用“合并同类项”解一元一次方程

合集下载

3 第1课时 利用“合并同类项”解一元一次方程

3 第1课时 利用“合并同类项”解一元一次方程

3.2解一元一次方程(一)——合并同类项与移项第1课时利用“合并同类项”解一元一次方程情景导入置疑导入归纳导入复习导入类比导入悬念激趣复习导入问题1:上节课我们学习了利用等式的性质解方程,哪位同学能叙述一下等式的性质呢?问题2:合并下列各式的同类项:(1)-x+3x-5x;(2)-6ab-5+ba+4ab-4.约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习和讨论,相信同学们一定能回答这个问题.[说明与建议] 此环节为本节课新知的学习做好铺垫,体会等式的性质和合并同类项在解方程中的作用.同时又有助于增加学生学习数学的兴趣,扩大知识面,感受数学的历史和文化的陶冶,提高数学素养.建议:学生叙述等式的性质,对于问题2找学生口答.置疑导入通过上节课的学习,同学们知道:可以利用等式的性质解方程,比如:5x-2=8.方程两边同时加上2,得5x-2+2=8+2.也就是5x=10.方程两边同时除以5,得x=2.此种解法过程比较烦琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发了学生的学习兴趣.建议:此方程的求解过程可由学生独立完成,回顾上节课所学,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第87页例1解下列方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.【模型建立】合并同类项时,将一元一次方程中含有未知数的项与常数项分别合并,从而使方程转化为ax=b(a≠0)的形式.【变式变形】1.下列方程合并同类项正确的是 (D)A.由3x-x=-1+3,得2x=4B.由2x+x=-7-4,得3x=-3C.由15-2=-2x+x,得3=xD.由6x-2-4x+2=0,得2x=02.方程3x=-2+1+7的解是(D)A.x=1B.x=-1C.x=-2D.x=23.如果2x与x-3的值互为相反数,那么x等于(B)A.-1B.1C.-3D.34.如果x=m是方程x-m=1的解,那么m的值是(C)A.0B.2C.-2D.-65.解下列方程:(1)-3x+0.5x=10;(2)6m-1.5m-2.5m=3;(3)3y-4y=-25-20.[答案:(1)x=-4(2)m=(3)y=45][命题角度1] 用合并同类项解一元一次方程用合并同类项解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5题.[命题角度2] 利用一元一次方程解决比例分配问题此类题型可根据各部分量的比例关系或各部分量在总量中所占的比例,设其中一份为x,可得表示各部分量的式子.然后利用相等关系:各部分量之和=总量,列出方程求解.例某洗衣机厂2019年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型洗衣机的数量之比为1∶2∶14,计划生产这三种洗衣机各多少台?解:设计划生产Ⅰ型洗衣机x台,则计划生产Ⅱ型洗衣机2x台,Ⅲ型洗衣机14x台.依题意,得x+2x+14x=25500.合并同类项,得17x=25500.系数化为1,得x=1500.则2x=3000,14x=21000.答:计划生产Ⅰ型洗衣机1500台,Ⅱ型洗衣机3000台,Ⅲ型洗衣机21000台.[命题角度3] 利用一元一次方程解决和、差、倍、分问题解这类题的关键是根据题意找出题目中的和、差、倍、分的相等关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中的相等关系可能不止一个,有时会有多个,要根据具体情况恰当地选择相等关系.解完方程后要检验,避免出现不符合实际的答案.例如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的,丙村出工人数是乙村出工人数的2倍,求乙村出工的人数.解:设乙村出工人数为x,则甲村出工人数为x,丙村出工人数为2x.根据题意,得x+x+2x=60.合并同类项,得x=60.系数化为1,得x=18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决环形跑道问题环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个相等关系往往成为我们解决问题的关键.例某体育场的环形跑道长400米,甲、乙两人在跑道上练习跑步,已知甲平均每分钟跑250米,乙平均每分钟跑290米.(1)两人同时从同一地点出发,同向而行,经过多长时间两人第一次相遇?(2)两人同时从同一地点出发,相向而行,经过多少分钟两人第一次相遇?解:(1)设两人同时从同一地点出发,同向而行,经过x分钟两人第一次相遇.由题意,得290x-250x=400.合并同类项,得40x=400.系数化为1,得x=10.答:两人同时从同一地点出发,同向而行,经过10分钟两人第一次相遇.(2)设两人同时从同一地点出发,相向而行,经过y分钟两人第一次相遇.由题意,得250y+290y=400.合并同类项,得540y=400.系数化为1,得y=.答:两人同时从同一地点出发,相向而行,经过分钟两人第一次相遇.P88练习 1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550. 合并同类项得5.5x =550. 系数化为1.得x =100. 答:前年的产值是100元. P90练习 1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固 1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3; (3)2.5y +10y -6y =15-21.5; (4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16; (2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14. 答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m 的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少? [答案] 长18 m ,宽12 m. 综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t ,则另两块实验田的用水量各如何表示? (2)如果三块实验田共用水420 t ,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t ,第二块实验田的用水量为0.25x t ,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得:-3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m的值是()A.m=-1 B.m=1C.m=-2 D.m=24. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,请你能帮小悦列出方程为__________________(不需要求解).5. 用合并同类项解方程:(1)4x–7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7. 参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整.解:移项得:5x-7x =___合并同类项得:___=10系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17.参考答案:1. C ;2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程1.解下列方程(1)12884x x +=-; (2)233234x x +=-. 2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x的方程kx+2=4x+5 ()4≠k有正整数解,求满足条件的k的正整数值.专题二列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁()A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元?专题三列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变. 答案:1. 解:(1)12884x x+=-,移项,得:12848x x-=--,合并同类项,得:412x=-,系数化为1,得:x=-3.(2)2332 34x x+=-,移项,得:2323 34x x-=--,合并同类项,得:15 12x-=-,系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m ,3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235; (2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -. 所以2121()3434x --=1134x -,解得:158-=x . 4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3,因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则:9x ×2+6x ×18+2x (18﹣1)=1280,解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有个,那么省外境内投资合作项目 ()个,由题意得:,解得,=215;x 512-x 348512=-+x x 133=x 512-x(2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个.(2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元),租60座的客车的租金应为:300×(5-1)=1200(元),所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x±1,x±7,x±8,x±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得:(x-7)+x+(x+7)=21.解得x=7,x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况.答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23.答:这四天分别是2号,9号,16号,23号.。

3.2.1合并同类项解一元一次方程(教案)

3.2.1合并同类项解一元一次方程(教案)
(1)符号的变换:学生在移项时容易混淆正负号的变换,这是本节课的一个难点。
举例:在方程2x + 3 = 7中,将3移项到等号右边时,需要变为-3。
(2)合并同类项时系数的处理:学生在合并同类项时,可能会忽略系数相加减的规则,这是一个难点。
举例:对于方程3x + 4x = 20,学生需注意系数3和4相加得7。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了合并同类项解一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)一元一次方程的应用:将实际问题转化为数学模型,并求解,是学生容易感到困惑的地方。
举例:当遇到“小明买了3本书和4本书一共花了20元”这样的问题时,学生需要学会将其转化为方程3x + 4x = 20。
(4)解决含有未知数系数的方程:对于系数不同的方程,学生需要学会通过运算将系数变为相同,然后进行合并同类项。
3.培养学生的数学建模能力:让学生在实际问题中运用一元一次方程,学会将现实问题转化为数学模型,从而增强数学应用意识。
4.培养学生的合作交流能力:通过小组讨论和课堂互动,引导学生分享解题思路,提高合作交流能力,培养团队精神。
三、教学难点与重点
1.教学重点
(1)合并同类项法则的应用:重点在于让学生掌握合并同类项的法则,并能够熟练应用于简化方程,为解一元一次方程打下基础。
具体内容包括以下方程类型的解题方法:
(1)x + a = b

