【爆款】聚合物的高弹性和粘弹性.ppt

合集下载

第八章、聚合物的高弹性和黏弹性

第八章、聚合物的高弹性和黏弹性

高弹性有如下特征:


①弹性形变很大,可高达1000%, 而金属材料的普弹形变不超过1% ②弹性模量小,10 达因cm ,而金属材料的弹性模量 达 10 达因 cm 。 ③聚合物发生高弹形变时,弹性模量与温度成正 比,即温度升高,弹性回力增高,从这个意上说, 与等容条件下气体的压力随温度升高而增加是相 似的。而金属的普通固体材料弹性模量随着温度 升高而下降。
平衡态形变(可逆) 高弹形变
非平衡态形变(不可逆)

假设橡胶被拉伸时发生高弹形变,除去 外力后可完全回复原状,即变形是可逆的, 所以可用热力学第一定律和第二定律来进 行分析。
u S f ( )T ,V T ( )T ,V l l
物理意义:外力作用在橡胶上,一方
面使橡胶的内能随伸长而变化,一方 面使橡胶的熵随伸长而变化。 或者说:橡胶的张力是由于变形时内 能发生变化和熵发生变化引起的。

“形变与时间有关”的原因:
橡胶是长链分子,整个分子的运动都要 克服分子间的作用力和内摩擦力。 高弹形变就是靠分子链段运动来实现的。 整个分子链从一种平衡状态过度到与外 力相适应的平衡状态,可能需要几分钟,几 小时甚至几年。 也就是说在一般情况下形变总是落后于 外力,所以橡胶形变需要时间。

2-2 平衡态高弹形变的热力学分析


1.加增塑剂
2. 共聚
3.降低结晶能力
第三节 粘弹性


3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9
力学松弛现象 蠕变 应力松弛 滞后 力学损耗 测定粘弹性的方法 粘弹性模型 粘弹性与时间、温度的关系(时温等效) 波尔兹曼迭加原理
高聚物的粘弹性——

高分子物理--聚合物的粘弹性ppt课件

高分子物理--聚合物的粘弹性ppt课件
ε(t)﹦ε0 sin(ωt﹣δ)
粘弹体的应力与应变的相位关系
一、 粘弹性现象 (二) 动态粘弹性
力学损耗:由于滞后,周期性应力应变变化过程将伴随能量消耗, 称之为力学损耗。 损耗的大小同滞后角有关,常以tanδ 表示
橡胶拉伸与回缩的应力-应变关系示意图
一、 粘弹性现象 (二) 动态粘弹性
聚合物的内耗与频率的关系
表示在复平面上的复模量 E* D* ﹦1
一、 粘弹性现象 (三) 粘弹性参数
G*﹦G1+iG2
J* ﹦ J1 - iJ2
tan δ ﹦ E2 / E 1
﹦ D2 / D 1 ﹦ G2 / G 1 ﹦ J2 / J 1
链段运动的松弛时间同 作用频率(速率)相匹 配时(ω ~ 1/τ ),粘 弹性现象最显著。
二、 粘弹性的数学描述
(一) Boltzmann叠加原
在Δ σ31 、、
u2 、 ……
u3 、 Δ σn
……
un时刻,对试样加应力Δ σ1 、 Δ σ2 、
ε(t)﹦ ∑Δσi D(t-ui)
i: 1→ n
连续对试样加应力,变化率为? σ (u)/? u
t﹥ un
ε(t)﹦ ∫ D(t-u)(? σ (u)/? u) du u:- ∞ → t
ηs*﹦ηs1-ηs2 ηs1 ﹦(σ0/γ0 ω)sinδ ηs2 ﹦(σ0/γ0 ω)cosδ
ηs1 ﹦G2/ω
ηs2 ﹦G 1/ω
二、 粘弹性的数学描述
(一) Boltzmann叠加原
1. 数理学表达式
在零时刻,对试样加应力σ0 ε0 (t)﹦σ0 D(t)
在u1时刻,对试样加应力σ1 ε1 (t)﹦σ1 D(t-u1)
粘性响应 理想液体

