第九章 振动详解
高二物理简谐振动 振幅、周期、频率 知识精讲 人教版
高二物理简谐振动 振幅、周期、频率 知识精讲 人教版一. 本周教学内容:第九章 第一节 简谐振动 第二节 振幅、周期、频率二. 知识要点:知道什么是简谐运动以与物体做简谐运动回复力特点,理解位移和回复力的概念,理解简谐运动在一次全振动中位移、回复力、加速度和速度的变化情况。
理解弹簧振子概念与实际物体运动抽象为弹簧振子的条件。
理解回复力kx F -=的意义。
知道振幅、周期、频率是描述振动整体特征的物理量,知道它们的物理意义,理解振幅和位移的区别,理解周期和频率的关系,知道什么是固有周期和固有频率。
三. 重点、难点解析: 1. 机械振动:物体〔或物体的一局部〕在某一位置附近做往复运动,叫做机械振动,简称振动。
物体受力满足2条才能做振动①是每当物体离开振动的中心位置就受到回复力作用力;②是运动中其它阻力足够小。
描述振动的名词。
① 平衡位置:物体振动停止时的位置也就是静止平衡的位置。
② 回复力:振动物体离开平衡位置就受到一个指向平衡位置的力,叫回复力。
回复力是力的作用效果命名的。
它可以是一个力,也可以是某个力的分力或者几个力的合力。
只要物体离开平衡位置回复力就不为零,方向指向平衡位置。
③ 振动位移:以平衡位置为原点〔起点〕的位移。
数值为从平衡到振动物体达到的位置的直线距离方向由平衡位置指向物体位置。
④ 一次全振动:物体以一样的速度经某位置,又以一样的速度回到同一位置,叫完成一次全振动。
2. 简谐振动:① 弹簧振子:一轻弹簧连接一质点,质点运动时不受摩擦阻力。
这样的装置叫弹簧振子。
弹簧振子沿水平方向运动过程分析,取水平坐标轴,平衡位置为原点。
弹簧处原长状③ 回复力:kx F -=。
④ 简谐运动的定义:质点在跟偏离平衡位置的位移成正比,并总指向平衡位置的回复力作用下的振动叫简谐运动。
⑤ 简谐运动的动力学特征:kx F -=。
⑥ 运动学特征:x mka -=是变加速运动。
⑦ 整体特征与运动学量变化规律:位移、加速度、速度都按周期性变化。
《力学》第九章振动ppt课件
第九章 振动
则: A A12 A22 2A1A2 cos(2 1)
因此,
cos A1 cos1 A2 cos2 A sin A1 sin1 A2 sin2 A
x Acos cos0t Asin sin0t Acos0t
(1)
⑴式表明:同方向同频率的两个简谐振动合成后仍为一简谐振动,其 频率和分振动频率相同。
l g
0
因此,
d 2
dt 2
02
0,
02
l g
(2)
上式即为单摆简谐振动的动力学方程
第九章 振动 nˆ
上页 下页 返回 结束
第九章 振动
3. 复摆(物理摆)
任何刚体悬挂后所做的摆动叫复摆。如图示:
一刚体悬挂于O 点,刚体的质心C 距刚体的悬挂点O
之间的距离是a。选 角增加的方向为正方向,即:z 轴垂
x Acos(0t ) (1)
上式就是简谐振动的运动学方程,该式又是周期函数,故简谐振动 是围绕平衡位置的周期运动。
上页 下页 返回 结束
二、描述简谐振动的物理量
1. 周期(T)
完成一次全振动所用的时间: T 2 0
第九章 振动
对弹簧振子: T 2 2 k
0
m
2. 频率( )
单位时间内完成的全振动的次数:
幅最大;
(2)若相位差 (2 1) (2n 1) ,即反相位,则:A A1 A2 ,
振幅最小;
(3)一般情况下,振幅 A 介于 A1 A2 与 A1 A2之间。
同方向同频率简谐振动的合成,在光波、声波等的 干涉和衍射中很有用。
上页 下页 返回 结束
第九章 振动
二、同方向不同频率简谐振动的合成
9第九章 振动学基础
一 简谐振动的定义
1 定义 物体运动时,如果离开平衡位置的位移(或角位 移)按余弦函数(或正弦函数)的规律随时间变化, 这种运动叫简谐运动. 2 简谐振动的条件
F弹
1)在平衡位置附近来回振动.