3.2.1 用合并同类项的方法解一元一次方程

3.2.1 用合并同类项的方法解一元一次方程

11.如果甲、乙、丙三个村合修一段水渠,计划出工 60 人,甲村出工人 1 数是乙村出工人数的3, 丙村出工人数是乙村的 2 倍, 求乙村出工的人数.
1 解:设乙村出工人数为 x 人,则甲村出工人数为3x,丙村出工人数为 2x 1 人,根据题意,得 x+3x+2x=60.解得 x=18.答:乙村出工的人数为 18 人
七年级数学上册(人教版)
第三章 一元一次方程
3.2 解一元一次方程(一) ——合并同类项与移项
第1课时 用合并同类项的方法解一元一次方程
1.用合并同类项的方法解一元一次方程就是将方程中的同类项进行
合并 _________ ,把以x为未知数的一元一次方程变形为ax=b(a≠0,a,b为
除以a ,从 已知数)的形式,然后利用等式的性质2,方程两边同时________ b. 而得到x=____ a 2.基本的相等关系:总量=各部分量的____ 和 .
知识点一:利用合并同类项解简单的一元一次方程
1.对于方程8x+6x-10x=8,合并同类项正确的是( B )
A.3x=8 C.-4x程x+2x=-6的解是( D )
A.x=0 B.x=1 C.x=2 D.x=-2
3.下列解为x=4的方程是( B )
A.7x-3x=-4 B.x+x=5+3 C.x=-1+3 D.-2x=8
点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从 3 盏灯. 塔的顶层到底层)请你算出塔的顶层有____
17.解下列方程: (1)4x+6x=2+6;
4 解:合并同类项,得 10x=8,系数化为 1,得 x=5
2 (2)3y-y=10-5;
1 解:合并同类项,得-3y=5,系数化为 1,得 y=-15

5.2.1 利用合并同类项解一元一次方程(课件)人教版(2024)数学七年级上册

5.2.1 利用合并同类项解一元一次方程(课件)人教版(2024)数学七年级上册
系数化为1,得 x= 7 2
(3)-3x + 0.5x = 10; (4)7x - 4.5x = 2.5×3–5.
合并同类项,得
合并同类项,得
-2.5x = 10 系数化为 1,得
x = -4
2.5x = 2.5 系数化为 1,得
x= 1
2. 某工厂的产值连续增长,2022 年是 2021 年的 1.5 倍, 2023 年是 2022 年的 2 倍,这三年的总产值为 550 万元. 2021 年的产值是多少万元?【选自教材P121 练习 第2题】
分析:设前年购买__x__台,则去年购买__2_x_台,
今年购买__4_x__台.
“各个分量的和=总量”
根据问题中的相关等量关系: 是一个基本的相等关系
前年购买量 + 去年购买量 + 今年购买量= 140 台 列得方程 x + 2x + 4x = 140.
x + 2x + 4x = 140.
把含有 x 的项合并同类项,得
a
例 题 【教材P121】
例 2 有一列数 1,-3,9,-27,81,-243,···, 其中第 n 个数是 (-3)n-1 (n>1),如果这列数中某三个 相邻数的和是 -1701,那么这三个数各是多少?
分析:从符号和绝对值两方面观察,可发现这列数的 排列规律,后面的数是它前面的数与 -3 的乘积.
合并同类项,得 6x = -78 系数化为 1,得 x = -13
利用合并同类项解一元一次方程的步骤:
(1)合并同类项:把等号同侧的含未知数的项、 常数项分别合并,把方程转化为 ax = b( a ≠ 0, a,b 为常数)的形式;
(2)系数化为 1:利用等式的性质 2,在方程两边 除以未知数的系数或乘未知数系数的倒数,将未知 数的系数化为 1,得到 x = b .

3.2解一元一次方程——合并同类项

3.2解一元一次方程——合并同类项

3.2解一元一次方程——合并同类项与移项合并同类项解方程的方法与步骤(1)合并同类项,即把含有未知数的同类项和常数项分别合并.(2)系数化为1,即在方程的两边同时除以未知数的系数.注意:(1)解方程中的合并同类项和整式加减中的合并同类项一样,它们的依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式性质2求出方程的解创造条件;(2)系数为1或-1的项,合并时不能漏掉.题型1:解一元一次方程——合并同类项1.解下列方程∶(1)3x+2x+x=24; (2)-3x+6x=18.【变式1-1】(1)5x-6x=-57 (2)13x-15x+x=-3.移项解方程的方法与步骤1.移项把等式的某项变号后移到另一边,叫做移项.移项必须变号.2.移项的依据移项的依据是等式的性质1,在方程的两边加(或减)同一个适当的整式,使含未知数的项集中在方程的一边,常数项集中在另一边.3.解简单的一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.注意:(1)移项通常把含有未知数的项移到“=”的左边,常数项移到“=”的右边(2)若将2=x变形为x=2,直接利用的是等式性质的对称性,不能改变符号.(3)方程中的每项都包括前面的符号.题型2:解一元一次方程——移项2.将下列方程移项(1)7+x=13,移项得(2)5x=4x+8,移项得(3)3x-2=x+1,移项得(4)8x=7x-2,移项得(5)2x-1=3x+4,移项得【变式2-1】解下列方程(1)4x+2=3x-3; (2)4y=203y+16【变式2-2】解下列方程(1)2x+3=4x-5; (2)9x-17=4x-2.题型3:绝对值方程3.解方程 |2x-3|=1.【变式3-1】如果|2x+3|=|1﹣x|,那么x的值为( )A.−23B.−32或1C.−23或﹣2D.−23或﹣4【变式3-2】若关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,则m的值是( )A.14或134B.14C.54D.−12或54题型4:依题意构建方程求解4.代数式2x+5与x+8的值相等,则x的值是 .【变式4-1】当x= 时,代数式6x+1与-2x-5的值互为相反数。

