一类的充要条件是[]0a b -∈.其中正确的个数是___________10.某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费P (万元)与仓库到停车库的距离x (公里)成反比,而每月库存货物的运费K (万元)与仓库到停车库的距离x (公里)成正比.如果在距停车库18公里处建仓库,这两项费用P 和K 分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x =________公里.11.设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =__________.二、选择题:(每题4分,共16分)12.三国时期赵爽在《勾股方圆图注》中,对勾股定理的证明可用现代数学表述为如下图所示,我们教材中利用该图作为几何解释的是().A.如果a b >,b c >,那么a c> B.如果0a b >>,那么22a b >C.对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立 D.如果a b >,0c >那么ac bc>13.设x 取实数,则()f x 与()g x 表示同一个函数的是()A.()(),f x x g x == B.()()()22,xf xg x x==C.()()()01,1f x g x x ==- D.()()29,33x f x g x x x -==-+14.123{3x x >>是12126{9x x x x +>>成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件15.在关于x 的方程()22401160x ax x a x -+=+-+=,和223100x ax a +++=中,已知至少有一个方程有实数根,则实数a 的取值范围是()A.44a -≤≤B.97a a ≥≤-或C.24a a ≤-≥或 D.24a -<<三、解答题16.解方程:212324x x +-=17.若关于x 的不等式:21241(0)x x k k k +-≥+≠(1)解此不等式;(2)若21242{|1}x x x k k+-∈≥+,求实数k 的取值范围.18.已知,其中(){}22112,2103x P x Q x x x m ⎧⎫-=-≤=-+-≤⎨⎬⎩⎭,其中全集U =R ,若U x C P ∈是U x C Q ∈的必要而不充分条件,求实数m 的取值范围.19.现有A B C D 、、、四个长方体容器,AB 、的底面积均为2x ,高分别为,x y ;CD 、的底面积均为2y ,高也分别为x y 、(其中x y ≠),现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x 与y 大小的情况下有没有必胜的方案?若有的话,有几种?20.定义实数,a b 间的计算法∆则如下:2,,a a ba b b a b≥⎧∆=⎨<⎩(1)计算()231∆∆(2)对x z y <<的任意实数,,x y z ,判断等式()()x y z x y z ∆∆=∆∆是否恒成立,并说明理由:(3)写出函数()()12y x x x =∆∆-∆的解析式,其中22x -≤≤并求其值域.21.已知,,a b c ∈R ,满足a b c >>.(1)求证:1110a b b c c a++>---;(2)现推广:把1c a -的分子改为另一个大于1的正整数p ,使110p a b b c c a++>---对任意a b c >>恒成立,试写出一个p ,并证明之;(3)现换个角度推广:正整数m n P 、、满足什么条件时,不等式0m n pa b b c c a++>---对任意a b c >>恒成立,试写出条件并证明之.复旦大学附属中学2014学年第一学期高一年级数学期中考试试卷一、填空:(每题4分,共44分)1.用列举法表示集合*6,5A a N a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.【答案】{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A .【详解】因为a Z ∈且*65N a∈-所以a 可以取1-,2,3,4.所以{}1,2,3,4A =-故答案为:{}1,2,3,4-【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.2.命题“若21x =,则1x =”的否命题为__________.【答案】若21x ≠,则1x ≠【详解】根据逆否命题的写法:既否条件又否结论,原命题的否命题为若21x ≠,则1x ≠.故答案为若21x ≠,则1x ≠.3.函数y =【答案】[)(]2,11,2- 【分析】函数的定义域满足被开方数非负和分母不为0得到不等式组,从而可得函数的定义域.【详解】函数y =2010x x ⎧-≥⎨-≠⎩,解得22x -≤≤且1x ≠所以函数y =[)(]2,11,2-故答案为:[)(]2,11,2- 【点睛】本题考查具体函数的定义域,属于基础题.4.已知集合1,2,3,4A ={}、1,2B ={},满足A C B C ⋂=⋃的集合C 有___个【答案】4由条件A C B C ⋂=⋃可知:B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃⊆⋂⊆()()()(),则符合条件的集合C 的个数即为集合{3}4,的子集的个数,共4个.5.已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____【答案】116211414()44216x y xy x y +=⋅≤=,当且仅当x=4y=12时取等号.6.已知集合{()()(){}3,12340P x x Q x x x x =-≥=+-->,则P Q = __________.【答案】31,2⎡⎫⎪⎢⎣⎭【分析】先求出不等式3x -≥的解集即为集合P ,根据数轴标根法求出()()()12340x x x +-->的解集,即求出集合Q ,由交集的运算求出P Q .【详解】由3x -≥()2103031x x x x ⎧-≥⎪⎪-≥⎨⎪-≥-⎪⎩,解得:12x ≤≤,即[]1,2P =.用数轴标根法解()()()12340x x x +-->得312x -<<或4x >.()31,4,2Q ⎛⎫=-+∞ ⎪⎝⎭ 。
