七年级数学下册整式测试卷

合集下载

北师大版七年级数学下册第一章整式的乘除——整式混合运算及化简求值专项练习(含答案)

北师大版七年级数学下册第一章整式的乘除——整式混合运算及化简求值专项练习(含答案)

整式的乘除——整式混合运算及化简求值专项练习一、单选题(共6小题)1.下列计算中正确的是( )A.m÷n·1n=m B.m·n÷m·n=1C.n·1n ·m·1m=1 D.m3÷1m÷m2=12.已知除式是x2+2x,商式是x,余式是-1,则被除式是( )A.x3+2x2−1B.x2+2xC.x2−1D.x2−3x+13.已知2a2−a−3=0,则(2a+3)(2a−3)+(2a−1)2的值是( )A.6B.−5C.−3D.44.现规定一种运算:a△b=ab+a−b,其中a,b为实数,则a△b△a等于( )A.a2b+a2+bB.a2b−a2+bC.a2b+a2−bD.a2b−a2−b5.若m是任意整数,则代数式2[m(m−1)+m(m+1)]·[m(m−1)−m(m+1)]的值可能为( )A.4B.8C.−27D.−366.计算(x−1)(2x+1)−(x2+x−2)的结果,与下列哪一个式子相同( )A.x2−2x−3B.x2−2x+1C.x2+x−3D.x2−3二、填空题(共6小题)7.已知x+y=3,xy=1,则(x−1)(y−1)的值等于.8.如果长方形的长为(2a+b)米,宽为(a−2b)米,则其周长为米.9.若(−2x2)(3x2−ax−6)−3x3+x2中不含x的三次项,则a=.10.若M=(x−2)(x−8),N=(x−3)(x−7),则M−N=.11.规定a∗b=ab+a−b,其中a,b为实数,则a∗b+(b−a)∗b=12.A·(x+y)=x2−y2,则A=.三、解答题(共9小题)13.化简:(1)(x+5)2−(4+x)(4−x);(2)4x(x2+x+3)+(−2x−5)(2x−5)−(−2x)2;(3)(3x−4y)(3x+4y)−(3x+y)214. 已知x=13,求(2x+1)(2x−1)+x(3−4x)的值.15. 已知3x2−2x−3=0,求的值.16. 先化简,再求值:(2−a)(2+a)−2a(a+3)+3a2,其中a=−13.17. 先化简,再求值:(2x+y)2−(2x+y)(2x−y)−2y(x+y),其中x=(12)2023,y=22022.18.先化简,再求值:−a2b+(3a b2−a2b)−2(2a b2−a2b),其中a=1,b=−2.19.先化简,再求值:(x−y)2+y(4x−y)−8x]÷2x,其中x=8,y=2021.20.已知m2−m−2=0,求代数式m(m−1)+(m+1)(m−2)的值.21.先化简,再求值:[(3m+4n)(3m+2n)−2n(3m+4n)]÷(−6m),其中m=2,n=3.参考答案1.C2.A3.D4.C5.B6.B7.−18.(6a−2b)9.3210.−511.b²−b12.x−y【解析】A=(x2−y2)÷(x+y)=[(x+y)(x−y)]÷(x+y)=x−y,故答案为:x−y.13.(1)解:原式=x2+10x+25−16+x2=2x2+10x+9.(2)原式=4x3+4x2+12x+25−4x2−4x2=4x3−4x2+12x+25.(3)原式=9x2−16y2−9x2−6xy−y2=−17y2−6xy.14.解:(2x+1)(2x−1)+x(3−4x)=4x2−1+3x−4x2=−1+3x.当x=13时,原式=−1+3×13=0.15.解:原式=x2−2x+1+x2+23x=2x2−43x+1,∵3x2−2x−3=0,∴x2−23x=1,∴原式=2×1+1=3.16.解:(2−a)(2+a)−2a(a+3)+3a2,=4−a2−2a2−6a+3a2,=4−6a;当a=−13时,原式=4−6×(−13)=4+2=6.17.解:原式=4x2+4xy+y2−(4x2−y2)−2xy−2y2 =4x2+4xy+y2−4x2+y2−2xy−2y2=2xy.当x=(12)2023,y=22022时,原式=2×(12)2023×22022=2×12×(12)2022×22022=1.18.解:原式=−a2b+3a b2−a2b−4a b2+2a2b=(−1−1+2)a2b+(3−4)a b2=−a b2.当a=1,b=−2时,原式=−1×(−2)2=−4.19.解:[(x−y)2+y(4x−y)−8x]÷2x=(x2−2xy+y2+4xy−y2−8x)÷2x=(x2+2xy−8x)÷2x=12x+y−4.当x=8,y=2021时,原式=12×8+2021−4=2021.20.解:原式=m2−m+m2−2m+m−2=2m2−2m−2=2(m2−m)−2.∵m2−m−2=0,∴m2−m=2,∴原式=2×2−2=2.21.解:原式=(9m2+18mn+8n2−6mn−8n2)÷(−6m) =(9m2+12mn)÷(−6m)=−3m−2n,2当m=2,n=3时,原式=−3×2−2×3=−9.2。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)
9.如果4a2﹣ka+1是完全平方式,那么k的值是()
A.﹣4B.±4C.4D.±8
10.若 ,则 的值等于( )
A.37B.27C.25D.44
11.如 , ,则 ( )
A.-11B.11
C.-7D.7
12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()
A. B.
C. D.
10.A
解析:A
【分析】
利用完全平方公式进行运算即可得.
【详解】

,即 ①,
又 ,
②,
由① ②得: ,
即 ,
故选:A.
【点睛】
本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.
11.D
解析:D
【分析】
根据 直接代入求值即可.
【详解】
解:当 , ,时,
=9-2=7.
故选:D.
【点睛】
本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键
∵ , ,
∴x+y= ,

=
=
=20,
故选:A.
【点睛】
此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.
7.C
解析:C
【分析】
表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.
【详解】
解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,
解析:6
【分析】
根据平方差公式计算.
【详解】
( +1)( ﹣1)=7-1=6,