七年级上数学第五章 利用合并同类项解一元一次方程优质课教案

七年级上数学第五章 利用合并同类项解一元一次方程优质课教案

5.2 解一元一次方程第1课时利用合并同类项解一元一次方程教学目标课题 5.2 第1课时利用合并同类项解一元一次方程授课人素养目标 1.会正确利用合并同类项解ax+bx=c类型的一元一次方程.2.通过解一元一次方程,体会解方程中的化归思想.教学重点建立方程解决实际问题,会解ax+bx=c类型的一元一次方程.教学难点根据实际问题建立方程模型.教学活动教学步骤师生活动活动一:回顾旧知,引入新知设计意图回顾等式的性质与合并同类项的法则,为解方程的学习作准备.【回顾导入】1.上节课我们学习了利用等式的性质解方程,请大家说一说等式的性质有哪些?(可让学生回答,课堂上一起回顾)2.合并下列各式的同类项:(1)a+2a-4a;(2)-6xy-5+2yx+xy-3.(1)-a;(2)-3xy-8.【教学建议】回顾旧知时,教师应关注学生是否忘记等式性质中“同一个数”;合并同类项,要关注学生是否能准确识别同类项,是否漏掉了负号.活动二:交流讨论,学习新知设计意图学习利用合并同类项解一元一次方程.探究点利用合并同类项解一元一次方程(教材P120问题1)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍.前年这所学校购买了多少台计算机?问题1 你能根据题意列出方程吗?设前年购买计算机x台,则去年购买计算机2x台,今年购买计算机4x台.根据“三年共购买计算机140台”,可以得到如下相等关系:前年购买量+去年购买量+今年购买量=140.列得方程x+2x+4x=140.问题2观察方程,等号左边有3个含x的未知数项,不能直接利用等式性质解这个方程.我们可以利用什么知识,将这个方程转化一下,以便顺利地求解呢?利用合并同类项的法则,把含有x的项合并同类项,得7x=140.问题3你能进一步求出方程的解吗?系数化为1,得x=20.因此,前年这所学校购买了20台计算机.思考(教材P120思考)上面解方程中“合并同类项”起了什么作用?合并同类项是一种恒等变形,通过合并同类项,减少项数,进而将方程转化为更接近x=m的形式.【对应训练】教材P121练习第2题.【教学建议】给学生说明,“系数化为1”指使方程由ax=b(a≠1)变形为x=m,它的依据是等式的性质2.系数化为1时,要避免出现以下几种错误:(1)颠倒除数与被除数的位置;(2)忽略未知数系数的符号.【教学建议】结合解方程的过程,让学生思考有关步骤(合并同类项)的作用,是为了反复渗透“解方程就是要使方程不断向x=m(常数)的形式转化”的化归思想.教学步骤师生活动活动三:熟练运用,巩固提升设计意图巩固用合并同类项解一元一次方程的方法,强化运算能力.例1(教材P120例1)解下列方程:(1)2x-52x=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.例2(教材P121例2)有一列数1,-3,9,-27,81,-243,…,其中第n个数是(-3)n-1(n>1).如果这列数中某三个相邻数的和是-1701.这三个数各是多少?分析:数的排列规律:后一个数=-3×前一个数.某三个相邻数的和:前面的数+中间的数+后面的数=-1701.解:设所求三个数中的第1个数是x,则后两个数分别是-3x,9x.由三个数的和是-1701,得x-3x+9x=-1701.合并同类项,得7x=-1701.系数化为1,得x=-243.所以-3x=729,9x=-2187.答:这三个数是-243,729,-2187.【对应训练】教材P121练习第1,3题.【教学建议】给学生总结:例1中,解一元一次方程时,同类项有两类,即含未知数的一次项和常数项.这两类都需要合并.【教学建议】让学生认识到:用一元一次方程解含多个未知数的问题时,通常先设其中一个为x,再根据其他未知数与x的关系,用含x的式子表示这些未知数.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.今天我们学习的解方程,有哪些步骤?2.解一元一次方程时,合并同类项起了什么作用?3.系数化为1的依据是什么?4.含多个未知数时,怎样设未知数、列方程?【知识结构】【作业布置】1.教材P130习题5.2第1(1)(2),14题.2.《创优作业》主体本部分相应课时训练.板书设计5.2解一元一次方程第1课时利用合并同类项解一元一次方程解一元一次方程:(1)合并同类项(2)系数化为1教学反思本节课先帮学生回顾等式的性质以及合并同类项的相关知识,为学习用合并同类项解一元一次方程作准备.教学中采用引导发现的方法,并鼓励学生自己动手,体现学生在课堂上的主体地位.在整个过程中注重调动学生的积极性,培养学生合作学习、主动探究的习惯.对于解一元一次方程的思路,灌输了将方程不断转化为x=m(常数)形式的化归思想,这一思想在后面几节课的学习中还会继续强化.解题大招利用合并同类项解一元一次方程将含有未知数的项和常数项分别合并,再结合等式的性质,将方程转化为x=m(常数)的形式,注意计算时不要出错.例1对于方程2y+3y-4y=1,合并同类项正确的是( A )A.y=1B.-y=1C.9y=1D.- 9y=1例2下列说法正确的是(B)m-0.125m=0,得m=0A.由x-3x=1,得2x=1B.38C.x=-3是方程x-3=0的解D.以上说法都不对m-0.125m=0,得0.25m=0,再将系数化为1,得m=0,解析:A.由x-3x=1,得-2x=1,故A错误;B.由38故B正确,D错误;C.x=3是方程x-3=0的解,x=-3不是,故C错误.故选B.例3如果2x与x-3的值互为相反数,那么x的值为多少?解:因为2x与x-3的值互为相反数,所以2x+x-3=0.方程两边加3,得2x+x=3.合并同类项,得3x=3.系数化为1,得x=1.故x的值为1.例4甲、乙、丙三人向某学校捐赠图书,已知这三人捐赠图书的册数之比是5∶8∶9.如果他们共捐了748册图书,那么这三人各捐了多少册图书?解:设甲捐了5x册图书,则乙捐了8x册图书,丙捐了9x册图书.根据题意,得5x+8x+9x=748.合并同类项,得22x=748.系数化为1,得x=34.所以5x=5×34=170,8x=8×34=272,9x=9×34=306.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.培优点月历中的数字问题例例如图是某月的月历,在月历上任意圈出一个竖列上相邻的三个数,如果被圈出的三个数之和为51,求中间的那个数.分析:在月历中,每一横行,相邻的两个数之间相差1;每一竖列,相邻的两个数之间相差7.根据这种数量关系,列方程求解.解:设中间的那个数为x,则被圈出的三个数分别是x-7,x,x+7.根据题意,得x-7+x+x+7=51.合并同类项,得3x=51.系数化为1,得x=17.答:中间的那个数为17.。