复旦大学附属中学2014学年第二学期数学
复旦大学附属中学2014学年第二学期高一年级数学期末考试试卷2015.6(满分:120分 考试时间:100分钟 请将答案写在答题纸上)一、填空题(每题4分,共48分) 1.求值:2sin arccos 3⎡⎤⎛⎫-= ⎪⎢⎥⎝⎭⎣⎦2.在等比数列{}n a 中,若25a =,420a =,则6a =3.设{}n a 是公差不为0的等差数列,12a =且1a ,3a ,6a 成等比数列,则{}n a 的前10项和10S = .4.函数arccos2y x =-的反函数为5.已知数列{}n a 满足:431n a -=,410n a -=,2n n a a =,*n ∈N ,则2014a =6.等差数列{}n a 前n 项和为n S .已知2110m m m a a a -++⋅=,2138m S -=,则m =7.已知函数()132sin 1ππ22f x x x ⎛⎫=+<< ⎪⎝⎭,()1f x -为()f x 的反函数,则112f -⎛⎫= ⎪⎝⎭(用反三角形式表示)8.方程sin 2cos x x =,[]02πx ∈,的解集是9.函数lg sin x y =的定义域为10.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,{}n a 的前n 项和n S 取得最大值时n 的值为.11.当01x ≤≤时,不等式πsin 2xkx ≥恒成立,则实数k 的取值范围是 .12.设12a =,121n n a a +=+,21n n n a b a +=-,*n ∈N ,则数列{}n b 的通项公式n b =二、选择题(每题4分,共16分)13.不等式tan 2x <的解集是( )A .πππarctan 23x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z ,B .2ππarctan 2π3x k x k k ⎧⎫+<<+∈⎨⎬⎩⎭Z ,C .π2π2πarctan 23x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z ,D .2π2πarctan 22π3x k x k k ⎧⎫+<<+∈⎨⎬⎩⎭Z ,14.对数列{}n a ,“0n a >对于任意*n ∈N 成立”是“其前n 项和数列{}n S 为递增数列”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件15.设()(){}cos arccos A x y y x ==,,()(){}arccos cos B x y y x ==,,则AB =( )A .(){}11x y y x x =-,,≤≤B .()1122x y y x x ⎧⎫=-⎨⎬⎩⎭,,≤≤C .(){}01x y y x x =,,≤≤D .(){}0πx y y x x =,,≤≤16.若数列{}n a 的前8项的值各异,且8n n a a +=,对于任意的*n ∈N 都成立,则下列数列中可取遍{}n a 前8项值的数列为( )A .{}21k a +B .{}31k a +C .{}41k a +D .{}61k a +三、解答题(共5题,共56分) 17.(8分)解方程:cos 2cos sin x x x =+18.(8分)已知方程240x ++=有两个实根1x ,2x ,记1arctan x α=,2arctan x β=,求αβ+的值.19.(12分)已知点113⎛⎫⎪⎝⎭,是函数()x f x a =(0a >,且1a ≠)的图像上一点,等比数列{}n a 的前n项和为()f n c -,数列{}n b (0n b >)的首项为c ,且前n 项和n S 满足:当2n ≥时,都有1n n S S -- ⑴ 求c 的值;⑵求证:是等差数列,并求出nb ;⑶ 若数列11n n b b +⎧⎫⎨⎬⎩⎭前n 项和为n T ,问是否存在实数m ,使得对于任意的*n ∈N 都有n T m ≥,若存在,求出m 的取值范围;若不存在,说明理由.20.(14分)某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.⑴ 设从2016年起的第n 年(以2016年为第一年),该企业不进行技术改造的年纯利润为n a 万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为n b 万元,求n a 和n b ; ⑵ 设从2016年起的第n 年(以2016年为第一年),该企业不进行技术改造的累计纯利润为n A 万元,进行技术改造后的累计纯利润为n B 万元,求n A 和n B ;⑶ 依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润? 21.(14分)如果有穷数列1a ,2a ,3a ,…m a (m 为正整数)满足1m a a =,21m a a -=,…1m a a =,即1i m i a a -+=(12i m =,,…,),那么我们称其为对称数列.⑴ 设数列{}n b 是项数为7的对称数列,其中1b ,2b ,3b ,4b 为等差数列,且12b =,411b =,依次写出数列{}n b 的各项;⑵ 设数列{}n c 是项数为21k -(正整数1k >)的对称数列,其中k c ,1k c +,…,21k c -是首项为50,公差为4-的等差数列.记数列{}n c 的各项和为数列21k S -,当k 为何值时,21k S -取得最大值?并求出此最大值;⑶ 对于确定的正整数1m >,写出所有项数不超过2m 的对称数列,使得1,2,22,…,12m -依次为该数列中连续的项.当1500m >时,求其中一个数列的前2015项和2015S .。