七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》单元测试卷一、选择题(本大题共15小题,共45.0分) 1. 计算−x 2·x 3的结果是( )A. −x 5B. x 5C. −x 6D. x 62. 下列算式中,计算结果等于a 6的是( )A. a 3+a 3B. a 5⋅aC. (a 4)2D. a 12÷a 23. 下列运算正确的是( )A. a 2+a 3=a 5B. (a 2)3=a 5C. a 6÷a 3=a 2D. (ab 2)3=a 3b 64. 下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 55. 已知x +y =2,xy =−2,则(1−x)(1−y)的值为( )A. −1B. 1C. 5D. −36. 已知a +b =2,ab =−2,则a 2+b 2=( )A. 0B. −4C. 4D. 87. 312是96的( )A. 1倍B. 19倍C. (19)6倍D. 36倍8. a 11÷(−a 2)3⋅a 5的值为( )A. 1B. −1C. −a 10D. a 99. 下列计算:①(−1)0=−1;②(−2)−2=14;③用科学记数法表示−0.0000108=1.08×10−5.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A.B. c >b >aC. b >a >cD. b >c >a11. 不论x ,y 为任何实数,x 2+y 2−4x −2y +8的值总是( )A. 正数B. 负数C. 非负数D. 非正数12. 若2x −3y +z −2=0,则16x ÷82y ×4z 的值为( )A. 16B. −16C. 8D. 413.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)914.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−415.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a3二、填空题(本大题共5小题,共25.0分)16.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若a+b=2,a2−b2=6,则a−b=______.19.若x8÷x n=x3,则n=______.20.若x2+2(m−3)x+16是完全平方式,则m的值是_________.三、计算题(本大题共4小题,共32.0分)21.计算:(1)(12a3−6a2+3a)÷3a−1(2)(x+y)2−(x+y)(x−y)22.计算(1)−a6⋅a5÷a3+(−2a2)4−(a2)3⋅(−3a)2;(2)(2x+y)2+(x−y)(x+y)−5x(x−y).23.计算下列各题:(1)−22+(20182−2018)0+(−13)−2−|−3|(2)(−32a2b)2⋅4ab2÷(3a3b)24.计算(1)−14+(−2)÷(−13)−|−9|(2)18×(12−56+23)四、解答题(本大题共5小题,共48.0分)25.已知(x2+mx+n)(x−1)的结果中不含x2项和x项,求m、n的值.26.若x+y=3,且(x−3)(y−3)=2.(1)求xy的值;(2)求x−y的值.27.一位同学在研究多项式除法时,把被除式的二次项系数写成a,而把结果的一次项系数又写成了−b,等式如下:(x3+ax2+1)÷(x+1)=x2−bx+1,现请你帮他求出a,b的值.28.已知x2−x+1=0,求代数式(x+1)2−(x+1)(2x−1)的值.29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2= log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数式53=125转化为对数式______;(2)log24=______,log381=______,log464______.(直接写出结果)=log a M−log a N(a>0,a≠1,M>0,N>0).(写出证明过程(3)证明:证明log a MN)(4)拓展运用:计算计算log34+log312−log316=______.(直接写出结果)答案1.A2.B3.D4.D5.D6.D7.A8.C9.C10.C11.A12.A13.C14.D15.D16.6.5×10−417.m+818.319.520.7或−121.解:(1)原式=4a2−2a+1−1=4a2−2a;(2)原式=x2+2xy+y2−(x2−y2)=x2+2xy+y2−x2+y2=2xy+2y2.22.解:(1)原式=−a11÷a3+16a8−a6⋅9a2=−a8+16a8−9a8 =6a8;(2)原式=4x2+4xy+y2+x2−y2−5x2+5xy=9xy.23.解:(1)−22+(20182−2018)0+(−13)−2−|−3|=−4+1+9−3 =3;(2)(−32a2b)2⋅4ab2÷(3a3b)=94a4b2⋅4ab2⋅13a3b=3a2b3.24.解:(1)原式=−1+6−9 =−4;(2)原式=18×12−18×56+18×23=9−15+12=6.25.解:(x2+mx+n)(x−1)=x3+(m−1)x2+(n−m)x−n.∵结果中不含x2的项和x项,∴m−1=0且n−m=0,解得:m=1,n=1.26.解:(1)由(x−3)(y−3)=2,整理得:xy−3(x+y)+9=2,把x+y=3代入得:xy=2;(2)∵x+y=3,xy=2,∴(x−y)2=(x+y)2−4xy=9−8=1,则x−y=±1.27.解:原除式变形为x3+ax2+1=(x+1)(x2−bx+1),=x3+(1−b)x2+(1−b)x+1,所以a=1−b,1−b=0,解得a=0,b=1.28.解:∵x2−x+1=0,∴x2−x=−1,原式=x2+2x+1−(2x2−x+2x−1)=x2+2x+1−2x2+x−2x+1=−x2+x+2=−(x2−x)+2=−(−1)+2=3.29.3=log5125 2 4 =3 1【解析】解:(1)∵一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.∴3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∴log24=2,log381=4,log464=3,故答案为:2;4;=3;(3)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,∴由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N;(4)log34+log312−log316=log3(4×12÷16)=log33=1.故答案为:1.(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(4×12÷16),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系。

七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)

七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)