七年级上册第五章-第二讲 求解一元一次方程

七年级上册第五章-第二讲  求解一元一次方程

第一讲 认识一元一次方程一、用合并同类项法解一元一次方程1.合并同类项:将一元一次方程中含未知数的项与常数项分别合并,使方程转化为ax =b (a ≠0)的形式. 要点精析:(1)要把不同的同类项分别进行合并;(2)解方程中的合并同类项和整式加减中的合并同类项一样,它们的根据都是乘法分配律,实质都是系数的合并. 例1 解下列方程:总结:(1)合并同类项的目的是将原方程转化成ax =b (a ≠0)的形式,依据是合并同类项的法则;(2)系数化为1的依据是等式的性质2:将方程ax =b (a ≠0)的两边同时除以a ,当a 为分数时,可将方程两边同时乘a 的倒数. 例2 下面解方程的结果正确的是( )A .方程4=3x -4x 的解为x =4B .方程 x = 的解为x =2C .方程32=8x 的解为x =D .方程1-4= x 的解为x =-9例3 有一列数,按一定规律排列成1,-3, 9, -27, 81,-243, …,其中某三个相邻数的和是-1701, 这三个数各是多少?例4 某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八、九年级学生一起工作,需多少小时才能完成任务?例5 如果x =m 是方程 x -m =1的解,那么m 的值是( )A .0B .2C .-2D .-6 二、列方程解“总量=各部分量的和”的问题1.系数化为1:方程两边同时除以未知数的系数,使一元一次方程ax =b (a ≠0)变形为x = (a ≠0)的形式,变形的依据是等式的性质2.()51268;2x x -=-()27 2.53 1.51546 3.x x x x -+-=-⨯-⨯32131413ba122.易错警示:系数化为1时,常出现以下几种错误: (1)颠倒除数与被除数的位置; (2)忽略未知数系数的符号;(3)当未知数的系数含有字母时,不考虑系数是不是等于0的情况.例6 某校三年共购买计算机140台,去年 购买数量是前年的2倍,今年购买数量又是去年的 2倍.前年这个学校购买了多少台计算机?例7 解下列一元一次方程:(1)-x =3; (2)2x =-4; (3) x =-3.例8 把方程- x =3的系数化为1的过程中,最恰当的叙述是( )A .给方程两边同时乘-3B .给方程两边同时除以-C .给方程两边同时乘-D .给方程两边同时除以3 三、移项比较这个方程与原方程,可以发现,这个变形相当于即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫移项 . 1.定义:将方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫移项.2.方法:把方程右边含有未知数的项改变符号后移到方程左边,把方程左边不含未知数的项改变符号后移到方程右边;即:“常数右边凑热闹,未知左边来报到.”用移项法解一元一次方程的一般步骤: 移项→合并同类项→系数化为1. 移项的原则: 未知项左边来报到,常数项右边凑热闹.移项的方法: 把方程中的某些项改变符号后,从方程的一边移到另一边,即移项要变号. 例9 将方程5x +1=2x -3移项后,可得( ) A .5x -2x =-3+1 B .5x -2x =-3-1 C .5x +2x =-3-1 D .5x +2x =1-3 例10解方程时,移项法则的依据是( )A .加法交换律B .加法结合律C .等式的性质1D .等式的性质212233232例2 解下列方程:(1)2x +6 = 1; (2) 3x +3 = 2x +7. (3)例3 已知关于x 的方程3a -x = +3的解为2,则式子a 2-2a +1的值是________. 四、去括号法 去括号法则:1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 去括号的目的是能利用移项法解方程;其实质是乘法的分配律.3.去括号必须做到“两注意”:(1)如果括号外的因数是负数时,去括号后,原括号内各项都要改变符号. (2)乘数与括号内多项式相乘时,乘数应乘以括号内每一项,不要漏乘. 4.用去括号法解一元一次方程步骤:第一步:去括号(按照去括号法则去括号);第二步:用移项法解这个一元一次方程:移项→合并同类项→系数化为1. 例1 方程1-(2x +3)=6,去括号的结果是( )A .1+2x -3=6B .1-2x -3=6C .1-2x +3=6D .2x -1-3=6 例2 解方程:(1)-2(x -1) = 4. (2)4x +2(4x -3)=2-3(x +1).例5 解方程:2(x +1)- (x -1)=2(x -1)+ (x +1).例6 解下列方程:(1)5(x -1) = 1; (2)2-(1-x ) = -2; (3)11x +1 = 5(2x +1); (4)4x -3(20-x ) = 3; (5)5(x +8)-5 = 0; (6)2(3-x ) = 9; (7)-3(x +3) = 24; (8)-2 (x -2) = 12. 11 3.42x x -+2x1212五、去分母去分母的方法:方程两边同时乘所有分母的最小公倍数; 去分母的依据:等式的性质2;去分母的目的:将分数系数转化为整数系数;去分母的步骤:先找各个分母的最小公倍数,再依据等式的性质2,将方程两边同时乘这个最小公倍数. 例1 把方程3x +去分母,正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +2(2x -1)=3-3(x +1)C .18x +(2x -1)=18-(x +1)D .18x +4x -1=18-3x +1例2 在解方程 时,去分母正确的是( )A .7(1-2x )=3(3x +1)-3B .1-2x =(3x +1)-3C .1-2x =(3x +1)-63D .7(1-2x )=3(3x +1)-63 例3 解方程:(1) (2)例4 解下列方程:课堂小结211332x x1231337x x -+=-111(15)(7).523x x 0.10.010.011.0.20.063x x x --=-34(1);23x x 11(2)1)(23);37x x (2(3);54x x11(4)(1)(1);43x x 212(5)1;34x x 11(6)(1)2(2).25x x一、合并同类项1.下列解方程的过程中,错误的是( )A .由-4x +5x =2,得x =-2B .由y +2y =2,得3y =2,故y =C .由-2x +x =4-2,得-x =2,故x =-2D .由0.25a -0.75a =0,得-0.5a =0,故a =0 2.解方程11=x +6x +4x 的正确结果是( )A .x =1B .x =-1C .x =2D .x =-2 3.若关于x 的方程a -3ax =14的解是x =-2,则a 的值为( )A .-14B .-2C .2D .144.对于任意四个有理数a ,b ,c ,d ,定义新运算: .已知 =18,则x 的值为( )A .-1B .2C .3D .45.关于x 的方程3-x =2a 与方程x +3x =28的解相同,则a 的值为( )A .2B .-2C .5D .-5 6.解方程: (1)2x -4x +3x =5; (2) a + a - a =-12.7.已知关于x 的方程 +x =3a -3的解为x =2,求(-a )2-2a +1的值.8.如果甲、乙、丙三村合修一条公路,计划出工84人,按3:4 : 7出工,求各村出工的人数. ①设甲、乙、丙三村分别出工3x 人、4x 人、7x 人,依题意,得3x +4x +7x =84;②设甲村出工x 人,依题意,得x +4x +7x =84; ③设乙村出工x 人,依题意,得x +x +x =84; ④设丙村出工x 人,依题意,得3x +4x +x =84. 上面所列方程中正确的有( )A .1个B .2个C .3个D .4个9.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6 h 完成;如果让九年级学生单独工作,需要4 h 完成.现在由八、九年级学生一起工作,需多少小时才能完成任务?10.我国明代数学家程大位曾提出一个有趣的问题.有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只羊.”问这群羊有多少只. 1213162x二、移项1.下列变形属于移项变形的是( )A .由 =3,得x -2=12B .由2x =3,得x =C .由4x =2x -1,得4x -2x =-1D .由3y -(y -2)=3,得3y -y +2=3 2.解方程3x +5=8x -10的一般步骤是:(1)移项,得________________; (2)合并同类项,得____________; (3)系数化为1,得____________.3.关于x 的方程3x +2=x -4b 的解是x =5,则b 等于( )A .-1B .-2C .2D .-34.某县由种玉米改为种优质杂粮后,今年农民人均收入比去年提高了20%,今年农民人均收入比去年的1.5倍少1 200元.问这个县去年农民人均收入多少元?若设这个县去年农民人均收入为x 元,则今年农民人均收入既可以表示为__________________,又可以表示为__________________,因此可列方程______________________________.5.(中考•荆州)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?( )A .140元B .150元C .160元D .200元 6.(中考•聊城)在如图所示的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72 7.解方程:(1)0.4x - =8- x ; (2) x -3=5x + .8.如果5m +4与m -2互为相反数,求m 的值.9.已知|3x -6|+(2y -8)2=0,求2x -y 的值. 24x 321415141210.若-2x 2m +1y 6与 x 3m -1y 10+4n是同类项,求m ,n 的值.11.(中考·安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少? 请解答上述问题.12.有一群鸽子和一些鸽笼,若每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,若每个鸽笼住7只鸽子,则有一个鸽笼少1只鸽子.有多少只鸽子和多少个鸽笼?三、去括号1.下列解方程过程中,变形正确的是( )A .由2x -1=3得2x =3-1B .由2x -3(x +4)=5得2x -3x -4=5C .由-75x =76得x =D .由2x -(x -1)=1得2x -x =0 2.解方程2(x -3)-3(x -5)=7(x -1)的步骤:(1)去括号,得____________________; (2)移项,得_______________________; (3)合并同类项,得____________; (4)系数化为1,得__________. 3.下列四组变形中,属于去括号的是( )A .5x +4=0,则5x =-4 B. =2,则x =6 C .3x -(2-4x )=5,则3x +4x -2=5 D .5x =2+1,则5x =3 4.(中考·包头)若2(a +3)的值与4互为相反数,则a 的值为( )A .1B .C .-5D. 5.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,则k 的值为( )A.B .C.D . 7576-3x72-125989-5353-(2) (3)7.解方程: 278(x -3)-463(6-2x )-888(7x -21)=0.8.(中考•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程解应用题的方法求出问题的解.9.(中考·遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语).10.当m 取什么整数时,关于x 的方程 的解是正整数?四、去分母1.解方程 ,为了去分母应给方程两边同乘的最合适的数是( ) A .6 B .9 C .12 D .242.(中考·株洲)在解方程 时,方程两边同时乘6,去分母后,正确的是( )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)3.若 与 互为相反数,则x 的值为( ) A .1B .-1C .D .-24.如果方程 的解也是方程 的解,那么a 的值是( ) ()()11211.223x x x ⎡⎤--=-⎢⎥⎣⎦43126 1.345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦15142323mx x ⎛⎫-=- ⎪⎝⎭3127146y y -+-=13132x x x -++=23516x -53-17236x x ++-=203a x--=5.解方程:(1) (2)(3) (4)6.在解方程3(x +1)- (x -1)=2(x -1)- (x +1)时,我们可以将x +1,x -1各看成一个整体进行移项、合并同类项,得到 (x +1)= (x -1),再去分母,得3(x +1)=2(x -1),进而求得x =-5,这种方法叫整体求解法.请用这种方法解方程:5(2x +3)- (x -2)=2(x -2)- (2x +3).7.小明在解方程 去分母时,方程右边的-1项没有乘3,因而求得的解是x =2,试求a 的值,并求出方程正确的解.8.已知(a +b )y 2- +5=0是关于y 的一元一次方程. (1)求a ,b 的值;(2)若x =a 是关于x 的方程 的解,求|a -b |-|b -m |的值.131.42x x x ---=-40.20.30.02.20.50.01x x x --+=()11115789.864x ⎧⎫⎡⎤-+++=⎨⎬⎢⎥⎣⎦⎩⎭1312727334121612121.156518x x x x ---+-=-+21133x x a-+=-123a y +2123626x x x mx +---+=-。

