离散数学试卷

合集下载

离散数学样卷十二套(含答案)

离散数学样卷十二套(含答案)

一、证明下列各题1、 (10分)证明蕴涵式:()P P Q Q ∧→⇒2、(10分)证明:,1111f g f g -⇒-I 为函数为函数。

5、 3、(10分)给定代数结构,N ⨯和{}0,1,⨯,其中N 是自然数集合,⨯是数的乘法。

设{}:0,1f N →,定义为:12,,()0k n n k N f n ⎧=∈=⎨⎩否则试证}01N ⨯≅⨯,,,。

4、(10分)给定代数结构,R *,其中R 是实数集合,对R 中任意元a 和b ,*定义如下:a b a b a b *=++⨯ 试证明:,R *是独异点。

二、求下列各题的解:1、试求下列公式的主析取范式和主合取范式(15分):()()P Q P Q ⌝∨⌝→⌝€2、(15分){}010*********R =设,,,,,,,,,,,,试求(1)、R R *,(2)、{}1R ↑,(3)、{}11R -↑,(4)、{}1R ⎡⎤⎣⎦,(5)、{}11R -⎡⎤⎣⎦3、(15分给定无向图,G V E =,如图,试求: F E DCA B(1) 从A 到D 的所有基本链; (2) 从A 到D 的所有简单链;(3) 长度分别是最小和最大的简单圈; (4) 长度分别是最小和最大的基本圈; (5) 从A 到D 的距离。

4、(15分)给定二部图12,,G E V =,如图 9v 8v 7v 6v 1V1v 2v 3v 4v 5v 2V 试求1V 到2V 的最大匹配一、证明下列各题1、 (10分)证明蕴涵式:()P Q P P Q →⇒→∧2、(10分)证明:()()()A B C A B A C ⨯-=⨯-⨯3、(10分)给定群,G ,则,G 为Abel 群⇔222()()(,())∀∀∈→=a b a b G a b a b4、(10分)给定代数结构,S *,其中S 中元为实数有序对,*定义为 ,,,2a b c d a c b d bd *=+++,试证,S *是可交换独异点。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

离散数学样卷参考答案

离散数学样卷参考答案

参考答案试卷一一、选择填空1.C2.A3.D4.D5.A6.A7.B8.C9.D 10.B二、填空1.主合取范式)()(q p q p ⌝∨∧∨⌝.前束范式))()((x G x F x →∀或))()((y G x F y x →∀∀ 2. n-k,93.=)(A ρ{Φ,{1},{2},{1,2}},B A ⨯={〈1,a 〉,<1,b>,<2,a>,<2,b>}4. [b]R ={1,2,3}, X/R={{1,2,3},{4},{5}}.5. ,,G y x ∈∀ )()()(y f x f y x f *= 。

6.=-)(1R r { <2,1>,< 4,2>,<1,1>,<3,3>,<2,2>},=S R {<1,4>,<2,2>}。

7.15,12.8. =τσ⎪⎪⎭⎫ ⎝⎛42134321 =(132) =-1στ⎪⎪⎭⎫ ⎝⎛41324321=(123) 9.0, 45 10.2,0三 1.× 2.√ 3. √ 4.× 5.×四.1.一棵树具有3个2度结点,2个3度结点,2个4度结点,其余为叶。

试求其共有多少个结点?多少片叶?解: 设该树其有x 片叶,则顶点数为x+7, 根据树的性质知,该树有x+6边,由握手定理有:3*2+2*3+2*4+x*1=2(x+6), 得x=8故该树共有15个结点,8 片叶 .2.已知X={a,b,c},给出X 上的所有等价关系。

解:X 的划分其有五种:S 1={{a,b,c}}, S 2={{a,b},{c}}, S 3={{a,c},{b}}, S 4={{a},{b,c}},S 5={{a},{b},{c}},因为X 上划分与等价关系一一对应,故x 上共有五个等价关系,它们是:R 1={<a,b>,<b,a>,<a,c><c,a>,<b,c>,<c,b>}X I ⋃R 2={<a,b>,<b,a>}X I ⋃, R 3={<a,c><c,a>}X I ⋃R 4={<b,c>,<c,b>}X I ⋃, R 5=X I3..画一棵权为2,3,3,4,5,6,7,8 的最优二叉树,并计算出它的树权。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