七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)( 时间:90分钟 总分:100分)一、选择题:(本大题共12小题,每小题2分,共计24分)1.下列说法中,正确的是( )A. 单项式b 的次数是0B. 是一次单项式C. 24x 3是7次单项式D. -5是单项式2.对于单项式-的系数和次数分别是( )A. -2,2B. -2,3C. -,2D. -,33.下列单项式中,书写规范的是( )A. 1aB. x ·2C. 0.5xD. 1mn4.若21213n x y --是7次单项式,则n =( ) A. 1 B. 2 C. 3 D. 45.下列说法正确的是( )A. -x +3x 三次二项式B. x -1二次二项式C. x 2-2x +34是二次三项式D. -5x 5+2x 4y 2-1是八次三项式6.一个n 次多项式(n 为正整数),它的每一项的次数是( )A. 都等于nB. 都小于nC. 都不小于nD. 都不大于n7.设M ,N 都是关于x 的五次多项式,则M +N 是( )A.十次多项式B.五次多项式C.次数不大于5的多项式D.次数不大于5的整式8.-3x 4与3y 是同类项,则mn 的值为( )A. 6B. 8C. 2D. 19.化简:ab-(2ab-3ab2)结果是()A.3a2b+3abB.-3ab2-abC.3ab2-abD.-3ab2+3ab10.若x 是两位数,y是一位数,如果把y 置于x左边所得的三位数是()A.100y+xB. 100y+10xC.10y+xD. yx11.减去2-3x等于6x2-3x-8的代数式是()A.6x2-6x-10B.6x2-10C.6x2-6D.6x2-6x-612.若a2b+4=0,则代数式3a2b-(a2b-3a2b)的值为()A. 20B. -20C. 4D. -4二、填空题:(本大题共8小题,每小题2分,共16分)13.用式子表示“数a的3倍与3的差的一半”是.14.把多项式6+2x4-3x2+7x3按各项的次数从高到低重新排列为.15.某项工程。

北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案

北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案

第一章《整式的乘除》单元测试卷(最新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)0等于()A.1B.0C.-2D.122.(跨学科融合)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.000 05米.其中,0.000 05用科学记数法表示为()A.5×10-5B.5×10-4C.0.5×10-4D.50×10-33.下列各式计算正确的是()A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2bD.2ab·ab=2ab24.若24×22=2m,则m的值为()A.8B.6C.5D.25.计算(8a2b3-2a3b2+ab)÷ab的结果是()A.8ab2-2a2b+1B.8ab2-2a2bC.8a2b2-2a2b+1D.8a2b-2a2b+16.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-67.若(a+2b)2=(a-2b)2+A,则A等于()A.-8abB.8abC.8b2D.4ab8.下面四个整式中,不能表示图中阴影部分面积的是()A.(m+5)(m+3)-3mB.m(m+5)+15C.m2+5(m+3)D.m2+8m第8题图第10题图9.已知M=79a-1,N=a2-119a(a≠1),则M,N的大小关系为()A.M=NB.M<NC.M>ND.不能确定10.(创新题)如图,两个正方形的边长分别为a,b,若a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共5小题,每小题3分,共15分)11.比较大小:2-2π0.(选填“>”“<”或“=”)12.计算:2a2(3a2-5b)=.13.若x2-(m+1)x+1是完全平方式,则m的值为.14.若a+3b-2=0,则3a·27b=.15.(数学文化)我国宋朝数学家杨辉在其著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律:杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.例如:(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,中间项系数2等于上方数字1加1,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,中间项系数3等于上方数字1加2,系数分别为1,3,3,1,系数和为8;……则(a+b)4的展开式中系数和为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:2-1+(π-3.14)0+(-2)-(-1)2 023.。

北师大版七年级数学下第一章整式的运算测试题

北师大版七年级数学下第一章整式的运算测试题

北师大版七年级数学下第一章整式的运算测试题姓名: 分数:1、单项式b a 221π的系数是 次数是 ,多项式b a ca ab 23543+-第二项系数是 ,是 次 项式,7242543∏-+-y x y x xy 是 次 项式.2、⑴251010-⨯= ;=⋅32a a ;()=535 ;()=32m ;=÷-251010 ;=÷68a a ;()=3mn ;=⎪⎭⎫ ⎝⎛3321b a ;()=-4322n m ;=⨯-428 ()=⨯-016.813.5 ;()()=-+2 2x x ;(-3×103)3=________;221()3ab c -=________-(2x 2y 4)3=_____;[]=-322)(ax ;x n+1·x n-1÷(x n )2= . 322⎪⎭⎫ ⎝⎛-y x = ;23()4n n n n a b =;221()()n n x y xy -⋅ =______ ()=-232y x ;=⎪⎭⎫ ⎝⎛+2213x ; 0.000508= ; 51012.5-⨯-= ;()()=---n m n m ;()493 22+-=x x x ; =-⨯⎪⎭⎫ ⎝⎛200200)3(32 ; 23222(3)()a a a +⋅= 5237()()p q p q ⎡⎤⎡⎤+⋅+⎣⎦⎣⎦= 3、计算题1、()()ab b a 4322-⋅⋅-;2、()()2222332725y xy x y xy x +----3、3x 2(-y -xy 2+x 2);4、利用公式计算:210025、()()c b a c b a ++-+ ;6、()()[]()x x x x x 3112-÷-++7、)312(22ab ab a +-; 8、)562332)(21(22y xy y x xy +--9、)3()4(2y x xy xy +⋅-;10、)34()5323(2222y x y xy x -∙-+;11、)1(2)(x 22-+-⋅x x x x 12、()()y x y x 432++-4、若7,3==n n y x ,则nxy )(= ;23()n x y =5、如果3147927381m m m +++⨯÷=,那么m=______.若35,34m n ==,则23m n -= .6、要使)6()1(32x ax x -⋅++的展开式中不含4x 项,则a=7、(1+x)(2x 2+ax+1)的结果中x 2项的系数为-2,则a 的值为( )8、若0352=-+y x ,则y x 324⋅的值为 已知23m =,24n =,求2m n +=9、若942++mx x 是一个完全平方式,则m = ;22124m x x +-是一个完全平方式,则m =10、已知a 31=+a ,试求的值44221,1a a a a ++11、已知8b a =+,5ab -=,求下列各式的值(1)、22a b +; (2)、22a b ab +-12、已知x n =5,y n =3,求(xy )2n 的值.(2) 已知4·8m ·16m =29,求m 的值。

初一(七年级)数学下册整式单元测试题(14套)

初一(七年级)数学下册整式单元测试题(14套)