人教版七年级数学上册3.利用合并同类项解一元一次方程课件

人教版七年级数学上册3.利用合并同类项解一元一次方程课件
简单的一元一次方程
尝试把一元一次方程转化为 x = m 的情势.
方程的左边出现几个含x 的项,该怎么办?
x + 2x + 4x = 140
它们是同类项,可以 合并成一项!
x 2x 4x 140
合并同类项 根据:乘法对加法的分配律
7x 140
系数化为1 根据:等式性质2
课堂小结
利用合并同类项法解方程的步骤: 它经历合并同类项,系数化为1这两步;合并同类 项是化简、解方程的主要步骤,系数化为1,即在 方程两边同时除以未知数的系数. 注意:系数为1或-1的项,合并时不能漏掉.
分析:从符号和绝对值两方面视察,可发现这列数 的排列规律:后面的数 是它前面的数与-3 的乘积.如果三个相邻数中的第1个记为x,则 后两个数 分别是-3x,9x.
解:设所求三个数分别是x,-3 x ,9 x.
由三个数的和是-1 701,得
x-3x+9x= -1 701.
知道三个数中
合并同类项,得7x=-1701.
Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种
洗衣机计划各生产多少台?
解:设计划生产Ⅰ型洗衣机x台,则计划生产Ⅱ 型洗衣机2x台,Ⅲ型洗衣机14x台,依题意,得
x+2x+14x=25500, 解得x=1500, 则2x=3000,14x=21000. 答:计划生产Ⅰ型洗衣机1500台,Ⅱ型洗衣机 3000台,Ⅲ型洗衣机21000台.
的某个,就能
系数化为1,得x= -243.
知道 另两个吗?
所以-3x=729 ,9x= - 2 187. 答:这三个数是-243, 729, - 2 187.
例3 某中学的学生自己动手整修操场,如果让八

用合并同类项的方法解一元一次方程

用合并同类项的方法解一元一次方程

3.2解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标1.会利用合并同类项的方法解一元一次方程;(重点)2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点) 教学过程一、情境导入1.等式的基本性质有哪些?2.解方程:(1)x-9=8;(2)3x+1=4.3.下列各题中的两个项是不是同类项?(1)3xy与-3xy;(2)0.2ab与0.2ab;(3)2abc与9bc; (4)3mn与-nm;(5)4xyz与4xyz; (6)6与x.4.能把上题中的同类项合并成一项吗?如何合并?5.合并同类项的法则是什么?依据是什么?二、合作探究探究点一:利用合并同类项解简单的一元一次方程例1 解下列方程:(1)9x-5x=8;(2)4x-6x-x=15.解析:先将方程左边的同类项合并,再把未知数的系数化为1.解:(1)合并同类项,得4x=8.系数化为1,得x=2.(2)合并同类项,得-3x=15.系数化为1,得x=-5.方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式.探究点二:根据“总量=各部分量的和”列方程解决问题例 2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).答:黑色皮块有12个,白色皮块有20个.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来.三、板书设计1.用合并同类项的方法解简单的一元一次方程.解方程的步骤:(1)合并同类项;(2)系数化为1(等式的基本性质2).2.找等量关系列一元一次方程.列方程解应用题的步骤:(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程;(4)解方程并作答.教学反思本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.第2课时用移项的方法解一元一次方程教学目标1.掌握移项变号的基本原则;(重点)2.会利用移项解一元一次方程;(重点)3.会抓住实际问题中的数量关系列一元一次方程解决实际问题.(难点)教学过程一、情境导入上节课学习了一元一次方程,它们都有这样的特点:一边是含有未知数的项,一边是常数项.这样的方程我们可以用合并同类项的方法解答.那么像3x+7=32-2x这样的方程怎么解呢?二、合作探究探究点一:移项法则例1 通过移项将下列方程变形,正确的是( )A.由5x-7=2,得5x=2-7B.由6x-3=x+4,得3-6x=4+xC.由8-x=x-5,得-x-x=-5-8D.由x+9=3x-1,得3x-x=-1+9解析:A.由5x-7=2,得5x=2+7,故选项错误;B.由6x-3=x+4,得6x-x=3+4,故选项错误;C.由8-x=x-5,得-x-x=-5-8,故选项正确;D.由x+9=3x-1,得3x-x=9+1,故选项错误.故选C.方法总结:①所移动的是方程中的项,并且是从方程的一边移到另一边,而不是在这个方程的一边变换两项的位置.②移项时要变号,不变号不能移项.探究点二:用移项解一元一次方程例2 解下列方程:(1)-x-4=3x;(2)5x-1=9;(3)-4x-8=4; (4)0.5x-0.7=6.5-1.3x.解析:通过移项、合并、系数化为1的方法解答即可.解:(1)移项得-x-3x=4,合并同类项得-4x=4,系数化成1得x=-1;(2)移项得5x=9+1,合并同类项得5x=10,系数化成1得x=2;(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:根据“表示同一个量的两个不同的式子相等”列方程解决问题例3 把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20合并得-x=-45解得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.三、板书设计1.移项的定义:把等式一边的某项变号后移到另一边,叫做移项.2.移项法则的依据:移项法则的依据是等式的基本性质1.3.用移项解一元一次方程.4.列一元一次方程解决实际问题.教学反思本节课先利用等式的基本性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程.学生在移项过程中,大致会遇到以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;第一种情况在授课过程中强调不够,后面的两种情况出现最多,因此在教学设计当中应给学生进行针对性训练.引导学生正确地解方程.5。