《高分子物理》课件-第七章粘弹性

《高分子物理》课件-第七章粘弹性

第7 章聚合物的粘弹性形变对时间不存在依赖性εσE =虎克定律理想弹性体外力除去后完全不回复dt d εηγησ==.牛顿定律理想粘性体弹性与粘性弹性粘性储能性可逆性σ与ε的关系与t 关系瞬时性依时性储存耗散回复永久形变εσE =dt d εηγησ==.虎克固体牛顿流体粘弹性力学性质兼具有不可恢复的永久形变和可恢复的弹性形变小分子液体–粘性小分子固体–弹性在时间内,任何物体都是弹性体在时间内,任何物体都是粘性体在的时间范围内,任何物体都是粘弹体超短超长一定高分子材料具有显著的粘弹性粘弹性分类静态粘弹性动态粘弹性蠕变、应力松弛滞后、内耗7.1 粘弹性现象7.1.1 蠕变(creep)在一定的温度下,软质PVC丝钩一定的砝码,会慢慢伸长蠕变:指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象蠕变反映了材料的尺寸稳定性及长期负荷能力从分子运动和变化的角度分析线性PVC的形变—时间曲线,除去外力后,回缩曲线?11E σε=1ε1t 2t t键长和键角发生变化引起,形变量很小,瞬间响应σ:应力E 1:普弹形变模量1.普弹形变链段运动使分子链逐渐伸展发生构象变化引起τ:松弛时间,与链段运动的粘度η2和高弹模量E 2有关,τ=η2/ E 2)1(/22τσεt eE --=2ε1t t2t 2.高弹形变3ε2t 1t t外力作用造成分子间的相对滑移(线型高聚物)t33ησε=η3——本体粘度3.粘性流动t eE E t t 3/21321)1()(ησσσεεεετ+-+=++=-线型高聚物的蠕变曲线总应变交联聚合物的蠕变曲线1.由于分子链间化学键的键合,分子链不能相对滑移,在外力作用下不产生粘性流动,蠕变趋于一定值2. 无粘性流动部分,能完全回复T<T g 时,主要是(),T>T g 时,主要是()A ε1B ε2C ε3三种形变的相对比例依具体条件不同而不同下列情况那种形变所占比例大?A B聚合物蠕变的危害性蠕变降低了聚合物的尺寸稳定性抗蠕变性能低不能用作工程塑料如:PTFE不能直接用作有固定尺寸的材料硬PVC抗蚀性好,可作化工管道,但易蠕变影响蠕变的因素1.温度2.外力3.分子结构蠕变与T,外力的关系温度外力蠕变T过低外力过小T过高外力过大T g附近适当外力很小很慢,不明显很快,不明显明显(链段能够缓慢运动)23℃时几种高聚物蠕变性能10002000(%)小时2.01.51.00.512345t链的柔顺性主链含芳杂环的刚性高聚物,抗蠕变性能较好12345聚苯醚PCABS(耐热)POM尼龙如何防止蠕变?◆交联橡胶通过硫化来防止由蠕变产生不可逆的形变◆结晶微晶体可起到类似交联的作用◆提高分子间作用力7.1.2 应力松弛(stress relaxation)在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象应力松弛的本质加力链段运动使分子链间相对位置的变化分子重排,以分子运动来耗散能量,从而维持一定形变所需要的力逐渐减小交联聚合物和线形聚合物的应力松弛t交联线性高聚物的应力松弛曲线t不同温度下的应力松弛曲线应力松驰与温度的关系温度过高应力松驰很快温度过低内摩擦力很大,应力松驰极慢T g 附近应力松驰最为明显123应力松弛的应用对密封制件,应力松弛行为决定其使用寿命高分子制件加工中,应力松弛行为决定残余应力的大小不变的量变化的量蠕变应力松弛蠕变与应力松弛比较温度力形变根本原因高分子链的构象重排和分子链滑移应力温度形变动态粘弹性在交变应力或交变应变作用下材料的力学行为σωtπ2πεωtδεωtδ正交变化的应力:t sin )t (0ωσσ=无相位差,无能量损耗理想弹性体tsin )t (0ωεε=有相位差,功全部损耗成热理想粘性液体)2-t sin( )t (0πωεε=相位差δ,损耗部分能量)-t sin( )t (0δωεε=聚合物(粘弹性)高聚物在交变应力作用下的应变变化落后于应力变化的现象tt o ωσσsin )(=)sin()(δωεε-=t t o 0<δ<π/2滞后现象原因链段运动时受到内摩擦阻力, 外力变化时,链段运动跟不上外力的变化内摩擦阻力越大,δ 也就越大,滞后现象越严重外力对体系做的功每次形变所作的功= 恢复形变时所作的功无滞后时没有功的消耗每一次循环变化会有功的消耗,称为内耗有滞后时产生形变提供链段运动时克服内摩擦阻力所需要的能量滞后现象的危害σεσ0ε1拉伸硫化橡胶拉伸—回缩应力应变曲线拉伸曲线下面积为外力对橡胶所作的功回缩曲线下面积为橡胶对外力所作的功滞后环面积越大,损耗越大ε0回缩ε2面积之差损耗的功δεπσsin o o W =∆δ :力学损耗角,常用tanδ来表示内耗大小)]dt-t cos(t)[sin ()t (d )t (W Δ020200δωωεωσεσωπωπ⎰⎰==σεσ0回缩拉伸内耗角δεπσsin o o W =∆δ=0,△W=0,所有能量都以弹性能量的形式存储起来滞后的相角δ决定内耗δ=900,△W→max , 所有能量都耗散掉了滞后和内耗对材料使用的利弊?用作轮胎的橡胶制品要求内耗小(内耗大,回弹性差)隔音材料和吸音材料要求在音频范围内有较大的力学损耗防震材料要求在常温附近有较大的力学损耗温度内耗很高很低T g 附近1. 温度影响滞后和内耗的因素高小小小小大大2.外力变化的频率高聚物的内耗与频率的关系频率 内耗很高很低适中小小小小大大橡胶品种内耗顺丁丁苯丁腈3.内耗与分子结构的关系对于作轮胎的橡胶,则选用哪种?内耗大的橡胶,吸收冲击能量较大,回弹性较差较小较大较大7.1.3 粘弹性参数静态粘弹性蠕变应力松弛模量柔量应力,应变与时间的关系模量、柔量与时间的关系蠕变柔量)()(σεt t D =应力松弛模量)()(εσt t E =tsin (t)0ωεε=t cos sin t sin cos (t)00ωδσωδσσ+=)t sin( (t)0δωσσ+=δεσcos '00=E δεσsin "00=E E ′—储能模量,反映材料形变时的回弹能力(弹性)E ″—耗能模量,反映材料形变时内耗的程度(粘性)1.力学损耗角,tg δ动态粘弹性2.动态模量用复数模量的绝对值表示(绝对模量)2''2'*||E E E E +==通常E ″<<E ′,常直接用E ′作为材料的动态模量。