初一(七年级)数学下册达标测试 培青中学七年级数学整式测试试卷(时间:60分钟 满分:120分 )班级:________姓名:_______座号: ________一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列说法正确的是( ) A .z y x 32没有系数 B .2a的系数是2 C .2009π是一次单项式 D .1234++y x x 是五次三项式 2.下列说法中正确的是( )A . 2743x x x =+B . x x x 743=+C . 23522=-x xD . xy y x 532=+ 3.化简53a a 的结果是( )A . 15aB .8aC .3aD .5a 4.下列计算正确的是( )A .623)2(a a =B .623)(a a -=-C .6364)4(a a =D .65332)(b a b a = 5.下列计算中正确的是( )A .326a a a =÷B .224)()(a a a -=-÷-C .32a a a =÷D .23a a a =÷ 6.下列计算正确的是( )A .1)1(0-=-B .91312-=- C .22313aa =- D .100)1.0(2=-- 7.计算)1)(1)(1)(1(42++-+a a a a 的结果是 ( )A .18-aB .148+-a aC .1248+-a aD .以上答案都不对 8.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 9.下列计算正确的是( )A .4635333b a ab b a -=∙-B .b a ab b a 222253-=-C .ab b a b a 9327324=÷D .94)32)(32(2-=---a a a 10.按下列程序计算,最后输出的答案是( )A .3aB . 12+aC .2aD .a二、填空题(每小题3分,共计30分.) 1.化简:222a a -=2.计算:)105()104(45⨯⨯⨯= 3.计算:2732x x x x ÷+∙= 4.计算:523)(a a ÷-= 5.计算:304101010-÷⨯= 6.化简:200920098125.0⨯=7.若224y axy x ++是一个完全平方式,则a= 8.若y x y x 2210,9100,4100+==则= 9. 若221,31mm m m +=+则= 10.若200942,03222++=++x x x x 则=三、运用乘法公式计算(每小题6分,共12分) (1).2007200920082⨯- (2)2999四、运用乘法公式计算(每小题6分,共24分) (1).)833()532(22-+--+b ab b ab(2).)2)(3()5(+--+n n n n(3).)14()7()2(34232y x xy y x ÷-∙(4).)2()1264(3223ab ab b a b a ÷+-五、(8分)先化简再求值:)(]42)2)(2[(22xy y x xy xy ÷+--+,其中x =10,y =251六、(8分)计算2)(c b a --七、(8分)已知0106222=+-++y y x x ,求x ,y 的值.太平中学七年级(下)数学单元测试卷整 式 的 运 算姓名 _____________ 班级 ____________ 学号 _______ 成绩 _______一、选择题。

七年级数学下册整式的乘法综合练习题

七年级数学下册整式的乘法综合练习题

七年级数学下册整式的乘法综合练习题整式的乘法是数学中的重要概念之一,它在解决实际问题和推导其他数学知识上都具有重要作用。

在七年级数学下册中,整式的乘法是一个重点难点内容,需要我们深入理解和熟练掌握。

为了帮助同学们更好地掌握整式的乘法,本文将为大家提供一些综合练习题,并加以详解,希望能对大家的学习有所帮助。

1. 计算下列各题:(1) $(2a + 3b)(4a - 5b)$(2) $(3x^2 - 5y)(x + 2y)$(3) $(4m - 2n)(3m + n)$(4) $(5p - 2q)(3p + 4q)$解答:(1) 将每一个项分别乘以另一个多项式的每一项,然后将结果相加。

$(2a + 3b)(4a - 5b) = 2a \cdot 4a + 2a \cdot (-5b) + 3b \cdot 4a + 3b\cdot (-5b)$$ = 8a^2 - 10ab + 12ab - 15b^2$$ = 8a^2 + 2ab - 15b^2$(2) 同样地,将每一个项分别乘以另一个多项式的每一项,然后将结果相加。

$(3x^2 - 5y)(x + 2y) = 3x^2 \cdot x + 3x^2 \cdot 2y - 5y \cdot x - 5y\cdot 2y$$ = 3x^3 + 6x^2y - 5xy - 10y^2$(3)$(4m - 2n)(3m + n) = 4m \cdot 3m + 4m \cdot n - 2n \cdot 3m - 2n \cdot n$$ = 12m^2 + 4mn - 6mn - 2n^2$$ = 12m^2 - 2n^2 - 2mn$(4)$(5p - 2q)(3p + 4q) = 5p \cdot 3p + 5p \cdot 4q - 2q \cdot 3p - 2q \cdot 4q $$ = 15p^2 + 20pq - 6pq - 8q^2$$ = 15p^2 + 14pq - 8q^2$2. 练习运用整式的乘法计算下列各题:(1) $(x + 2)(x + 3)$(2) $(2a + 3b + 4c)(a - b + c)$(3) $(3x - y)(2x + y)(x - y)$(4) $(-2a + 3b)(-3a - 4b)$解答:(1)$(x + 2)(x + 3) = x \cdot x + x \cdot 3 + 2 \cdot x + 2 \cdot 3$$ = x^2 + 3x + 2x + 6$$ = x^2 + 5x + 6$(2)$(2a + 3b + 4c)(a - b + c) = 2a \cdot a + 2a \cdot (-b) + 2a \cdot c + 3b \cdot a + 3b \cdot (-b) + 3b \cdot c + 4c \cdot a + 4c \cdot (-b) + 4c \cdot c$$ = 2a^2 - 2ab + 2ac + 3ab - 3b^2 + 3bc + 4ac - 4bc + 4c^2$$ = 2a^2 + ab - 3b^2 + 5ac - ab + bc + 4c^2$$ = 2a^2 - 3b^2 + 5ac + bc + 4c^2$(3)$(3x - y)(2x + y)(x - y) = (3x - y) \cdot (2x + y) \cdot (x - y)$$ = (3x)^2 - y^2$$ = 9x^2 - y^2$(4)$(-2a + 3b)(-3a - 4b) = (-2a) \cdot (-3a) + (-2a) \cdot (-4b) + 3b \cdot (-3a) + 3b \cdot (-4b)$$ = 6a^2 + 8ab - 9ab - 12b^2$$ = 6a^2 - ab - 12b^2$通过以上练习题的计算与解答,我们可以看出,整式的乘法是通过将每一个项分别乘以另一个多项式的每一项,并将结果相加得出的。