2024年4月离散数学真题

2024年4月离散数学真题

2024年4月高等教育自学考试全国统一命题考试离散数学(课程代码 02324)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。

2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。

3.涂写部分、画图部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。

第一部分选择题一、单项选择题:本大题共15小题,每小题2分,共30分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.含有3个命题变元的任一命题公式的指派个数是A.6个B.8个C.9个D.10个2.下列命题公式为矛盾式的是A.P→(P ⋁Q ⋁R)B.¬(Q→P) APC.(P→¬P)→¬PD.(P ⋀¬P)→Q3.含有2个命题变元的命题A是重言式的条件是A的主析取范式含有A.4个小项B.1个小项C.4个大项D.1个大项4.设论域元素为a、b,与∀xR(x) ∧(∋y)S(x) 等价的是A.(R(a) ⋀R(b)) ⋀(S(a) ⋀S(b))B.(R(a) ⋀R(b)) ⋀(S(a) ⋁S(b))C.(R(a) ⋁R(b)) ⋀(S(a) ⋀S(b))D.(R(a) ⋁R(b)) ⋀(S(a) ⋁S(b))5.谓词公式 ∀xF(x) ⋀G(x,y) 中变元x 为A.自由出现B.约束出现C.既不是自由出现也不是约束出现D.既是自由出现也是约束出现6.设论域是正整数,下列谓词公式中值为真的是A.)10(22=+∃∀y x y xB.)10(22=+∃∀y x x yC.)10(22=+∀∀y x y xD.)10(22=+∃∃y x y x7.设A ={a,∅},P(A)是A 的幂集,下列选项中正确的是A.{a}∈ P(A),{a}⊆P(A)B.{{A}}∈P(A),{{a}}⊆P(A)C.{a}∈P(A),{∅}∈P(A)D.{a}∈P(A),{∅}⊆P(A)8.一个8阶简单图的边数最大为A.20B.25C.28D.309.下面关于n 阶树的描述,错误..的是 A.连通图 B.连通且有n-1条边C.无回路且有n-1条边D.连通且无回路10.R={<0,1>,<1,2>,<2,3>},S={<2,1>,<1,2>,<3,3>},下列正确的是A.ran(R) ⊂ ran(R ∩S)B.ran(S) = ran(R ∪S)C.dom(R) = dom(S)D.dom(R) ∪ dom(S) = ran(R) ∪ ran(S)11.设A={1,2,3},则下列关系中是反自反关系的为A.R={<1,1>,<1,2>}B.R={<1,2>,<3,3>}C.R={<1,2>,<3,2>}D.R={<3,1>,<1,3>,<2,2>}12.设A={a,b,c} ,下列选项中既不是对称也不是反对称的是A.R={<a,a>,<a,b>,<b,a>,<c,b>,<b,c>}B.R={<a,a>,<b,b>}C.R={<a,c>,<a,b>}D.R={<a,c>,<b,b>}13. 设f: R →R,f(x) =⎩⎨⎧<-≥3232x x x ,,;g:R →R,g(x)=x+2,则g ∘f:R →R 是A.单射不满射B.满射不单射C.不单射不满射D.双射14.一个5阶简单图G,保证G 为连通图的最少边数为A.4B.5C.6D.715.下列各集合对于整除关系构成偏序集,不能..构成格的集合是 A.L 1={1,2,3,4} B.L 2={1,2,3,6}C. L 3={1,3,5,15}D.L 4={1,3,9,81}第二部分 非选择题二、填空题:本大题共10小题,每小题2分,共20分。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学试题及答案