《聚合物的粘弹性》课件

《聚合物的粘弹性》课件

《聚合物的粘弹性》PPT 课件
聚合物是一类重要的材料,本课件将深入探讨聚合物的粘弹性及其应用。让 我们一起来揭开这个精彩的科学领域吧!
I. 聚合物概述
定义和分类
聚合物是由许多重复单元组成的大分子化合物,可分为线性、交联和支化等不同类型。
聚合过程及特点
聚合过程是单体分子结合形成高分子链的化学反应,聚合物具有高分子量、可塑性和可再生 等特点。
3
色散力谱技术
色散力谱技术结合了动态力学和谱学的原理,可精确测量聚合物的粘弹性参数。
V. 聚合物的粘弹性对应用的影响
1 聚合物加工
了解聚合物的粘弹性特性有助于优化聚合物加工过程,提高产品质量和生产效率。
2 材料性能预测
粘弹性参数可以用于预测聚合物在不同应力和环境条件下的性能,指导材料设计和选择。
3 涂层和粘合剂
应用领域和意义Biblioteka 聚合物在塑料、纤维、涂料等众多领域有着广泛的应用,对现代社会的发展起着重要作用。
II. 粘弹性基础知识
1 弹性和黏性
弹性是物体恢复原状的能力,而黏性则描述了物体抵抗形变的能力,聚合物同时具备这 两种特性。
2 变形与应力的关系
聚合物的变形与施加的应力成正比,其应力-应变曲线可用来描述聚合物的力学性质。
聚合物的粘弹性特性对于涂层和粘合剂的粘附性和耐久性具有重要影响。
VI. 新颖的聚合物复合材料
粘弹性调控
通过调控聚合物复合材料的粘 弹性,可以实现材料性能的改 良和特定应用的实现。
复合材料制备及性能
聚合物复合材料结合了不同材 料的优点,具有良好的力学性 能和多样化的用途。
未来发展方向
聚合物复合材料在领域中的应 用潜力巨大,未来将继续研究 新的材料和创新的应用。