2)受回复力作用. 3 弹簧振子
A1
A2 o - A2
x2
x1 同相
T t
x A1 A2 o - A2 -A1
x1 反相 T t
x2
-A1
两同相振动的振动曲线
两反相振动的振动曲线
三 简谐振动的旋转矢量表示法
用匀速圆周运动表示简谐运动的位置变化. 设一质点沿圆心在O点而半径A的圆周作匀速运动,其
角速度为 .
规定 A A
O
J
d M J J 2 dt 2 d 1
2
2
l
mg
mgl sin dt 2
当
2
5 时, sin
d mgl 0 2 dt 2J
1 2 由 J ml 3 d 2 3g 0 2 dt 2l
3g 令 2l
2
得到谐振动微分方程:
o
P
d a l 2 dt
2
由牛顿第二定律
d ml 2 mg dt
2
A
l
FT m
d g 0 2 dt l
2
具有
d x k x0 2 dt m
2
o
的形式
P
在角位移很小的情况下,单 摆的振动是简谐运动。
g 令 l
2
g l
第九章第一节 简谐运动
振子以O点为中心在水平杆方向做往复运动。振子由A点开始运动,经过O点运动到A’点,由C 点再经过O 点回到A 点,且OA 等于OA’ , 此后振子不停地重复这种往复运动。以上装置称为弹簧振子。
1)回复力
振子在振动过程中,所受重力与支持力平衡,振子在离开平衡位置 O 点后,只受到弹簧的弹力作用,这个力的方向跟振子离开平衡位置的位移方向相反,总是指向平衡位置,所以称为回复力。
MOMODA POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.
第九章 机械振动
第一节 简谐运动
一、机械振动
物体(或物体的一部分)在某一中心位置两侧所做的往复运动,就叫做机械振动。
钟摆的摆动 担物行走时扁担的颤动 风中飘扬的红旗 秋千 振动的音叉、鼓 地震等都是机械振动。
比如:
振动是自然界广泛存在的,一般的振动往往都比较复杂,所以我们先研究最简单、最基本的振动,这种振动叫简谐振动
3)简谐运动的特点 (1)周期性:每经过一个周期,物体运动的速度、位移、加速度均与一个周期前相同。经过半个周期与半周期前相比,物体的位移、速度、加速度大小相等方向相反。 (2)对称性:简谐运动物体运动到同一点或关于平衡对称的两点时,其位移、速度、加速度均大小相等。 (3)矢量性:注意位移、速度、加速度均为矢量,相同时必须是大小方向均相同。 ( 4 )简谐运动是一种非匀变速运动 ( 5 )简谐运动是一种理想化的运动,振动过程中无阻力,所以振动系统机械能守恒。
简谐运动
o
二、简谐振动的振幅、周期、频率和相位 简谐振动的振幅、周期、 1.振幅、相位和初相 ω x = A cos ( t + ϕ ) A 振幅(位移最大值的绝对值 振幅 位移最大值的绝对值) 位移最大值的绝对值 相位( 相位 或周相 )
ω Φ = ( t +ϕ )
ϕ
初相 (t =0 )时刻的相位 时刻的相位
2.周期、频率
ω x = A cos ( t + ϕ ) ω x = A cos ( t + ϕ ) = A cos ω ( t + T ) + ϕ
一个周期后位移相等, 一个周期后位移相等,所以 T =ω 2π
ω T = 2π
1 ν =T
ω =2 ν π
对于弹簧振子: 对于弹簧振子: k ω = m
2 2
E = E k +E p =
1 2
kA
2
小结
机 械 振 动
定义:平衡位置附近的往复运动 平衡位置 特点 往复运动
定义:F= _ Kx 简谐运动 回复力 加速度 位移 运动的速度
特点
探究三、
1、关于机械振动,下列说法正确的是( 关于机械振动,下列说法正确的是(
)