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。

整式的乘除测试题(3套)及答案

整式的乘除测试题(3套)及答案

北师大版七年级数学下册第一章整式的乘除单元测试卷(一)班级姓名学号得分一、精心选一选(每小题 3 分,共21 分)4 x y xy3 31.多项式xy 2 9 8 的次数是( )A. 3B. 4C. 5D. 62.下列计算正确的是( )A. 2x x xB.2 6 4 12 82 6 4 12 8y m m4 m C. 2 23 2 a22 x yy y x y D. 4a 33.计算 a b a b 的结果是( )A. 2 a 2b B.2 b2a C.2 2ab b2a D.a 22ab b22 a 2 a4. 3a 5 1与2a 3 4 的和为( )2 a 2 a 2 a 2 aA. 5a 2 3B. a 8 3C. a 3 5D. a 8 55.下列结果正确的是( )A. 132190 C. 53 7 1B. 9 5 0 . D.2 3186. 若m na b 2 8 6 2a b ,那么m 2n 的值是( )A. 10B. 52C. 20D. 327.要使式子 2 2529x y 成为一个完全平方式,则需加上( ) A. 15 x y B. 15 xy C. 30 x y D. 30 x y二、耐心填一填(第1~4题每空1 分,第5、6 题每空2 分,共28 分)8.在代数式 22 a3xy ,m ,6a 3 ,12 ,12 24x yz xy ,523ab中,单项式有个,多项式有个。

2 49.单项式5x y z 的系数是,次数是。

10.多项式14 ab3ab 有项,它们分别是。

511.⑴ 2 x5x 。

⑵43y 。

⑶322a b 。

⑷4x 。

5 y 25 y 2⑸9 a3a 。

⑹2 4 010 5 。

12.⑴1362 3mn mn 。

⑵x 5 x 5 。

5⑶ 2(2a b)。

⑷ 5 3 3212x y xy 。

13.⑴a3m a a2m。

⑵2a a 22 8 4 2 。

⑶ 2 y2x y x y x 。

北师大版七年级下册数学整式的乘除测试试题以及答案

北师大版七年级下册数学整式的乘除测试试题以及答案

七年级下册整式的乘除测试试卷一、单选题。

1、﹣20220的相反数是()。

A、﹣2022B、2022C、1D、﹣12、一个数是0.000 0003,这个数用科学记数法表示为()。

A、3×10﹣5B、3×10﹣6C、3×10﹣7D、3×10﹣83、下列各式中,负数是()。

A、|﹣5|B、(﹣1)2021C、﹣(﹣5)D、(﹣1)04、下列计算正确的是()A、m0=0B、b2▪b2▪b=b6C、(6a3b2)÷(3a)=2a2b2D、(﹣3a)2=6a25、下列能用平方差公式计算的是()A、(a-b)(a-b)B、(a-b)(﹣a-b)C、(a+b)(﹣a-b)D、(﹣a+b)(a-b)6、如果多项式x2+mx+4是完全平方式的展开式,则m等于()。

A、2B、﹣2C、±2D、±47、对于数30、3﹣1、﹣|﹣3|、(13)﹣1大小比较中,下列正确的是()。

A、30<3﹣1<﹣|﹣3|<(13)﹣1B、﹣|﹣3|<3﹣1<30<(13)﹣1C、3﹣1<﹣|﹣3|<30<(13)﹣1D、(13)﹣1<30<3﹣1<﹣|﹣3|8、对于等式(2x+ □)2=4x2+12xy+ △中,△代表是()。

A、3yB、9yC、9y2D、36y29、若(x-1)(x-m)=x2-4x+m,则m的值为()。

A、﹣3B、3C、﹣5D、510、若x+y=3,xy=1,则(1-2x)(1-2y)的值是()。

A、1B、﹣1C、2D、﹣211、若a=2022,b=12022,则代数式a2022▪b2022的值是()A、1B、2022C、12022D、202312、利用图①所示的长为a,宽为b的长方形卡片4张,拼成如图②所示的图形,则根据图②的面积关系能验证的等式为()。

A、(a-b)2+4ab=(a+b)2B、(a+b)(a-b)=a2-b2C、(a+b)2=a2+2ab+b2D、(a-b)2=a2-2ab+b2二、填空题。

北师大版初中数学七年级下册第一单元《整式的乘除》单元测试卷(较易)(含答案解析)

北师大版初中数学七年级下册第一单元《整式的乘除》单元测试卷(较易)(含答案解析)