5高聚物的高弹性和粘弹性

5高聚物的高弹性和粘弹性

第五章高聚物得高弹性与粘弹性第一部分主要内容§5高弹态与粘弹性§5、1 高弹性得特点及热力学分析一、高弹性得特点(1 )E小,ε大且可迅速恢复(2)E随T增大而增大3、拉伸或压缩过程:放热二、理想高弹性得热力学分析——理想高弹性就是熵弹性1)橡胶拉伸过程热力学分析dU=-dW+dQdW=-fdl+PdU=-fdldQ=TdSdU=TdS+f fdl等温,等容过程=T(+ff=-T+熵内能所以,高弹性就是一个熵变得过程2)理想高弹性就是熵弹性f=-T+=fs+fua f≈-T弹性力就是由熵变引起得熵弹性b f∝TT↑,f↑,E=↑c 热弹较变现象ε〈10%时, f对T作图为负值§5、2橡胶弹性得统计理论一、理想弹性中得熵变1)孤立链得S在(x,y,z)位置得几率W(x,y,z)=β2=S=klnn=c-kβ2(x2+y2+z2)2)理想交联网得假设(1)两交链点间得链符合高斯链得特征(2)仿射变形(3)(4)Si= c-kβ2(x2i+y2i+z2i)Si’=c-kβ2(λ12x2i+λ22y2i+λ32z2i)ΔSi= Si’- Si=-kβ2((λ12-1)x2i+(λ22-1)y2i+(λ32-1)z2i) 如果试样得网链总数为NΔS=-KN/2(λ12+λ22+λ32)=-1/2KN(λ2+λ-2-3)σ=-=NKT(λ-λ-2)二、真实(橡胶)弹性网与理论值比较及修正(1)比较a:λ很小,σ理=σ真b:λ较小,σ理〉σ真因自由端基或网络缺陷c:λ较大,σ理〈σ真因局部伸展或拉伸结晶引起(2)修正σ= NKT(λ-λ-2)=(λ-λ-2)当分子量为时σ=(1-(λ-λ-2)其中 =ρ§5、3 粘弹性得三种表现ε、E(结构、T、t)弹性——材料恢复形变得能力,与时间无关。

粘性——阻碍材料产生形变得特性与时间相关。

粘弹性——材料既有弹性,又有粘性。

一、蠕变当T一定,σ一定,观察试样得形变随时间延长而增大得现象。

聚合物的高弹性和粘弹性

聚合物的高弹性和粘弹性


t
0

Creep recovery 蠕变回复
ε
e1
e2 e3
0 t2
t
•撤力一瞬间,键长、键角等次级运动立即 回复,形变直线下降 •通过构象变化,使熵变造成的形变回复
•分子链间质心位移是永久的,留了下来
线形和交联聚合物的蠕变全过程
ε
线形聚合物 交联聚合物
t
形变随时间增加而增大, 形变随时间增加而增 大,趋于某一值,蠕 蠕变不能完全回复 变可以完全回复
模量与时间无关
E(,,T,t)
模量与时间有关
理想弹性体、理想黏性液体 和黏弹性
理想弹性体(如弹簧)在外力作用下平衡形变瞬 间达到,与时间无关;
理想黏性流体(如水)在外力作用下形变随时间
线性发展。
聚合物的形变与时间有关,但不成线性关系,两
者的关系介乎理想弹性体和理想粘性体之间,聚
合物的这种性能称为黏弹性。
dU=0 dV=0
dU =TdS-PdV+fdl =0
fdl =-TdS δQ=TdS
Q fd l
拉伸 dl>0, dS<0, δQ<0 拉伸放热 回缩吸热
回缩 dl<0, dS>0, δQ>0
热力学分析小结
U S f T l T ,V l T ,V U f T l T ,V T l ,V S T l T ,V
δW = PdV - fdl
假设过程可逆
热力学第二定律
δQ=TdS
dU =TdS - PdV+fdl
橡胶在等温拉伸中体积不变, 即 dV=0

聚合物的高弹性和黏弹性

聚合物的高弹性和黏弹性

它与一般材料的普弹性的差别就是因为构象的改变:
形变时形变中许不多起主不要同作的用构象
(内能却是普弹形变的主要起因)。
极大的分子量
(2)高聚物的粘弹性——
弹性材料 粘性流体
描述粘弹性高聚物材料的力学行为必须同时考虑 应力 四个参数。 应变 时间 温度
第二节 高弹性
平衡态形变(可逆)
高弹形变