A. 往复运动就是机械振动 B. 机械振动是靠惯性运动,运动过程中不需要有力的作用 C. 机械振动要受到回复力的作用 D.回复力是物体所受的合力
ν
T = 2π
ν
m 1 k ν = 2π m k
ν ν
四、简谐振动的能量
ω v = Aω sin ( t + ϕ )
Ek = Ep=
1 2 1 2
ω x = A cos ( t + ϕ )
高二物理第九章机械振动第一、二、三节人教版知识精讲
高二物理第九章机械振动第一、二、三节人教版【本讲教育信息】一. 教学内容:第九章 机械振动第一节 简谐振动 第二节振幅、周期和频率 第三节 简谐运动的图象二. 知识要点: 〔一〕简谐振动1. 机械振动的定义:物体在某一中心位置两侧所做的往复运动。
2. 回复力的概念:使物体回到平衡位置的力。
注意:回复力是根据力的效果来命名的,可以是各种性质的力,也可以是几个力的合力或某个力的分力。
3. 简谐运动概念:物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动。
特征是:kx F -=;m kx a /-=。
〔特例:弹簧振子〕4. 简谐运动中位移、回复力、速度、加速度的变化规律。
〔参看课本〕〔1〕振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置、大小为这两位置间的直线距离,在两个“端点〞最大,在平衡位置为零。
〔2〕加速度a 的变化与回F 的变化是一致的,在两个“端点〞最大,在平衡位置为零,方向总是指向平衡位置。
〔3〕速度大小v 与加速度a 的变化恰好相反,在两个“端点〞为零,在平衡位置最大。
除两个“端点〞外任一个位置的速度方向都有两种可能。
〔二〕振幅、周期、频率1. 振幅A 的概念:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
2. 周期和频率的概念:振动的物体完成一次全振动所需的时间称为振动周期,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹。
周期和频率都是描述振动快慢的物理量。
注意:全振动是指物体先后两次运动状态........〔位移和速度〕完全一样....所经历的过程。
振动物体在一个全振动过程通过的路程等于4个振幅。
3. 周期和频率的关系:fT 1=4. 固有频率和固有周期:物体的振动频率,是由振动物体本身的性质决定的,与振幅的大小无关,所以叫固有频率。
振动周期也叫固有周期。
〔三〕简谐运动的图象 1. 简谐运动的图象:〔1〕作法:以横轴表示时间,纵轴表示位移,根据实际数据取单位,定标度,描点。
大学物理第九章振动学基础习题答案
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
第九章弹性振动的准确解(2011版)
第九章 弹性体振动的准确解9.1 引言在引论中我们曾经提到,实际的振动系统都是弹性体系统。
弹性体具有分布的物理参数(质量,阻尼,刚度)。
它可以看做由无数个质点借弹性联系组成的连续系统,其中每个质点都具有独立的自由度。
所以,一个弹性体的空间位置需要用无数个点的独立空间坐标来确定。
也就是说,弹性体具有无限多个自由度。
在数学上,弹性体的运动需要用偏微分方程来描述。
前面我们论述的多自由度系统只是弹性体的近似力学模型。
本章讨论理想弹性体的振动,所谓理想弹性体.....是指满足以下三个条件的连续系统模型:(1)匀质分布;(2)各向同性;(3)服从虎克定律。
通过对一些简单形状的弹性体的振动分析,着重说明弹性体振动的特点,弄清它与多自由度系统振动的共同点与不同点。