北师大版初中数学七年级下册第一单元《整式的乘除》单元测试卷(较易)(含答案解析)考试范围:第一单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 计算a2·a3的结果等于( )A. a5B. a9C. a6D. a−12. 计算(a−b)3(b−a)4的结果有:①(a−b)7; ②(b−a)7; ③−(b−a)7; ④−(a−b)7,其中正确的是( )A. ① ③B. ① ④C. ② ③D. ② ④3. 计算a⋅a5−(−2a3)2的结果为( )A. −3a6B. −a6C. a6−4a5D. a6−2a54. 计算a·a5−(2a3)2的结果为( )A. a6−2a5B. −a6C. a6−4a5D. −3a65. 10m=2,10n=3,则103m+2n−1的值为( )A. 7B. 7.1C. 7.2D. 7.46. PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm用科学记数法可表示为( )A. 23×10−5mB. 2.3×10−5mC. 2.3×10−6mD. 0.23×10−7m7. 下列运算正确的是( )A. a+2a=3a2B. a2·a3=a5C. (ab)3=ab3D. (−a3)2=−a68. 若(x−4)(x+3)=x2+mx−12,则m的值是( )A. 1B. −1C. 9D. −99. 如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是( )A. (a−b)2=a2−2ab+b2B. a(a−b)=a2−abC. (a−b)2=a2−b2D. a2−b2=(a+b)(a−b)10. 下列计算中,正确的是( )A. (x+y)2=x2+y2B. (x−y)2=x2−2xy−y2C. (x+2y)(x−2y)=x2−2y2D. (−x+y)2=x2−2xy+y211. 计算(m−2n−1)(m+2n−1)的结果为( )A. m2−4n2−2m+1B. m2+4n2−2m+1C. m2−4n2−2m−1D. m2+4n2−2m−112. 如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为( )A. xyB. −xyC. xD. −y第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 计算a3⋅a的结果是.14. 若a x=2,a y=5,则a x−y=______.15. 已知x−y=2,x+y=−4,则x2−y2=______.16. 已知(a+b)2=11,(a−b)2=7,则ab的值是.三、解答题(本大题共9小题,共72.0分。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》检测卷(含答案解析)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》检测卷(含答案解析)
16.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘
解析:
【分析】
积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.
【详解】
= ,
故答案为: .
【点睛】
此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.
17.80【分析】先求出再将a+b=5代入a3+b3公式中计算即可【详解】∵a+b=5且ab=3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键
解析:80
【分析】
先求出 ,再将a+b=5, 代入a3+b3公式中计算即可.
【详解】
∵a+b=5,且ab=3,
故答案选C.
【点睛】
本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.
6.D
解析:D
【分析】
运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.
【详解】
解:A. ,故A选项不符合题意;
B. ,故B选项不符合题意;
C. ,故C选项不符合题意;
D. ,故D选项符合题意.
根据材料,解答下列问题:
(1) ________( , ); ________( );
(2)求 的最小值;
(3)已知 ,当 为何值时,代数式 有最小值?并求出这个最小值.
25.化简: .
26.化简: .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
根据完全平方公式和整式的性质计算,得到m和n的关系式,通过计算即可得到答案.

七年级数学下册 第一章《整式的运算》单元综合测试3 (2012新版)北师大版

七年级数学下册 第一章《整式的运算》单元综合测试3 (2012新版)北师大版

整式的运算一、精心选一选1.下列说法正确的是( )A.32xyz 与32xy 是同类项 B.x 1和21x 是同类项C.0.523y x 和732y x 是同类项 D.5n m 2与-42nm 是同类项2.下面计算正确的事( )A.32x -2x =3 B.32a +23a =55aC.3+x =3x D.-0.25ab +41ba =03.下面各题去括号错误的是( )A.x -(6y -21)=x -6y +21B.2m +(-n +31a -b )=2m -n +31a -b C.-21(4x -6y +3)=-2x +3y +3D.(a +21b )-(-31c +72)=a +21b +31c -724.两个四次多项式的和的次数是( )A.八次 B.四次 C.不低于四次 D.不高于四次 5.下列说法正确的是( )A.平方是它本身的数是0 B.立方等于本身的数是±1 C.绝对值是本身的数是正数 D.倒数是本身的数是±1 6.一个五次多项式,他任何一项的次数( )A.都小于5 B.都等于5 C.都不小于5 D.都不大于57.如果a -b =12,那么-3(b -a )的值时( ) A.-35 B.23 C.32 D.168.一个多项式与2x -2x +1的和是3x -2,则这个多项式为( ) A、2x -5x +3 B、-2x +x -1 C、-2x +5x -3 D、2x -5x -13 9.五个连续奇数,中间一个是2n+1 (n 为正整数),那么这五个数的和是 ( )。

A.10n+10; B.10n+5; C.5n+5; D.5n -510.用代数式表示:每件上衣a 元,降价10%以后的售价是 ( )。

A.a ﹒10%; B.a(1+10%); C.a(1-10%); D.a(1+90%)11.a 、b 互为倒数,x 、y 互为相反数且y 0≠,那么代数式(a+b)(x+y)-ab -y x的值为 ( )。

【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)

【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)

【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18 B.18 C .0 D .83.斑叶兰的一粒种子重约0.000 000 5 g ,将0.000 000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-64.【2022·长沙】下列计算正确的是( )A .a 7÷a 5=a 2B .5a -4a =1C .3a 2·2a 3=6a 6D .(a -b )2=a 2-b 25.【教材P 32习题T 3变式】已知一个计算程序:n →平方→+n →÷n →-n →?若输入n =-3,则输出的“?”为( )A .1B .-1C .7D .-76.下列四个算式:① 5x 2y 4÷15xy =xy 3; ② 16a 6b 4c ÷8a 3b 2=2a 3b 2c ; ③ 9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.如图,将一块边长为x (x >7)的正方形木块的一边截去7,另一边截去6,则剩余部分(图中阴影部分)的面积是( )A .x 2-13x -42B .x 2+13x +42C .x 2+13x -42D .x 2-13x +428.【2022·上海交大附中闵行分校模拟】若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab 9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b10.【直观想象】如图,在边长为2a 的正方形中央剪去一个边长为a +2的小正方形(a >2),将剩余部分沿虚线剪开密铺成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2二、填空题(每题3分,共24分)11.【2022·甘肃】计算:3a 3·a 2=________.12.【2022·遵义】已知a +b =4,a -b =2,则a 2-b 2的值为________.13.【2022·大庆】已知代数式a 2+(2t -1)ab +4b 2是一个完全平方式,则t 的值为__________.14.计算:(-13xy 2)2·[xy (2x -y )+xy 2]=__________. 15.计算:(7x 2y 3z +8x 3y 2)÷4x 2y 2=______________.16.若x +y -3=0,则2y ×2x 的值为________.17.【教材P 35复习题T 12变式】如图,一个长方形花园ABCD ,AB =a ,AD =b ,该花园中建有一条长方形小路L MPQ 和一条平行四边形小路RSTK ,若L M =RS =c ,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.18.【传统文化】《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x =8时,多项式3x 3-4x 2-35x +8的值”,按照秦九韶算法,可先将多项式3x 3-4x 2-35x +8一步步地进行改写:3x 3-4x 2-35x +8=x (3x 2-4x -35)+8=x [x (3x -4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x =8时,多项式的值为1 008.请参考上述方法,将多项式x 3+2x 2+x -1改写为________________;当x =8时,多项式的值为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.计算:(1)(-12ab )(23ab 2-2ab +43b );(2)(a +b )(a -b )+4ab 3÷4ab ;(3)(2x -y -z )(y -2x -z );(4)(2x +y )(2x -y )+(x +y )2-2(2x 2-xy ).20.【教材P 34复习题T 8变式】用简便方法计算:(1)102×98;(2)112×92.21.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.22.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 022,y=-2 023,甲同学把x=2 022,y=-2 023错抄成x=2 002,y=-2 013,但他的计算结果也是正确的.请你解释一下这是为什么.23.【教材P17习题T2变式】如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆形.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)24.【新考法题】【2022·河北】发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2-1)2=10为偶数,请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请说明“发现”中的结论正确.。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(含答案解析)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(含答案解析)
17.若 是完全平方式,则k=_____________.
18.若 , ,则 =_____.
19.若 , ,则 ______.
20.设 , ,若 ,则 的值为__________.
三、解答题
21.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.
S矩形=
=
= .
故选:A.
【点睛】
本题考查了整式的运算,根据题意列出代数式,同时正确使用完全平方公式是解决本题的关键.
12.D
解析:D
【分析】
根据根据同底数幂的乘法,利用等式的性质将2a=3,2b=6,2c=12进行适当的变形可得答案.
【详解】
解: , ,