离散数学试题及答案

离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。

因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

离散数学试卷及答案

离散数学试卷及答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。

10.下图所示的偏序集中,是格的为 。

二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。

2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有()个。

A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。

4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下t st spR=∈=则P(A)/ R=()<A∧>)(||||}s({t,,|A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,下列哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ∩答案:A2. 对于命题逻辑,下列哪个是真值表的表示方法?A. 真值表B. 逻辑图C. 布尔代数D. 集合论答案:A3. 以下哪个是图论中的基本单位?A. 点B. 线C. 面D. 体答案:A4. 函数f(x) = x^2 + 3x + 2在x=-1处的值是:A. 0C. 4D. 6答案:C5. 在关系数据库中,以下哪个操作用于删除表中的记录?A. SELECTB. INSERTC. UPDATED. DELETE答案:D6. 以下哪个是离散数学中的归纳法证明方法?A. 直接证明法B. 反证法C. 归纳法D. 构造性证明法答案:C7. 在逻辑中,以下哪个是析取命题?A. P ∧ QB. P ∨ QC. ¬PD. P → Q答案:B8. 以下哪个是图的遍历算法?B. BFSC. Dijkstra算法D. Floyd算法答案:B9. 在集合{1, 2, 3}上,以下哪个是幂集?A. {∅, {1}}B. {1, 2}C. {1, 2, 3}D. 所有选项答案:D10. 以下哪个是递归算法的特点?A. 不能自我调用B. 必须有一个终止条件C. 必须有一个基本情况D. 所有选项答案:D二、填空题(每空2分,共20分)1. 在离散数学中,_________ 表示一个命题的否定。

答案:¬P2. 如果集合A和集合B的交集为空集,那么A和B被称为_________。

答案:不相交3. 一个函数f: A → B是_________,如果对于集合B中的每个元素b,集合A中至少有一个元素a与之对应。

答案:满射4. 在图论中,一个没有环的连通图被称为_________。

答案:树5. 一个命题逻辑公式是_________,如果它在所有可能的真值分配下都是真的。

答案:重言式6. 一个关系R在集合A上是_________,如果对于A中的任意两个元素a和b,如果(a, b)属于R,则(b, a)也属于R。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)

国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。

离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。

下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。

1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。

答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。

答案:是永真式。

(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。

请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。

答案:是真命题。

4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。

答案:如果x不能被2整除,则x不是偶数。

2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。

答案:6个顶点。

3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。

答案:2^4=16个元素。

4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。

答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。

5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。

答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案

《离散数学》考试试卷(试卷库14卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库14卷)试题总分: 100 分考试时限:120 分钟⼀、选择题(每题2分,共20分)1. 下述命题公式中,是重⾔式的为( )(A ))()(q p q p ∨→∧(B )q p ∨))()((p q q p →∨→?(C )q q p ∧→?)((D )q q p →?∧)(2. 对任意集合A,B,C,下列结论正确的是()(A )若A ?B,B ∈C,则A ?C ;(B )若A ∈B,BC,则A ?C ;(C )若A ?B,B ∈C,则A ∈C ;(D )若A ∈B,B ?C,则A ∈C ; 3. 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系, ,则由R 产⽣的S S ?上⼀个划分共有( )个分块。