我们将看到,任何一个弹性体具有无限多个固有频率以及无限多个与之相应的主振型;而且这些主振型之间也存在着关于质量与刚度的正交性;弹性体的自由振动也可以表示为各个主振动的线性叠加;而且对于弹性体的动响应分析,主振型叠加法仍然是适用的。
所以说,弹性体振动与多自由度系统的振动,二者有着一系列共同的特性,这就是它们的共性。
而二者的差别仅在于数量上弹性体有无限多个固有频率与主振型,而多自由度系统只有有限多个。
我们还将看到,对于一些简单情形下的弹性体振动问题,可以很方便地找到它们的准确解。
尽管实际问题往往是复杂的,很少可以归结为这些简单情形;但是了解这些简单情形下准确解的特征,对于处理复杂问题是有帮助的。
为了避免用到弹性力学的知识,而仅以材料力学作为基础,我们将限于讨论一维弹性体(梁,轴,杆等)。
9.2弦的振动设有理想柔软的细弦张紧于两个固定支点之间,张力为T ,跨长为l ,弦单位长度的质量为ρ。
两支点连线方向取为x 轴(向右为正),与x 轴垂直的方向取为y 轴(向上为正),如图9.2-1(a )。
设弦的振动发生在xoy 平面内,弦的运动可表示为y=y (x,t ).还假设弦的振动幅度是微小的,即 y 与xy∂∂均为小量;在这假设下弦的张力T 可近似地看做常量。
大学物理第九章简谐运动
t 确定, 振动状态确定
O
A
O X X
初相位:=/3
判断: t = 0, 振子的初位移、初速度 x0=A/2, v0<0(向x轴负方向运动)
用旋转矢量描述简谐振动:
O
O X 判断: t = 0,
A
X
=/2
振子的初位移、初速度
x0=0, v0<0 (向x轴负方向运动)
用旋转矢量描述简谐振动:
14
讨论
相位差:表示两个相位之差
(1)对于两个同频率的简谐运动,相位 差表示它们间步调上的差异(解决振动合成 问题). x1 A1 cos(t 1 ) x2 A2 cos(t 2 )
(t 2 ) (t 1 )
2 1
15
合成
简谐运动 谐振子 分解 复杂振动
作简谐运动的物体
8
弹簧振子的振动模型
弹簧和一谐振子组成的振动系统。
l0 k
m
x
C
o
B
x xB F FB
x 0 F 0 平衡位置
x xc v 0
9
振动的成因
a 回复力
b 惯性
10
弹簧振子的动力学分析
F
o
F kx ma
2
m
x
解得 x A cos(t )
简谐运动方程
积分常数,根据初始条件确定
12
由 x A cos(t )
简谐运动方程
简谐振动的各 阶导数也都作 简谐振动
dx 得 v A sin(t ) dt A cos t 2 d2 x a 2 A 2 cos(t ) dt
大学物理(振动波动学知识点总结).
2
y
B
2)由图知A、B 点的振动状态为:
A
yA 0 vA 0
由旋转矢量法知:
yB A vB 0
B 0
A
2
3、已知波形曲线求某点处质元振动的初相位:
若已知某时刻 t 的波形曲线求某点处质元振动的初相位,则需从波形
曲线中找出该质元的振动位移 y0 的大小和正负及速度的正负。
y
u
关键:确定振动速度的正负。
大学物理
知识点总结
(机械振动与机械波)
第九章 机械振动与机械波
机械振动 简谐振动
简谐振动的 特征
简谐振动的描 述
简谐振动的合 成
阻尼振动 受迫振动
机械波
机械波的产 生
机械波的描 述
波动过程中能量 的传播
波在介质中的 传播规律
简谐振动的特征
回复力:
f kx
动力学方程: 运动学方程:
d2 x dt2
多普勒效应: (以媒质为参考系)
1)S 静止,R 运动 2)S 运动,R 静止
一般运动:
R
u VR u
s
s
R
u u Vs
s
R
R
u VR u Vs
s
习题类别:
振动:1、简谐振动的判定。(动力学) (质点:牛顿运动定律。刚体:转动定律。)
2、振动方程的求法。 ①由已知条件求方程②由振动曲线求方程。
2)若波形图对应t = 0 时,点A处对应质元的振动初相位。 3)若波形图对应t = T/4 时,点A处对应质元的振动初相位。
之间的距离。
②周期T :波前进一个波长的距离所需的时间。
③频率ν :单位时间内通过介质中某点的完整波的数目。
[工学]《结构动力学》-第九章-随机振动数学描述
Rxy() 2 Rx(0)Ry(0)
或
Rxy()
Rx(0)+Ry 2
(0)
h
25
(3)应用 (a)确定输油管裂纹的位置
设声音在管道中传播速度为V(裂纹K漏油时发出的声 音),则有
l 1 v 1l 2 t v 2l t 2 l 1 v ( t 2 t 1 ) v m
由互相关函数Rx1x2(τ)找出τm即可,而传感器之间距离
h
2
**常见的几种随机激励:
3)火箭燃烧放热不均匀,如:火箭发动机,化工储液 罐,……
4)地震或地面突变,如:地震,火炮发射,采掘机抖 动,……
**随机振动的利与害 〔利用〕
ቤተ መጻሕፍቲ ባይዱ
1)诊断与检验:心电图、脑电波分析,轴承、齿 轮和发动机的故障诊断
2)找振源、确定传递通道
3) ……
h
3
〔危害〕
对于确定性振动,只要使系统固有频率远离激励 频率,就可避免共振发生
①一个确定性振动,不论波形怎样复杂,也不是随 机振动
②随机振动≠复杂振动,如初相位随机变化的简 谐振动x=X0sin(ωt+φ)(φ在0~2π之间随机取 值),波形十分简单,但仍属于随机振动
**常见的几种随机激励:
1)固体接触面凹凸不平,如:路面,滚珠轴承,齿轮 金属切削加工,…… 2)流体对固体表面的作用,如:船,堤坝,海洋平台, 高层建筑,……
R x ( t , y ) E [ x ( t ) y ( t )] R y ( t , x ) E [ y ( t ) x ( t )]
对平稳过程,有:
R x ( ) y x 1 y 2 p ( x 1 , y 2 ) d 1 d 2 x y R y ( ) x x 2 y 1 p ( x 2 , y 1 ) d 2 d 1 x
第24讲振动详解
(1) 振幅
A xmax
x
A o
A
xt图
Tt
T 2
(2) 周期、频率
x Acos(t ) Acos[(t T ) ]
周期 T 2π
x
注意
A
弹簧振子周期 o
A
T 2π m k
xt图
Tt
T 2
x Acos(t ) Acos[(t T ) ]
频率 f 1
T 2π
x
在 Oxy平面内绕点 O作逆时针方向的
匀角速转动,其角
速度 与振动频率
相等,这个矢量就 叫做旋转矢量.
x Acos(t )
点旋以转o矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运
动.
t 0
o
A
x0 x
x0 Acos
点旋以转o矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运
动.
t t
t 0, x0 0.04 m, v0 0 求(1)t 1.0 s, x, F
解 A 0.08 m 2 π π s1
T2
t 0,x0 0.04 m
代入 x Acos(t )
π
3
v0 0
π
3
A
π 3
x/m
0.08 0.04 o 0.04 0.08
π
3
x 0.08cos(π t π) 23
o
A
t
x
x Acos(t )
点旋以转o矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运
动.