2014年复附自主招生试卷(二)
2014年复附自主招生试卷(二)一、填空题1.实数x,y满足|2x−6|+|y+1|+√(x−4)y2+x2+z2=2+2xz,则x+y−z=________【答案】-1【解析】2.若10013的分子、分母同时加上正整数n时,该分数称为整数。
这样的正整数n共有_____个。
【答案】2【解析】3+n|1001+n,∴3+n|998,∴998=2×499,3+n=499或4983.已知a2=7−3a,b2=7−3b,且a≠b,则ba2+ab2=___________【答案】−9049【解析】4. 设p 是奇数,则方程2xy =p (x +y )满足x <y 的正整数解是____________【答案】{x =p+12y =p 2+p 2 【解析】2xy −p (x +y )=0,x (2y −p )−p 2(2y −p )=p 22(2x −p )(2y −p )=p 20<x <y2x −p <2y −p{2x −p =12y −p =p 2或{2x −p =−p 22y −p =−1(舍) {x =p +12y =p 2+p 2 5. 方程x =(x −1x )12+(1−1x)12的解为____________ 【答案】√5−12 【解析】8. 如图,正方形ABCD的边长为100米,甲,乙两个动点分别从A点和B点同时出发按逆时针方向移动。
甲的速度是7米/秒,乙的速度是10米/秒,甲、乙两动点第一次位于正方形的同一条边上。
【答案】70s【解析】追及问题0≤(√甲t+300−√乙t≤100)0≤300−3t≤1002003≤t≤100当t=2003时,第一次两人相离100米t=70010=70s9. 已知△ ABC是等边三角形,动点P、Q、R分别同时从顶点A、B、C出发,沿AB、BC、CA按逆时针方向以各自的速度匀速移动,且P、Q、R经过△ABC的一边所用时间分别为1秒,2秒,3秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复旦附中数学自主招生测试(2014)第1页(共1页)
2014年复旦大学附属中学自主招生测试
数学试卷
一.填空题
1.已知998a =,997b =,996c =,则2a ab ac bc --+= ▲ . 2.已知:23a =,32b =,则
1111
a b +=++ ▲ . 3.在△ABC 中,10AB =,16AC =,BAC ∠的角平分线为AN ,BN 和AN 垂直,垂直为N ,M 为BC 的中点,则MN = ▲ . 4.方程
2354235
x x x x +=----的根为 ▲ . 5.已知一次函数y kx b =+经过点(1,1),且2k >,则该函数不经过第 ▲ 象限.
6.已知,,,,,a b c d e f 为实数,满足0ace ≠,已知ax b cx d ex f +++=+对于任意x 都成立,则ad bc -= ▲ .
7.已知:222
21231001135
2001A =+++
+
,222
2
12310013572003
B =++++
,则与A B -最接近的整数是 ▲ .
二.解答题
8.已知,x y 是正整数,且2014x y >>,1112014x y xy
++=,试求x y -的最大值.
9.在△ABC 中,BF 和CE 分别是ABC ∠和ACB ∠的平分线,O 是内心(角平分线的交点),满足OE OF =,求证:△ABC 是等腰三角形或60A ∠=︒.
10.从1、2、3、4、…、2014这2014个数中,抽取n 个数,放入集合A 中,从A 中任意取3个数后,总有一个数能够整除另一个,试求n 的最大值.
复旦附中数学自主招生测试(2014)第2页(共1页)
2014年复旦大学附属中学自主招生测试
数学试卷参考答案和评分标准
一.填空题
1.2 2.1 3.3 4.0;4
;4 5.二 6.0 7.501 二.解答题 8.解:由1112014x y xy
++= 得
112015
2014
x y x y ⎛⎫++⎛⎫⋅=
⎪ ⎪⎝⎭⎝⎭; 即
2014201420140xy x y ---=;
即
(2014)(2014)20142013x y --=⨯;
得:
min ()402840271x y -=-=.
9.证明:在AC 上截取'AE AE = ①如果E'和F 重合,那么
△AOE ≌△AOF ,△BOE ≌△COF ;
因此
AB AE BE AF CF AC =+=+=;
故
△ABC 是等腰三角形;
②如果E'和F 不重合,易知
△AOE'≌△AOF ;
于是
'OE OF =;
即
''OFE OE F BEC ∠=∠=∠;
A
B
C
E
F (E')
O
第9题图①
A
B
C
E
E' O
F
第9题图②
复旦附中数学自主招生测试(2014)第3页(共1页)
由12BEC A C ∠=∠+∠,1
2AFO B C ∠=∠+∠
推出
11
()(180)22
B C A A ∠+∠=︒-∠=∠; 即
60A ∠=︒.
10.解:首先构造两个数列:
{}1,2,4,8,16,32,64,128,256,512,1024; {}3,6,12,24,48,96,192,384,768,1512.
共21个数,这21个数中任取三个,总有一个数为另一个数的倍数. 因此:
21n ≤.
如果21n >,则构造如下集合:
{}1,{}2,3,{}4,5,6,7,{}8,9,10,
,15,…,{}1024,1025,,2014;
共11个集合,如果21n >,至少有某个集合中被选了大于等于3个数,而这个集合中不可能
存在一个数是另一个数的倍数.矛盾. 故
n 的最大值为21.。