(A )4(B )5(C )6(D )94. 下列偏序集( )能构成格5. 连通图G 是⼀棵树当且仅当G 中( )(A )有些边是割边(B )每条边都是割边(C )所有边都不是割边(D )图中存在⼀条欧拉路径6. 有n 个结点)3(≥n ,m 条边的连通简单图是平⾯图的必要条件( )(A ) 63-≤n m(B )63-≤m n (C )63-≥n m (D ) 63-≥m n7. 设P,Q 的真值为0,R,S 的真值为1,则下⾯命题公式中真值为1的是()(A )R →P (B )Q ∧S (C )P S (D )Q ∨R 8. 在图G=中,结点总度数与边数的关系是()(A )deg()2||i v E =(B )deg()||i v E =(C )deg()2||iv Vv E ∈=∑(D )deg()||iv Vv E ∈=∑9. 设有33盏灯,拟公⽤⼀个电源,则⾄少需有五插头的接线板数()(A )7(B )8(C )9(D )14 10. 设集合A 上有四个元素,则A 上的不同的等价关系的个数为()(A )11 (B )14 (C )17(D )15⼆、填空题(每题2分,共20分)1. 设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则R= 。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题(每题2分,共20分)1. 集合A={x|x<5},集合B={x|x>2},则A∩B为:A. {x|x>2}B. {x|x<2}C. {x|2<x<5}D. {x|x≥5}2. 命题p:"x>0"是命题q:"x^2>0"的:A. 必要条件B. 充分条件C. 充分必要条件D. 无关条件3. 函数f(x)=x^2+3x-2的值域是:A. (-∞, -1]B. [1, +∞)C. (-∞, 4]D. (-∞, 2]4. 逻辑表达式((P∨Q)∧(¬P))的真值表中,当P为真时,表达式的值为:A. 真B. 假C. 不确定D. 无法判断5. 已知二元关系R定义在集合A上,若对于任意a,b,c∈A,若aRb且bRc,则aRc,那么R是:A. 自反的B. 对称的C. 传递的D. 完全的6. 有限状态自动机(DFA)与确定有限状态自动机(DFA)的区别在于:A. DFA可以识别非正则语言B. DFA可以有多个起始状态C. DFA可以有多个接受状态D. DFA可以有多个状态7. 命题逻辑中,若命题P的否定为P',则P和P'的关系是:A. 互为对立B. 互为矛盾C. 互为等价D. 互为同一律8. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 89. 一个命题逻辑公式的真值表中,若存在一行结果为假,则该公式:A. 总是假B. 有时真,有时假C. 总是真D. 无法判断10. 布尔代数中,逻辑与(AND)操作的特点是:A. 有0则0B. 有1则1C. 非0即1D. 非1即0二、简答题(每题5分,共10分)1. 简述集合论中的幂集概念。

2. 描述图的邻接矩阵表示方法。

三、计算题(每题10分,共30分)1. 证明函数f(x)=x^3-3x^2+2x-1在R上是单调递增的。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。

B. 有些天鹅不是白色的。

C. 所有天鹅都不是白色的。

D. 没有天鹅是白色的。

答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。

答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。

答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。

答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。

答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。

答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。

证明:假设p成立,由于p是q的充分条件,所以q成立。

又因为q是r的充分条件,所以r成立。

因此,p成立可以推出r成立,即p是r的充分条件。

2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新疆大学2013—2014学年度第二学期期末考试《离散数学》试卷A第一部分 选择题(共20 分)一、单项选择题(本大题共10小题,每题只有一个正确答案,答对一题得2分共20分) 1、对任意集合A 、B 、和C ,下列论断中正确的是: 【 】A. 若A ∈B ,B ⊆C ,则A ∈CB. 若A ∈B ,B ⊆C ,则A ⊆CC. 若A ⊆B ,B ∈C ,则A ∈CD. 若A ⊆B ,B ∈C ,则A ⊆C2、设A={a,{a}},下列式子中正确的有: 【 】A. {a}∈ρ(A)B. a ∈ρ(A)C. {a}⊆ρ(A)D. 以上都不是3、P :我将去镇上。

Q :我有时间。

命题“我将去镇上,当且仅当我有时间”符号化为:【 】A. P →Q B. Q →P C. P ↔Q D. Q ∨¬P4、命题公式:(P ∧(P →Q ))→Q 是 【 】A .矛盾式 B. 可满足式 C. 重言式 D. 不能确定5、谓词公式)())()((x Q y yR x P x →∃∨∀中,量词x ∀的辖域是: 【 】A. ))()((y yR x P x ∃∨∀B. )(x PC. )(),(x Q x PD. )()(y yR x P ∃∨6、在如下各图中,哪一个是欧拉图? 【 】7、设|V|>1,G= < V , E >是强连通图,当且仅当: 【 】A .G 中至少有一条通路B .G 中至少有一条回路C .G 中有通过每个结点至少一次的通路D .G 中有通过每个结点至少一次的回路8、设}}2,1{},1{,{Φ=S ,则 ρ(S) 有多少个元素? 【 】A .3;B .6;C .7;D .8 ;9、集合A={1,2,3,4,5,6,7,8,9,10}上的关系R={<x, y> | x + y = 10},则R 的性质为:【 】A .自反的;B .对称的;C .传递的、对称的;D .反自反的、传递的10、集合A 上的等价关系R ,其等价类集合{[ a]R | a ∈ A}称为: 【 】A .A 与R 的并集,记作A ∪RB .A 与R 的交集,记作A ∩RC .A 与R 的商集,记作A /RD .A 与R 的差集,记作A - R二、填空题(本大题共10小题,每题2分,共20分)11、已知集合A={φ,{φ}},则A 的幂集为 。