y
vm t π
2
t an
A
大学物理教案(第五版)下册马文蔚改编09-1简谐振动
θ
θ
l
c mg
dθ mgl = sin θ 2 dt J
2
对转动轴, 对转动轴,
dθ mgl sin θ = J 2 dt
2
M = Jα
dθ mgl θ = 2 J dt 2 d θ mgl + θ =0 2 J dt
2
d θ mgl Z + θ =0 + 2 J dt 2 θ lc mgl d θ 2 2 +ω θ = 0 令ω = 2
d x k + x =0 2 dt m
d 2x 2 +ω x = 0 2 dt
2
k = ω2 令: X m
解此微分方程: 解此微分方程:
x = Acos(ωt +)
A = l2 l1 = 0
x = (l2 l1) cosωt
4)复摆 4)复摆
很小 已知: 已知: 轴至质心的距离 l 摆的质量m及转动惯量 及转动惯量J 摆的质量 及转动惯量
T
a t图
T
t
= ω x
2
Aω
2
三)描述简谐振动的物理量 x = Acos( 1)振幅 : ) 离开平衡位置最大位移的绝对值
ωt +)
x = Acos(ωt +)
类似的
xmax = A
v = Aω sin( ωt +) vm = Aω 速度振幅 ax 2 2 a = Aω cos(ωt +) am = Aω 加速度振幅 ax
2
J
所以小角度复摆作谐振动
dt
J = 2π T= mgl ω
对于单摆
2π
mg
J = ml
2
第九章 振动 习题册解答 (1)
分析:总能量: E = 1 k A2 2
势能:
E P1
=
1 2
k
(A)2 3
=
1 9
E;
动能:
E k1
=
E
-
E P1
=
8 9
E;
E P2
=
1 2
k
(A)2 2
=
1 4
E
E k2
=
E - EP2
=
3 4
E
9.8 把单摆小球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后 由静止释放,使其摆动。从放手时开始计时,若用余弦函数表示运动方程,则该单摆振动的初 相位为:[ B ]
(m)
§9.3~9.7
9.6 一个弹簧振子,作简谐振动,已知此振子势能的最大值为 100J。当振子处于最大位移
的一半处时其动能瞬时值为:[ C ]
(A) 25J; (B) 50J; (C) 75J; (D) 100J。
分析:总能量 E = 1 k A2 = 100J 2
振子处于最大位移一半时,势能为 EP
2π m
分析:
T = 2π = 2π ω
m ν=1 k, T
k m
α
正
k
m
mg.sinα α
mg
平衡位置:kl=mg.sin α 任意位置:k(l-x)- mg.sinα =ma
a = − k x ,令ω = k ,则T = 2π m
m
m
k
9.3 一弹簧振子,振动方程为 x=0.1cos(πt-π/3)·m,若振子从 t=0 时刻的位置到达 x=-0.05m 处,且向 X 轴负向运动,则所需的最短时间为:[ D ]
马文蔚《物理学》(第6版)(下册)课后习题-第九章至第十一章【圣才出品】
第二部分课后习题第9章振动一、问题9-1有人说谐振子是指作简谐运动的物体;也有人说谐振子是指一个振动系统。
你的看法如何?试表述之。
答:作简谐运动的振动系统,称为谐振子。
弹簧振子、单摆、复摆等都是谐振子。
谐振动是指振动物体在平衡位置附近往复运动,在这个振动形式下,物体受力的大小总是和它偏离平衡位置的距离(或角位移)成正比,并且受力方向始终指向平衡位置。
9-2符合什么规律的运动是简谐运动?说明下列运动是不是简谐运动:(1)完全弹性球在硬地面上的跳动;(2)活塞的往复运动;(3)如问题9-2图所示,一小球沿半径很大的光滑凹球面滚动(设小球所经过的弧线很短);(4)竖直悬挂的弹簧上挂一重物,把重物从静止位置拉下一段距离(在弹性限度内),然后放手任其运动。
问题9-2图答:符合关系式F=-kx或的运动都是简谐运动。
(1)不是简谐运动。
虽然完全弹性碰撞过程中能量守恒,但球在运动过程中受到的力不符合关系式F=-kx。
(2)不是简谐运动。
有摩擦力做功,不符合关系式F=-kx。
(3)是简谐运动。
运动过程类似单摆。
(4)是简谐运动。
重物所受的力符合关系式F=-kx。
9-3弹簧的劲度系数k是材料常数吗?若把一个弹簧均分为二段,则每段弹簧的劲度系数还是k吗?将一质量为m的物体分别挂在分割前、后的弹簧下面,问分割前、后两个弹簧振子的振动频率是否一样,其关系如何?答:弹簧的劲度系数k不是材料常数。
若把一个弹簧均分为二段,则每段弹簧的劲度系数变为2k。
根据弹簧振子频率的公式,将一质量为m的物体分别挂在分割前、后两个弹簧的下面,分割前、后两个弹簧振子的振动频率之比为。
9-4一质量未知的物体挂在一劲度系数未知的弹簧上,只要测得此物体所引起的弹簧的静平衡伸长量,就可以知道此弹性系统的振动周期,为什么?答:当物体挂在一个劲度系数未知的弹簧上,平衡时,,其中是此物体所引起的弹簧的静平衡伸长量。
而弹性系统的振动周期,所以T=,即只要测得此物体所引起的弹簧的静平衡伸长量,就可以知道此弹性系统的振动周期。
振动的分解
以简谐振动的频率为横坐标,以相应的振幅为 纵坐标所作的图解,称为该振动的频谱.是分立谱.