,故①正确;
, ,

,Байду номын сангаас

,故②正确;
, ,
, ,
,故③正确;
综上①②③正确;
故选D.
【点睛】
本题考查同底数幂的乘法,利用等式的性质等知识,根据同底数幂的乘法和等式的性质将原式进行适当的变形是得出答案的前提.
二、填空题
13.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a﹣2b)2÷2a﹣8b﹣3=4a﹣4b2÷2a﹣8b﹣3=2a-4-(-8)b2-(-3)=2a
∵ ,
∴ = = = = ,
故选A.
【点睛】
本题主要考查同底数幂的乘法法则和幂的乘方法则的逆运用,熟练掌握同底数幂的乘法法则和幂的乘方法则是解题的关键.
7.C
解析:C
【分析】
依次利用合并同类项法则、同底数幂的乘法、幂的乘方、完全平方公式知识点计算,依次判断即可.

人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案

人教版七年级数学下册第一章《整式的乘除》单元测试卷含答案

七年级数学下册第一章《整式的乘除》单元测试卷满分:150分题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (ab2)3=ab6C. (a3) 2⋅a4=a9D. (a5)2=a102.数学家赵爽公元3~4世纪在其所著的《勾股圆方图注》中记载如下构图,图中大正方形的面积等于四个全等长方形的面积加上中间小正方形的面积.若大正方形的面积为100,小正方形的面积为25,分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是A. x+y=10B. x−y=5C. xy=15D. x2−y2=503.若x2+(m−3)x+16是完全平方式,则m=()A. 11或−7B. 13或−7C. 11或−5D. 13或−54.计算(2a2b)2÷(ab)2的结果是()A. 4a3B. 4abC. a3D. 4a25.若x+y=7,xy=10,则x2−xy+y2的值为()A. 30B. 39C. 29D. 196.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)27.下列计算正确的是A. a2·a3=a6B. (a2)3=a6C. (2a)3=2a3D. a10÷a2=a58.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. (a−b)(a+2b)=a2−2b2+abB. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. (a−b)(a+b)=a2−b29.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)210.下列语句中正确的是()A. (−1)−2是负数B. 任何数的零次幂都等于1C. 一个不为0的数的倒数的−p次幂(p是正整数)等于它的p次幂D. (23−8)0=111.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 52013.下列运算正确的是()A. (−2ab)⋅(−3ab)3=−54a4b4B. 5x2⋅(3x3)2=15x12×10n)=102nC. (−0.1b)⋅(−10b2)3=−b7D. (3×10n)(1314.已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或−12D. 6或−615.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为.18.计算:(1)8m÷4m=;(2)27m÷9m÷3=.19.计算:2019×1981=.20.已知31=3,32=9,33=27,34=81,35=243,36=729⋯⋯,设A=(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)×2+1,则A的个位数字是.三、计算题(本大题共2小题,共18.0分)计算:(1)(−2)8⋅(−2)5;(2)(a−b)2⋅(a−b)⋅(a−b)5;(3)x m⋅x n−2⋅(−x2n−1)21. 先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.四、解答题(本大题共5小题,共62.0分)22. 某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a −3b)m ,请你计算一下这个游泳池的容积是多少⋅23. 形如|acb d |的式子叫做二阶行列式,它的运算法则用公式表示为|acb d |=ad −bc ,比如:|2513|=2×3−1×5=1.请你按照上述法则,计算|−2ab a 2b−3ab 2(−ab)|的结果.24.如图,甲长方形的两边长分别为m+1,m+7;乙长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图中的甲长方形的面积S1,乙长方形的面积S2,比较:S1S2;(填“<”“=”或“>”)(2)现有一正方形,其周长与图中的甲长方形的周长相等,试探究:该正方形的面积S与图中的甲长方形的面积S1的差(即S−S1)是一个常数,求出这个常数.25.小明想把一张长为60cm、宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.答案1.D2.C3.C4.D5.D6.C7.B8.D9.A10.C11.B12.D13.D14.C15.C16.−217.x2−118.2m3m−119.399963920.121.解:(1)原式=−28×25=−213;(2)原式=(a−b)2+1+5=(a−b)8;(3)原式=−x m+n−2+2n−1=−x m+3n−3.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x2+12xy+9y2−4x2+y2=12xy+10y2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:这个游泳池的容积是(16a 4−81b 4)m 3.24.解:|−2ab a 2b −3ab 2(−ab )|=−2ab ⋅(−ab )−a 2b ·(−3ab 2)=2a 2b 2+3a 3b 3.25.解:(1)>(2)图中的甲长方形的周长为2(m +7+m +1)=4m +16.所以该正方形的边长为m +4.所以S −S 1=(m +4)2−(m 2+8m +7)=9.所以这个常数为9.26.解:(1)阴影部分的面积为(4x 2−200x +2400)cm 2.(2)这个盒子的体积为7500cm 3.27.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.。