5.2 课时1 利用合并同类项解一元一次方程(17页)

5.2 课时1 利用合并同类项解一元一次方程(17页)
1 x 2. 2
x 2 2
x 4.
(1)系数化为1时,在方程两边同时除以未知数的系数(或者乘 以未知数系数的倒数) (2)如果方程中项的系数是带分数的话,一般写成假分数
22202
例1 解下列方程
不能丢掉负号
(2) 7x 2.5x 3x 1.5x 15 4 6 3
解:(2) 合并同类项,得(7 2.5 3 1.5)x 60 18
解法2:
第1个数为
x 3
,
第2个数为x,第3个数为3x ,则
x x 3x 1701. 3 7 x 1701. 3
x 729.
所以 3x 2187 , x 243 3
还有其他设法吗?
答: 这三个数分别是 243, 729, 2187
22202
当堂检测
解下列方程.
(1) 5x 2x 9 (3) 7x 4.5x 2.5 3 5
x 3x 9x 1701.
合并同类项,得 7x 1701.
系数化为1,得 x 243.
所以 3x 729,9x 2187. 答: 这三个数分别是 243, 729, 2187
22202
例2 有一列数,按一定规律排列成 1, 3,9 27,81, 243, .其中某三个 相邻数的和是1701 ,这三个数各是多少?
22202
归纳总结
解法一
解应用题的一般步骤:
解:设前年购买了x台,则 去年购买了2x台,今年购买了4x台,
x+2x 4x 140
合并同类项,得
7x 140
系数化为1,得
x 20
审 —审题,明确关键信息 设 —设合适的未知量为x 列 —依据等量关系列方程 解 —采取最优步骤方案求解

《合并同类项解一元一次方程》教案

《合并同类项解一元一次方程》教案

《合并同类项解一元一次方程》教案以检验是否正确.3.合并同类项要注意每项系数的符号,合并时是要将系数进行相加;系数化为1时特别注意是在方程两边同时除以未知数的系数(或者乘以未知数系数的倒数).思考6:回顾本节课开始提出的问题问题:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量是去年的2倍,今年这个学校购买了多少台计算机?问题中涉及到的量有:三年购买的计算机总台数、今年、去年、前年每年购买的计算机台数,共4个量.在法3中,我们设前年购买计算机x台,则去年购买2x台,今年购买4x台. 根据“三年共购买计算机140台”,可列方程:x x x++=.42140其中,式子42++和数据140是“三年购买的计算机总x x x量”的两种不同表达形式,所以可以画上“=”,得到方程.那么“今年、去年、前年每年购买的计算机台数”这三个量是否每一个也都可以有两种表达形式呢?“今年购买的计算机台数”的两种不同表达形式:=--①41402x x x“去年购买的计算机台数”的两种不同表达形式:21404=--②x x x“前年购买的计算机台数”的两种不同表达形式:=--③x x x14024可以发现:根据实际问题列方程时,就是在题目描述的过程中,“拉出一个量”,依据题意用两种方式表达它,中间用“=”连接,方程即列成.上面所得的方程该如何解呢?请同学课下思考,下节课探讨!布置作业:1.完成数学书第87页:练习2.完成数学书第91页:习题3.2复习巩固第1题3.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为60?如果能,这三个数分别是多少?课后·知能演练一、基础巩固1.解下列方程时,合并同类项不正确的是()A.5x-4x=1,合并同类项,得x=1B.3x-5x=-2,合并同类项,得-2x=-2C.2x-3x-4x=1,合并同类项,得x=1D.12x+13x=2,合并同类项,得56x=22.一元一次方程x+3x=8的解是()A.x=-1B.x=0C.x=1D.x=23.根据题意,列出关于x的方程(不必解方程):某农场有试验田1 080 m2,全部用来种植A,B,C三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.解:设A种农作物的种植面积为2x m2,则B,C两种农作物的种植面积分别为3x m2,4x m2,根据试验田总面积为1 080 m2,列出方程.4.解下列方程:(1)-3x+0.5x=2;(2)7x-2x=8+2;(3)13x-x=5-1;(4)-32x-3x=2.5-1.二、能力提升5.某学校要种506棵松树,把任务分给七、八、九三个年级.已知九年级分到的松树棵数的15与八年级分到的松树棵数的14相等,同时又都等于七年级分到的松树棵数的12,求七年级分到多少棵松树?三、思维拓展6.老师在黑板上写出下列算式:(1)请你在“□”和“△”中分别填入一个数,并计算其结果.(2)嘉嘉在“□”中填入-6,得到的结果是-38,则嘉嘉在“△”处填入的数是多少?(3)淇淇说,在“□”和“△”中可以填入一个相同的负数,使计算结果为-2,则她填入的数是________.【课后·知能演练】1.C2.D3.2x+3x+4x=1 0804.解:(1)合并同类项,得-2.5x=2.系数化为1,得x=-0.8.(2)合并同类项,得5x=10.系数化为1,得x=2.(3)合并同类项,得-23x=4.系数化为1,得x=-6.(4)合并同类项,得-92x=32.系数化为1,得x=-13. 5.解:设七年级分到x 棵松树,则九年级分到的松树棵数为12x ÷15=52x ,八年级分到的松树棵数为12x ÷14=2x. 根据三个年级栽种松树的数量之和等于总棵数,列得方程x+52x+2x=506,解得x=92. 答:七年级分到92棵松树.6.解:(1)在“□”“△”中分别填入-1,-2,所以7×(-1)-5×(-2)=-7+10=3.(答案不唯一)(2)依题意,得[-38-7×(-6)]÷(-5)=(-38+42)×(-15)=-45.所以嘉嘉在“△”处应填入的数是-45.(3)-1解析:设她填入的数是x,则7x-5x=-2,解得x=-1.。