A 分立谱
频谱
O
ω
3ω 5ω ω
上页 下页 返回 结束
2.非周期函数的分解
第九章 振 动
当 x = f(t) 为非周期性函数时,则
x f (t)
0 A( )cos t d 0 B( )sin t d
A0
1 2π
π
f (t)d(t)
π
Ak
1 π
π
f (t)cos(kt)d(t)
π
Bk
1 π
π f (t )sin(kt)d(t )
π
设 Ak Ak cos k Bk Ak sin k
x A0 Ak cos(kt k )
k 1
或
x A0 Ak sin(kt k )
k 1
上页 下页 返回 结束
傅里叶系数 A(), B() 由 f (t) 决定
频谱为连续谱.
上页 下页 返回 结束
第九章 振 动
§9.5 振动的分解
1. 周期运动的分解 设某物理量随时间周期性变化可表示为
x f (t)
其中 2π
T
x A0 Ak cos kt Bk sinkt
k 1
——傅里叶级数 k=1为基频振动, 谐频振动. 其总称为k次谐振.
上页 下页 返回 结束
第九章 振 动
傅里叶系数
第九章 振 动
若有k个分振动,其频率都是某最低频率分振动 (称基频振动)的倍频(两倍、三倍……)振动,则合振 动仍为周期运动,其周期与基频振动的周期相等.
方波傅里叶级数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)简谐振动的特点 ①等幅振动; ②周期振动 x(t)=x(t+T )。 (3)复杂振动的合成
一切复杂的振动都可以看成由许多简谐振动合成的。 6
(3)描述简谐振动的特征量
①振幅A
x(t)=Acos(t+)
振动量最大值的绝对值。
②频率v(周期T)或圆频率(又称为角频率)
谐振子和对其施加恢复力的物体组成的系统称为谐振 系统。 (3)弹簧谐振子
由质量可以忽略的弹簧和一个刚体组成的振动系统称 为弹簧振子。
16
17
2.水平放置的弹簧振子
o
vm
F v0
xA
A
am
x
o
x
F 0a0
v 0F x 0
-A
am
o
x A
vm
x
o
x
F -kx a 2 x
2 2
T
③相位
T 2
2
( t + )称为振动的相位,是 t 时刻的; 是t =0时刻
的相位,即初相位。A、 、 称为简谐振动的三要素。 7
(4)相位差
x1(t)=A1cos( t+1), x2(t)=A2cos( t+2) =( t+ 2)-( t+ 1)= 2- 1
x t t T t 2T
(3)频率 振动量的变化每重复一次,称为完成一次全振动。 单位时间内完成全振动的次数, 称为频率, 记为 v 。 单位: s-1或Hz。
5
3.简谐振动 (1)简谐振动
一物理量随时间的变化规律遵从余弦函数关系,则称 该物理量作简谐振动,简称为谐振动。 其数学表达式为:
cost
12
a am cost
am=A2称为加速度振幅,表示质点所能达到的最大加速 度。加速度的相位与位移的相位相差, 这种情况称二者
相位相反(或反向)。 v Acos( t )
2
x、v、aபைடு நூலகம்
2A
A v
A
o
-A
- A
- 2A v > 0 a<0 减速
19
(5)利用初始条件,求A、 已知在t=0时,角频率为,初位移为x0,初速度为v0。
x0 Acos, v0 Asin
A
x02
v02
2
,
arctan
v0
x 0
此关系式可以作为公式使用,很重要。根据已知的初始条
件(、x0、v0),可通过此关系式求出运动方程。
F 0a 0
x0
18
(1) 受力特点
F= -kx