数学七年级下册整式试卷

数学七年级下册整式试卷

一、选择题(每题4分,共40分)1. 下列各数中,是单项式的是()A. 3a^2b - 2ab^2B. 2a^2 + 3b^2 - 4cC. 2a^2b - 5b^2c + 3abcD. 3a^2b^2 + 4ab^3c2. 已知单项式a^3b^2c和2a^2b^3c,下列关于它们相乘的说法正确的是()A. 它们的乘积是单项式B. 它们的乘积是多项式C. 它们的乘积是分式D. 它们的乘积是整式3. 下列各式中,完全平方公式正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^24. 若a^2 = 4,b^2 = 9,则(a + b)(a - b)的值为()A. 13B. 5C. 1D. 05. 已知多项式f(x) = x^3 - 2x^2 + 3x - 6,求f(2)的值()A. 2B. 8C. 10D. 126. 下列关于整式乘法法则的说法正确的是()A. 交换乘法顺序不影响结果B. 乘法分配律只适用于单项式与多项式相乘C. 乘法结合律只适用于单项式与单项式相乘D. 以上说法都不正确7. 下列关于整式除法法则的说法正确的是()A. 除法运算可以省略除号B. 除法运算可以省略除数C. 除法运算可以省略被除数D. 以上说法都不正确8. 若整式a^2 + 2a + 1 = 0,则a的值为()A. -1B. 1C. 0D. 无解9. 下列关于因式分解的说法正确的是()A. 因式分解是整式乘法的逆运算B. 因式分解是整式除法的逆运算C. 因式分解是整式加法的逆运算D. 以上说法都不正确10. 已知多项式f(x) = x^2 - 5x + 6,求f(x)的因式分解()A. (x - 2)(x - 3)B. (x + 2)(x + 3)C. (x - 2)(x + 3)D. (x + 2)(x - 3)二、填空题(每题4分,共40分)1. 已知单项式a^2b^3c^4,则它的次数为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学培优强化训练(十二)
1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则20082008
b a
+等于 (
) (A )1 (B ) -1 (C ) ±1 (D ) 2
2、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方





( )
(A) 252
cm (B) 452
cm (C) 3752
cm (D) 15752
cm 3、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲
从A 点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时
,






( ) (A )AB 边上 (B )DA 边上
(C )BC 边上
(D )CD 边上
图1
图3
4、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,
若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是
( )
(A )2α-β (B )α-β
(C )α+β
(D )以上都不正确
5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=
2
1
PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为
( ) (A )30 cm (B )60 cm
(C )120 cm
(D )60 cm 或
120 cm
6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有
一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期存款是x 元,根据题意,可列方程为 7、2.42º= º ′ ″
8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表:
(1)用数量x 表示售价C 的公式,C=___ __ __ (2)当销售数量为12千克时,售价C 为_____ _ 9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=2
1
10、解方程(1) 5(x -1)-2(x+1)=3(x -1)+x+1(2) 2
35.112.018.018.0103.002.0x
x x --
+-=+
11、用棋子摆出下列一组图形:
(1)
(2)(3)
(1)填写下表:
(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(用含n 的代数式表示)
(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?
12、如图所示, 设l =AB+AD+CD, m=BE+CE, n=BC. 试比较m 、n 、l 的大小, 并说明理由.
数学培优强化训练(十二)(答案)
1、有理数a 等于它的倒数, 有理数b 等于它的相反数, 则a 2007+b 2007等于( A )
(A )1 (B ) -1 (C ) 1
(D ) 2
2、用一根长80cm 的绳子围成一个长方形,且长方形的长比宽长10cm ,则这个长方
形的面积是 ( C )
(A) 252
cm (B) 452
cm (C) 3752
cm (D) 15752
cm
图1 图3
3、如图1所示, 两人沿着边长为90m 的正方形, 按A →B →C →D →A ……的方向行走. 甲
从A 点以65m/min 的速度、乙从B 点以72m/min 的速度行走, 当乙第一次追上甲时, 将在正方形的( B ) (A )AB 边上
(B )DA 边上
(C )BC 边上
(D )CD 边上
4、如图2所示,OB 、OC 是∠AOD 的任意两条射线, OM 平分∠AOB, ON 平分∠COD ,
若∠MON=α, ∠BOC=β, 则表示∠AOD 的代数式是( A ) (A )2α-β (B )α-β
(C )α+β
(D )以上都不正确
5、如图3所示, 把一根绳子对折成线段AB, 从P 处把绳子剪断, 已知AP=
2
1
PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为( D ) (A )30 cm
(B )60 cm
(C )120 cm
(D )60 cm 或120 cm
6、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元.若设小明的这笔一年定期
存款是x
7(本小题1分)
8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x 与售价C 间的关系如下表:
(1
(2)当销售数量为12千克时,售价C 为 9、先化简,后计算:2(a 2b+ab 2)- [2ab 2 -(1-a 2b)] -2,其中a= -2,b=1
10、解方程. (每小题3分, 共6分)
(1) 5(x -1)-2(x+1)=3(x -1)+x+1 (2)
35.118.018.0102.0x
x x --+-=+
11、用棋子摆出下列一组图形:
(1)(2)(3)
(1)填写下表:
(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(用含n 的代数式表示)
解:依题意可得当摆到第n 个图形时棋子的枚数应为:
6 + 3(n -1)= 6 + 3n - 3 = 3n+3
(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?(1分)
解:由上题可知此时9933=+n ∴32=n 答:第32个图形共有99枚棋子。

12、如图所示, 设l =AB+AD+CD, m=BE+CE, n=BC. 试比较m 、n 、l 的大小, 并说明理由.
解:∵m=BE+CE n=BC
∴n 表示了B 、C 两点间的距离。

所以m >n (两点之间线段最短)
又∵AD=AE+ED
∴l = AB+AD+CD=(AB+AE )+(ED+CD )又∵AB+AE >
BE ED+CD >EC (两点之间线段最短)
∴l >m ∴l >m>n。

相关文档
最新文档