5.2 解一元一次方程 第1课时 合并同类项 (课件)-人教版(2024)数学七年级上册

5.2 解一元一次方程 第1课时 合并同类项 (课件)-人教版(2024)数学七年级上册
x x
“三年共购买计算机 140 台”,可列方程:x+2+4=140.设法 1 更简单,
因为设法 1 中未知数 x 的系数都是整数,便于求解
(2)如何解方程4x+2x+x=140?
解方程4x+2x+x=140,也就是要将方程转化为x=a(a为常数)
的形式.合并同类项,得7x=140,系数化为1,得x=20
更简单,为运用等式的性质2求出方程的解创造条件;系
数为1或-1的项,合并时千万不能漏掉哦!
知识点2:列方程解应用题(难点)
相等关系:总量=各部分量的和.
一般先设其中一个部分的量为x,再用x表示出其他各部分量,最
后根据等量关系列出方程.
【题型一】利用合并同类项解一元一次方程
例 1:下列各方程中,合并同类项正确的是( D )
(3)解方程中“合并同类项”起了什么作用?
合并同类项的目的是简化方程,它是一种恒等变形,可以使方
程变得简单,并向着x=a( a为常数)的形式转化
1. 请同学们解问题1中设法2,设法3的方程.
2. 请同学们完成课本120页例1.
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点1:解一元一次方程——合并同类项(重点)
(2)7x-2x=8+2.
请同学们观察,这两个方程有什么特点呢?
一边是含有未知数的项,另一边是常数项
请同学们试着解一解.
情境导入
程大位,明代商人,珠算发明家,历经二十年,于明万历壬辰年
(1592年)写就巨著《算法统宗》.《算法统宗》搜集了古代流传的
595道数学难题并记载了解决方法,堪称中国16-17世纪数学领域
(4)x- + =3.
2 4
(1)x=4. (2)y=2.

初中数学 合并同类项对解一元一次方程有何影响

初中数学 合并同类项对解一元一次方程有何影响

初中数学合并同类项对解一元一次方程有何影响合并同类项是解一元一次方程的重要步骤之一,对于方程的求解过程具有重要的影响。

在解题过程中,合并同类项的目的是为了简化方程式,使得方程更易于处理和求解。

下面将详细探讨合并同类项对解一元一次方程的影响。

一、简化方程合并同类项的首要影响是简化方程。

当方程式中存在多个同类项时,将它们合并在一起可以消除重复项,减少方程中的项的数量,从而使方程的形式更简洁,更易于处理。

通过合并同类项,我们可以将方程中的多个同类项合并为一个项,从而减少方程中的项数。

这样不仅有助于减少计算的复杂度,还能提高解题的效率。

简化方程使得我们能够更快地理解问题并进行进一步的运算和求解。

二、提取共同因子合并同类项的过程中,我们常常需要对同类项中的系数进行相加。

而在相加的过程中,我们往往需要进行因式分解和提取共同因子的操作。

通过合并同类项,我们可以将同类项中的系数相加,并将公共因子提取出来。

这样做的好处是,我们可以更清晰地看到方程中的模式和规律,从而更好地理解方程的结构和性质。

提取共同因子还有助于简化计算和化简方程式。

通过将同类项中的公共因子提取出来,我们可以将方程中的项进行合并,减少计算的复杂度。

这样一来,我们可以更快地进行计算和求解方程。

三、统一变量的指数合并同类项的过程中,我们要求同类项的变量和指数相同。

这样一来,我们可以更精确地进行运算和计算。

通过合并同类项,我们可以使方程中的变量的指数保持一致。

这样一来,我们可以更好地理解和解释方程中的变量之间的关系。

同时,统一变量的指数还有助于减少计算的复杂度,使方程更易于处理。

四、简化解方程的步骤合并同类项对解一元一次方程的影响还体现在简化解方程的步骤上。

在解方程过程中,合并同类项通常是第一步,然后再通过移项等方法进一步求解方程。

通过合并同类项,我们可以将方程简化为更简洁的形式,从而使解方程的过程更清晰、更有条理。

简化方程使我们能够更好地理解问题,更快地找到解的方法和答案。

解一元一次方程之合并同类项ppt课件

解一元一次方程之合并同类项ppt课件

对消和还原的意思
“对消”与“还原”是什么意思呢?
其实所谓的“对消”简单的说 就是我们这节课所学的合并同 类项. 而“还原”是我们下节课将 要学习的内容 ——移项.
总结
这节课我们学会了什么?
解形如 ax + bx + ··· + mx = p 的方程
x + 2x + 4x = 140
合并同类项
7x = 140
系数化为1
等式的性质2
x = 20 目标:化为x = a的形式
知识回顾
合并同类项
3x - 5x
-3x + 7x
y + 5y - 2y
问题1
某校三年共购买计算机140台,去年购买数量是前年的2倍,今 年购买数量又是去年的2倍,前年这个学校购买了多少台计算机 ?设前年购买 x 台. 可以表示出:去年购买计算机__2__x___台,今年 购买计算机__4__x__台. 你能找出问题中的相等关系吗?
教学目标 能够根据题意找出实际问题中的相等关系,列出一元一次方程. 运用合并同类项解形如ax+bx+…+mx=p的方程.
教学重点 列方程,用合并同类项解一元一次方程. 独立分析实际问题中的相等关系,列方程.
教学难点 体会方程中的化归思想.
数学小史
约公元825年,中亚细亚数学家 阿尔—花拉子米写了一本代数书 ,重点论述怎样解方程. 这本书 的拉丁译本为《对消与还原》. “对消”与“还原”是什么意思 呢? 待会再揭晓答案!
答案:2,9,16
练习 某月的日历上,在3×3的方阵中,9 个数之和是126,则这 个3×3 方阵的中心的那个数是多少?
答案:14
等差求和 方程 x+2x+3x+4x+ ··· +99x+100x=5050的解是( )