假设橡胶被拉伸时发生高弹形变,除去外力后可完全回复原状,即变形是可逆的,
非平衡态形变(不可逆) 所以可用热力学第一定律和第二定律来进行分析。
u
S
f ( l )T ,V T ( l )T ,V
• 物理意义:外力作用在橡胶上,一方 面使橡胶的内能随伸长而变化,一方 面使橡胶的熵随伸长而变化。
• “形变与时间有关”的原因:

橡胶是长链分子,整个分子的运动都要克服分子间的作用力和内摩擦力。

高弹形变就是靠分子链段运动来实现的。
整个分子链从一种平衡状态过度到与外力相适应的平衡状态,可能需要几分钟,几小时 甚至几年。
也就是说在一般情况下形变总是落后于外力,所以橡胶形变需要时间。
2-2 平衡态高弹形变的热力学分析
• 或者说:橡胶的张力是由于变形时内 能发生变化和熵发生变化引起的。
(S ) [ (G) ] [ (G) ] ( f )
l T ,V
l T l,P T ,V
l T T ,P l,V
T l,V
f (u) T ( f )
l T ,V
T l,V
• 这就是橡胶热力学方程式
f • 实验时用 当纵坐标,T为横坐标,作 图: f ~T
f
77% 33% 11% 4%
固定拉伸时的张力-温度曲线

第六章聚合物的力学性能ppt课件

第六章聚合物的力学性能ppt课件
ΔV ―体积变化 V0 ―原始体积
B PV0 V
三种应变模量的关系
对于各向同性的材料有
E = 2G (1+ν) = 3B (1-2 ν)
ν(泊松比):横向形变与纵向形变之比
m m0 横向形变 纵向形变
t
t 0
0
一般材料ν约为0.2~0.5 注意!上述四个参数中只有两个是独立的
常用的几种力学强度
当材料所受的外力超过材料的承受能力时, 材料就发生破坏。机械强度是衡量材料抵抗外力 破坏的能力,是指在一定条件下材料所能承受的 最大应力。
根据外力作用方式不同,主要有以下三种:
(i)抗张强度
衡量材料抵抗拉伸破坏的能力,也称拉伸强度。
P
在规定试验温度、湿度和 实验速度下,在标准试样上 宽度b 厚度d 沿轴向施加拉伸负荷,直至 试样被拉断。
落后于应力 依赖 熵弹性
高弹性的特点
1、形变大 100~1000%;一般金属材料的 弹
性形变不超过1% 模量小 只有104N/m2左右,T↑,E↑
一般金属材料达109N/m2 , T↑,E↓
2、形变时伴有明显的热效应 拉伸时,橡胶会放出热量,T↑; 回缩时吸热
T↓。金属则相反。
3、高弹形变是一个松驰过程,具有时间依赖性, 通常需要一定时间才能达到平衡状态。
高弹态聚合物的力学性质
橡胶材料是重要的高分子材料之一,在Tg以上, 处于聚合物特有的高弹性力学状态。高弹性无疑是 这类材料显著的特征或说独特的性质,是材料中一 项十分难得的可贵性能,被广泛用于各个领域,其 作用是不可替代的。
橡胶的分子结构和高弹性的本质长期以来一直受 到人们的注视和研究;提高橡胶的耐寒性和耐热性 即扩大橡胶的使用范围,成了人们新的课题。

高分子物理-聚合物的高弹性与黏弹性98页PPT

高分子物理-聚合物的高弹性与黏弹性98页PPT
高分子物理-聚合物的高弹性与黏弹性
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己幸福是至高无个的法。— —西塞 罗
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

聚合物的高弹性和黏弹性87页PPT

聚合物的高弹性和黏弹性87页PPT
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
聚合物的高弹性和黏弹性
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而 的。— —爱献 生
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