(2) 动力学方程
由F
ma
m
d2 x dt2
及 F kx
d2 x+ k dt2 m
x
0
d2 dt
x
2
2
x
0
k
m
(3)固有(圆)频率和周期
k
m
T 2 2 m
k
(4)位移表达式
x(t)=Acos( t+)
x
A1
x1
A2
O
x2
- A2
T
t
- A1
x2 超前于x1, 超前/2。或x1 落后于x2, 落后/2。
10
x
1 2
O
x 1 2
O
x
2 1
O
2
1
3
2
或
2
t
2 1
t
2
1
2
t 11
二、简谐振动的速度、加速度
1.速度
x(t)=Acos( t+)
14
四、简谐振动的微分方程
由此式
a
d2 x dt2
2 x
可得:
d2 dt
x
2
2
x
0
此式简谐振动的微分方程。
x(t)=Acos( t+)
是上述微分方程的解,称为简谐运动的运动方程,简称 为简谐运动方程。
15
五、弹簧振子
1.谐振子 (1)谐振子
做简谐振动的物体, 称为简谐振子, 简称为谐振子。 (2)谐振系统
第九章 振 动
1
振动
(1)机械振动 物体在一定位置(稳定平衡位置)附近所作的来回往
复的运动称为机械振动。 例如: 机械钟摆的运动、弹簧振子的运动、心脏的
跳动以及其它的往复运动等。
(2)广义振动
类似于机械振动的物理现象。例如任何一个物理量
(如物体的位置矢量、电压、电流、电场强度等等)在某个
数值附近反复变化,都可以称为振动。
小值而变化, 这种变化状态称为振动。
(2)振动的传播
振动的传播过程称为波动(机械波、电磁波、物质波) 。
(3)振动的函数表示式
x 代表振动量在任意时刻的数值, x 为时间的函数:
x t
4
2.周期振动 (1)周期振动
如果每隔一固定的时间T,振动量的变化就完全重复 一次,这种振动称为周期振动。T 称为周期振动的周期。 (2)周期振动的函数表达式
x
v< 0 a< 0 加速
v< 0 a> 0
减速
a
T t
v> 0
a> 0
加速
13
三、简谐振动的运动学及动力学特征
1.运动学特征
a
d2 x dt2
2 Acos(
t
)
2 x
质点的加速度与其位移正比且反向。
2.动力学特征
F ma m 2 x
质点所受的力与其位移正比且反向。即质点所 受的力总是指向平衡位置的,故称为回复力。
v d x Asin( t ) dt
v
Acos(
t
2
)
vm
cos
t
2
vm=A称为速度振幅,表示质点速率的最大值。速度的 相位比位移超前 /2。
2.加速度
a
d2 dt
x
2
2
Acos(t
)
2
Acos(t
)
am
20
9-2 旋转矢量法 一、简谐振动的描述方法
①同相
当 = 2k , ( k =0,1,2,…),两振动步调相同。
x
A1
x2
A2
x1
O
- A2 - A1
x2
x1
T
t
8
②反相
当 = (2k+1) , ( k =0,1,2,…), 步调相反。
x
A1 A2
O
- A2 - A1
x2 x1
x2
T
t
x1
9
③超前和落后
若 = 2-1>0, 则 x2比x1较早达到正最大, 称 x2 比 x1 超前(x1比x2 落后)。超前、落后以< 的相位角来判断。
2
动物的心跳(次/分)
大象 25~30
马
猪
60~80
兔
松鼠
380
鲸
40~50 100 8
昆虫翅膀振动的频率(Hz)
雌性蚊子
355~415
雄性蚊子
455~600
苍蝇
330
黄蜂
220
3
9-1 简谐振动 振幅 周期和频率 相位
一、简谐振动
1.振动
(1)振动的概念
一个物理量的值在观测时间内不停地经过极大值和极