12、已知序偶< x-2,18>=< 9,2x-y >,则x= ; y= 。

13、P 、Q 为两个命题,当且仅当 时,P →Q 的真值为0 14、(¬P ∧Q )∨(¬P ∧¬Q )可化简为: 。

15、设}整除,2被,121{Z x x x x M ∈≤≤=,}整除,3被,121{Z x x x x N ∈≤≤=则 M ∩N= ,M – N=16、个体域为自然数集,P (x ):x 为奇数,Q (x ):x 为偶数,则命题“不存在既是奇数又是偶数的自然数”形式化为: 。

17 、设R 为非空集合A 上的等价关系,其等价类记为〔x 〕R 。

x,y ∈A ,若〈x,y 〉∈R ,则〔x 〕R与〔y 〕R 的关系是__ ___,而若〈x,y 〉∉ R ,则〔x 〕R ∩〔y 〕R =______。

18.K n 为汉米顿图,当且仅当 。

19.设A 、B 为集合,|A|=n ,|B|=m ,则A 到B 的二元关系共有 个,A 上的二元关系共有个。

20.一棵树有两个结点度数为2,一个结点度数为3,三个结点度数为4,它有个度数为1的结点?三、计算题 (本大题共6小题,其中21、22、23三题每题5分,24、25、26三题每题7分,共36分)21、某班有学生50人,有26人在第一次考试中得优,有21人在第二次考试中得优,有14人在两次考试都得优,那么两次考试中都没得优的学生有多少人?22、是否可以分别画出无向简单图,使各点的度与下面给出的序列一致。

如可能,画出符合条件的无向图,如不可能,说明原因。

(1)1,1,2,2,3 (2)1,1,2,2,223、给定个体域D={3,5,7},P (x )解释为“x 是素数”,求公式)(x xP ∀的真值。

24、设集合A={1,2,3},A上关系R={<x , y>|x∈A ∧y∈A∧x +3y<8},关系S={ <2,3>,<4,2>}。

求Dom(R),Ran(R),RοS,R~,r(R)及s(R)25. 求公式q∧(p∨¬q)的析取范式、合取范式、主析取范式,并根据主析取范式直接确定公式的弄真指派和弄假指派。

26、对{2,3,6,12}集合上的整除关系画出哈斯图,并对子集{2,3,6}找出最大元素,最小元素,极大元素,极小元素。

四、证明题(3小题,每题5分,共15分。

)27、证明:A\(B∪C)=(A\B)∩(A\C)28、证明逻辑等价式∀x∀y(P(x)∨Q(y))⇔∀x P(x)∨∀y Q(y)。

(方法不限)五、应用题(本大题共1小题,9分)30、有七位客人入席,A只会讲英语;B会讲汉语;C会讲英语、意大利语及俄语;D会讲汉语及日语;E会讲意大利语及德语;F会讲法语,日语及俄语;G会讲德语和法语。

问主人能否把七位客人安排在一张圆桌上,使每一位客人与左右邻不用翻译便可交谈。

若能安排,请给出一个方案。

新疆大学2013至2014学年第第二学期期末考试{离散数学} 试题A标22、(1)不符合握手定理,所以不能画出图(2)符合条件的无向图为:23、主析取范式:(¬P∧¬Q∧R)∨(¬P∧Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R)或者主析取范式=m1∧m3∧m6∧m7成真赋值为:001,011,110,111 成假赋值为:000,010,100,10124、dom(R)=A,Ran(R)={1,2},RοS={<1,3>},R-1={<1,1>,<2,1>,<1,2>,<1,3>}r(R)={<1,1>,<1,2>,<2,1>,<3,1>,<2,2>,<3,3>}s(R)={<1,1>,<1,2>,<2,1>,<3,1>,<1,3>}25、不会打这三种球的人数为:X=10A、B、C为会打篮球、排球、网球的人的集合,则有:|S|=30|A|=16,|B|=14,|C|=11,|A∩B|=10,|A∩C|=8,|B∩C|=8,|A∩B∩C|=5 X=|S|-(|A|+|B|+|C|)+(|A∩B|+|A∩C|+|B∩C|)-|A∩B∩C|=1026、R={<1,1>,<1,3>,<1,5>,<1,9>,<1,15>,<1,45>,<3,3>,<3,9>,<3,15>,<3,45>,<9,9>,<9,45>,<15,15>,<15,45>,<45,45>}根据R中元素,可知R是偏序关系,其哈斯图为:最大元:45,最小元:1,极大元:45,极小元:1四、证明题(2小题,每题5分,共10分。