第八章 聚合物的高弹性和粘弹性

第八章 聚合物的高弹性和粘弹性




应力-应变(伸长率)的关系。(外力的作用所产生的形变与
网络分子结构之间的关系)。





1、仿射网络模型
•每个交联点由四个有效链组成,交联点是无规分布的







•两交联点间的链为Gaussian链,其末端距符合高斯分布
•各向同性的交联网的构象数是各个单独网链构象数的乘 积
















变化所作的膨胀功PdV,另一部分是外力对体系所作的功-fdl ★










★ ★





★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★★ ★ ★
将( 2), (3)代入(1)得到dU TdS PdV fdl ( 4) 由泊松比知, 橡胶在伸长过程中体积几乎不变, dV 0 dU TdS fdl或者fdl dU TdS U S T f (5) l T ,V l T ,V 上式表明f的作用克分为两部分 : 一部分用于体系内能的 U S 变化 , 另一部分用于熵的变化 . l T ,V l T ,V













11级高分子物理8 聚合物的高弹性和黏弹性 共69页

11级高分子物理8 聚合物的高弹性和黏弹性 共69页

( S l)T ,V = l - F T l,p T ,V T F l T ,p l,V T f l,V
f u l T,V T ( S l)T,V = u l T,V + T T f l,V
E=3G GN0kT
Flory
F e l 1 2 N k T (1 22 23 2 3 ) - k T ln V /V 0
2019/7/11
19
8.4 聚合物的力学松弛——粘弹性
2019/7/11
20
粘弹性
理想弹性固体(虎克弹性体)的行为服从虎 克定律,应力与应变呈线性关系。受外力时 平衡应变瞬时达到,除去外力应变立即恢复。
将长度为l的试样在f 作用下伸长dl。对于等温可逆过程
du=TdS+fdl
(8-1)
f (ul)T,VT(Sl)T,V
(8-2)
物理意义:
外力作用在橡胶上,一方面使橡胶的内能随伸长而变化, 另一方面使橡胶的熵随伸长而变化。
或者说,橡胶的张力是由于变形时内能发生变化和熵发 生变化而引起的。
第八章
聚合物的高弹性与黏弹性
8.1 高弹性的热力学分析
2019/7/11
2
2019/7/11
3
2019/7/11
4
橡胶弹性具有如下特点:
① 弹性形变大,可高达1000%。而一般金属 材料的弹性形变不超过1%,典型的是0.2%以下。
②弹性模量小。高弹模量约为105N/m2,而 一般金属材料弹性模量可达1010~1011N/m2。
对于单轴拉伸情况, 假定在x方向上拉伸,λ1=λ,λ2=λ3 考虑拉伸时体积不变,λ1λ2λ3=1,λ2=λ3=(1/λ)1/2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10级高分子物理多媒体课件
The naming of Rubber 橡胶的得名
Joseph Priestley (1733~1804)
橡胶能擦去铅笔 留在纸上的痕迹
Verb动词
Noun名词
1791年英国的制造商Sanue Pea用松节油为溶剂的方法,取得了 做防水衣服的专利,这是橡胶最早用于的工业生产。 1823年他在格兰斯哥(英)建立了第一个制造雨衣的工厂。用这种 二层布做成的防水衣服,不久便称为雨衣。
10级高分子物理多媒体课件
哥伦布 (1451-1506)
印地安人土著人用一种类似牛奶的白色 乳液放在木制的模子中,用烟熏的方法, 蒸发掉水份来固化制成球做游戏。 大概第一个看到橡胶的白种人是哥伦布; 1736年法国人德.拉.孔达米纳第一次将橡胶品带去欧洲。但在较长 时间内橡胶只被用于檫掉铅笔写的字。
10级高分橡子胶物理制多品媒体课件
10级高分子物理多媒体课件
橡胶历史
Hevea Brasiliensis 橡胶树
最早发现,橡胶树刀伤处有乳液流出的是印第安人,他们称之为 “Caoutchouc”,印第安语的意思是“树流的泪”,天然乳胶一直沿用此词。 现在仍被用作弹性橡皮,生橡胶,天然橡胶 最初的印第安人拿生橡胶混点香料,放到嘴里嚼一嚼,十分类似我们现在的口香 糖
“Life should not be estimated exclusively(专有地) by the standard of dollars and cents. I am not disposed(愿意) to complain that I have planted and others have gathered the fruits. A man has cause for regret only when he sows(播种) and no one reaps(收获)." ---by Charles Goodyear