)27、28、证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)五、综合应用题(本题共2小题,每题7分,共14分)29、[解] 能安排,其方案为:H=(A,C,B,E,D,G,F,A)将每个人作为一个项点,如果两个人会讲同一种语言,就在代表他们的二个项点间连一条边,边上标明二人公用的语言,这样就可得一简单无向图G。

所求问题转化为图G中有无Hamilton回路问题。

而上边指出的回路H正好是图G的一条Hamilton回路,因此问题得到解决。

30、令p:他是计算机系本科生q:他是计算机系研究生r:他学过DELPHI语言s:他学过C++语言t:他会编程序前提:(p∨q)→(r∧s),(r∨s)→t结论:p→t证①p P(附加前提)②p∨q T①附加规则③(p∨q)→(r∧s) (前提引入)④r∧s T②③假言推理规则⑤r T④花间规则⑥r∨s T⑤附加规则⑦(r∨s)→t (前提引入)⑧t T⑤⑥假言推理规则新疆大学2013—2014学年度第二学期期末考试《离散数学》试卷A一、单项选择题(本大题共10小题,每题只有一个正确答案,答对一题得2分共20分) 1、设P={x| (x+1)2≤4}, Q={x | x 2+16≥5x} ,则下列各式中成立的是: 【 】A. Q ⊂PB. Q ⊆PC. P ⊂QD. P ⊆Q2、}}2,1{,1,{Φ=S ,下列式子中正确的有: 【 】 A. {1}∈ρ(S) B. 1∈ρ(S) C. {1}⊆ρ(S) D. 以上都不是3、P :你努力,Q :你失败。

“虽然你努力了,但还是失败了”符号化为: 【 】A. P →QB. Q →PC. P ∧QD. P ∨¬Q4、设论域E={a, b },且P(a,a)=T , P(a,b)=F , P(b,a)=T , P(b,b)=F ; 则在下列公式中真值为T的是: 【 】 A .∃x ∀yP (x,y) B .∀x ∀yP (x,y) C .∀xP(x,x) D .∀x ∃yP (x,y)5、谓词公式)())()((x Q y yR x P x →∃∨∀中,变元x 是: 【 】A .自由出现B .约束出现C .既是约束出现,又是自由出现D .以上都不是6、.一个连通的无向图G ,如果它的所有结点的度数都是偶数,那么它具有一条: 【 】A .汉密尔顿回路B .欧拉回路C .汉密尔顿通路D .初级回路7、设|V|>1,G= < V , E >是强连通图,当且仅当: 【 】A .G 中至少有一条通路B .G 中至少有一条回路C .G 中有通过每个结点至少一次的通路D .G 中有通过每个结点至少一次的回路8、由5个结点构成的根树中,其边数m 最多为: 【 】A .2;B .3;C .5;D .4 ;9、设A={1,2,3},A 上二元关系S={<1,1>,<1,2>,<3,2>,<3,3>},则S 具有的性质是:【 】A .自反关系B .传递关系C .对称关系D .反自反关系10、集合A 上的等价关系R ,决定了A 的一个划分,该划分就是: 【 】A .A 与R 的并集A ∪RB .A 与R 的交集,记作A ∩RC .A 与R 的商集,记作A /RD .A 与R 的差集,记作A - R二、填空题(本大题共10小题,每题2分,共20分)11、已知集合A={{1},{1,2}},则A 的幂集为 。

相关文档
最新文档