10级高分子物理多媒体课件
主要内容:
1
概论
2
高分子的链结构
3
高分子的溶液性质
4
高分子的多组分体系
5
聚合物的非晶态
6
聚合物的结晶态
7
聚合物的屈服和断裂
8
聚合物的高弹性和粘弹性
9
聚合物的其他性质
10级高分子物理多媒体课件
Information of 橡胶 8.1 高弹性的热力学分析 8.2 高弹性的分子理论 8.3 交联网络的溶胀 8.4 聚合物的力学松弛——粘弹性 8.5 粘弹性的力学模型 8.6 粘弹性与时间、温度的关系——
时温等效原理 8.7 聚合物的动态粘弹性
10级高分子物理多媒体课件 高ture Rubber 天然橡胶
Polymer Materials
Plastic
First
one
Celluloid 赛璐咯
Nitrocellulose Fiber First one 硝化纤维
10级高分子物理多媒体课件
现代橡胶工业始于1820年
建立了世界上第一个橡胶工厂,汉考卡把片状橡胶 分割粒状橡胶,并把它用于防水和做衣服上。他还 发明了炼胶机,把那些浪费的零碎的小胶粒炼成大 块,以便使它可用于更多制品;他首先把橡胶和其 他材料结合起来,并浇在各种形状的模型中。以后, 由于古德意被拒绝取得英国的专利,他掠夺了古德 意的橡胶硫化的发现。他最伟大之处应该是发明了 炼胶机。 1843年,Hancock在英国申请硫化专利,仅早于 Goodyear的专利申请八星期!
15世纪前,印第安人就已经用天然橡胶制成橡皮球、防水衣服、鞋 子等。 1820年C.麦金托什制成夹布雨衣;同时T.Hancook发明炼胶机,可 将橡胶软化后,加料混炼并成型。 1839年美国C. Goodyear发明了橡胶硫化法,为橡胶工业的发展奠 定了基础。 1888年英国人J.邓洛普制成了实用的充气轮胎,是划时代的贡献。 1900年~1910年C.D.哈里斯测定了天然橡胶的结构,为人工合成橡 胶开辟了途径。 1910年C.D.列别捷夫以金属钠为引发剂使丁二烯合成为丁钠橡胶。
Thomas Hancock (8
May 1786~26 March 1865),Britain
Rubber mixing machine 炼胶机
10级高分子物理多媒体课件
Goodyear Tire & Rubber Company ——just for honor
The Goodyear Tire & Rubber Company‘s famous blimp above Philadelphia(费城)
10级高分子物理多媒体课件
Charles Goodyear 的各种产品
他用橡胶制作扣子,钞票,乐器,珠宝,甚至船等,还把他的肖像画在橡胶上。。。唯 独漏掉了一样----轮胎。爱德华.米奇林1891年帮助一个自行车赛车手换轮胎时发明了米奇 林轮胎,可以快速替换。 Thomas Hancock在1842年做出来了vulcanized rubber 硫化 橡胶,比Goodyears晚了4年,当 Goodyear想到英国申请专利时,他发现 Hancock早 了几个星期已经申请了。
10级高分子物理多媒体课件
橡胶历史
但实际上真正的口香糖的出现晚于硫 化橡胶。它是由Franklin V. Canning在1916年发明的,因为他的 药铺和牙医为邻居,于是发明了一种 粉红色的口香糖,取名Dentyne,原 意为dental口腔hygiene卫生
10级高分子物理多媒体课件
橡胶历史
10级高分子物理多媒体课件
In 1839, 硫化作用
Charles Goodyear
虽然1800年美国开始出现第一个橡胶厂, 但其产品有一个致命的弱点:天冷时还 算正常,但天热时却会融化变软。橡胶 真正的大规模生产和应用应该归功于美 国人Charles Goodyear。他是五金销 售商,但醉心于各种发明。失败了很多 次,有一天正在火炉边沉思,突然闻到 一股奇怪的臭味,发现是火炉上的橡胶 混进了硫磺后发出的,令人惊讶的是这 样烤出来的橡胶不发粘了!! 偶然发现天然橡胶与硫磺共热后明显地 改变了性能,使橡胶从硬度较低、遇热 发粘软化、遇冷发脆断裂的不实用的性 质,变为富有弹性、可塑性的材料。这 一发现的推广应用促进了天然橡胶工业 的建立。天然橡胶这一处理方法,在化 学上叫作高分子的化学改性,在工业上 叫作天然橡胶的硫化处理。
相关文档
最新文档