合并同类项解一元一次方程 教案

合并同类项解一元一次方程 教案

合并同类项解一元一次方程一、内容和内容解析1.内容一元一次方程的合并同类项解法.2.内容解析方程的解法是“数与代数”的核心内容,也是本章的核心内容.解方程是求出方程中的未知数的值的过程.合并同类项是整式运算的基础,也是解方程、解不等式的基本步骤之一,是一种恒等变形.合并同类项的运算依据是分配律,解一元一次方程时,同类项有两类:未知数的一次项和常数项.合并同类项解一元一次方程是解方程的基本步骤之一,而列出正确的方程却是基础,因此,列方程在本章非常重要,它将实际问题中的相等关系描述出来,这种建模思想贯穿于全章的始终.在这里学生初次接触解方程的化归思想,也就是把多个同类项转化为一项,从而使方程 的形式.更接近x a二、目标和目标解析1.目标(1)掌握运用合并同类项解简单的一元一次方程;(2)经历运用方程解决实际问题的过程,体验方程是刻画现实世界数量关系的有效数学模型.2.目标解析达成目标(1)的标志是:给定一个方程,能够准确地通过合并同类项解方程.知道合并同类项的作用是简化方程.达成目标(2)的标志是:通过问题探究找出实际问题中的相等关系,设出未知数,依据相等关系列出方程.体验一元一次方程的应用价值.三、重点难点教学重点:建立方程解决实际问题,会利用合并同类项解一元一次方程.教学难点:寻找实际问题中的相等关系列一元一次方程,正确地通过合并同类项解方程.四、教学过程设计1.用《花拉子米及〈对消与还原〉》视频介绍数学史,创设情境公元约825年,阿拉伯数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?师生活动:视频展示数学史,了解数学史记载的内容,从而引出新课题.此环节利用数学史激发学生的学习兴趣.设计意图:让学生了解数学史,为引出课题以及后面合并同类项学习做好铺垫.2.创设问题情境,探究新知问题1 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?师生活动:学生读题后,老师引导学生思考.问题探究:(1)寻找题中的已知量和未知量;(2)这个问题中存在怎样的等量关系.师生活动:学生思考,讨论回答,然后完成以下问题:已知量:①三年购买计算机的总量为140台;②去年购买数量是前年的2倍;③今年购买数量是去年的2倍.未知量:选合适的未知量设未知数:题目中的相等关系:(前年购买量+去年购买量+今年购买量=140台)用未知数分别表示出:前年购买量,去年购买量,今年购买量.请根据以上的相等关系列出方程.方法1:设前年购买计算机x 台,根据题意,得24140x x x ++=.引导学生思考其他解法,学生讨论解法,找学生口述:方法2:若设去年购买计算机x 台,根据题意,得14022=++x x x . 方法3:若设今年购买计算机x 台,根据题意,得14042xxx ++=.此环节教师应关注:(1)学生能否正确地找出相等关系,列出方程;(2)学生能否多角度地分析问题;(3)学生参与合作学习的程度.设计意图:实际问题的引出,让学生感受方程解法的讨论源于实际问题的需要.学生经历寻找已知量、未知量、设未知数、寻找相等关系、列出方程的过程,对前面学习的列方程的方法起到巩固的作用.从三种不同的角度去设未知数,让学生体验数学多角度思考问题的灵活性.3.合作探究,归纳方法问题2 通过问题1列出了三个一元一次方程,如何求上述的第一个方程旳解? 师生活动:学生观察,思考解方程的思路.找学生回述,教师用框图的形式表示具体过程如下:24140x x x ++=思考系数化为1的依据是什么?(生答师强调)板书解方程步骤:解:x +2x +4x =140,合并同类项,得7x =140,系数化为1,得x =20.问题3 解方程时“合并同类项”起到什么作用?师生活动:学生思考回答.合并同类项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并利于求出方程的解.此环节教师应关注:(1)教师应根据学生具体情况,适时复习回顾合并同类项的相关知识和内容;(2)学生能否主动积极地思考出方法,理解合并同类项的作用;(3)学生能否明确解方程的实质就是将方程化归为a x =的形式.设计意图:让学生思考解决问题,有助于学生形成思考问题的习惯,为后面学习其他方法提供思考的方向性.用框图表示解方程的过程,使学生清晰地了解解方程的步骤.对合并同类项作用的思考,有助于加深对解方程实质的理解.4.例题示范,巩固新知例1 解下列方程:(1)52682x x -=-; (2)7 2.53 1.515463x x x x -+-=-⨯-⨯.师生活动:学生口述解题,教师板书规范思路、格式.解:(1)合并同类项,得122x -=-. 系数化为1,得4x =.(2)合并同类项,得678x =-.系数化为1,得13x =-.此环节教师应关注:(1)学生是否掌握解方程的方法;(2)表达步骤是否清晰准确. 设计意图:加深对合并同类项解方程的理解和掌握,规范解方程的步骤.例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243,….其中某三个相邻数的和是-1 701,这三个数各是多少?问题探究:1.观察数列存在什么规律?2.如何设未知数表示这三个数?师生活动:教师提出问题引导学生思考,知道三个数中的一个就能知道另外两个,根据学生回答设未知数解方程.学生板演,老师巡视,发现问题及时纠正.解:方法一:设所求的三个数分别是x ,-3x ,9x .由三个数的和是-1701,得方程391701x x x -+=-.合并同类项,得71701x =-.系数化为1,得x = -243.所以-3x =729,92187x =-.方法二:设所求三个数中的第二个数是x ,则第一个数和第三个数分别是3x -和-3x . 由三个数的和是-1701,得方程(3)17013x x x -+-=-+. 合并同类项,得717013x -=-.系数化为1,得x = 729. 所以2433x =--,32187x -=-. 方法三:设所求三个数中的第三个数是x ,则第一个数和第二个数分别是9x和3x -. 由三个数的和是-1701,得方程170193x x x -=-⎛⎫++ ⎪⎝⎭. 合并同类项,得717019x =-.系数化为1,得2187x =-.所以2439x =-,7293x -=. 设计意图:通过解决实际问题,体会方程的作用,并巩固合并同类项解方程的方法.5.课堂练习练习1:解下列方程:(1)529x x -=; (2)3722x x +=; (3)30.510x x -+=; (4)7 4.5 2.535x x -=⨯-.师生活动:找四名学生板演,教师巡查,关注学生的解题情况,发现错误,及时纠错.对黑板上的错误,找学生分析错误原因.答案:(1)529x x -=39x =,3x =.(2)3722x x += 27x =,72x =. (3)30.510x x -+=2.510x -=,4x =-.(4)7 4.5 2.535x x -=⨯-2.5 2.5x =,1x =.练习2:某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%.问:这所学校现在的初中在校生和高中在校生人数分别是多少?参考答案:解:设这所学校现在的初中在校生人数为x 人,则现在的高中在校生为(4200-x )人,由题意可得8%·x +(4200-x )×11%=4200×10%,解得x =1400.当x =1400时,4200-x =2800.答:这所学校现在的初中在校生人数为1400人,现在的高中在校生人数为2800人.师生活动:学生自主练习,教师巡视,关注学生的解题情况,发现错误,及时纠错.此环节教师应关注:(1)学生是否比较顺利地完成解方程;(2)学生书写是否规范.设计意图:进一步巩固合并同类项解方程的步骤.6.归纳小结学生回顾本课收获:(1)合并同类项解一元一次方程的步骤:合并同类项,系数化为1;(2)能根据实际问题列一元一次方程,并进行求解.此环节教师应关注:(1)学生是否能顺利做出归纳总结;(2)表达的准确性.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心——合并同类项解方程的步骤.。

七年级数学上册《合并同类项解一元一次方程》优秀教学案例

七年级数学上册《合并同类项解一元一次方程》优秀教学案例
2.问题导向的探究式学习
案例中,问题导向的教学策略得到了充分运用。教师设计具有启发性的问题,引导学生主动探究、发现合并同类项解一元一次方程的规律。这种探究式学习方式有助于培养学生的逻辑思维能力和解决问题的能力,使他们在解答问题的过程中获得成就感。
3.小组合作促进学生互动交流
小组合作学习是本案例的又一亮点。学生在小组内讨论、交流、互助,共同解决问题。这种方式有助于培养学生的团队协作能力和沟通能力,使学生学会倾听、尊重他人意见,提高学习效率。
1.合并同类项的概念及方法。
2.一元一次方程的解法步骤。
3.解决实际问题时,如何将问题抽象为一元一次方程。
(五)作业小结
课后,我会布置以下作业:
1.请学生运用合并同类项解一元一次方程的方法,解决生活中的实际问题,并撰写解题报告。
2.完成课后练习题,巩固所学知识。
五、案例亮点
1.生活情境的巧妙运用
本教学案例的最大亮点之一是巧妙地运用了生活情境,使学生能够直观地感受到数学与生活的紧密联系。通过设计购物、出游等实际问题,引导学生发现一元一次方程的存在,激发他们的学习兴趣。这种情境教学方式有助于培养学生将数学知识应用于实际生活的能力,提高数学素养。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论。每个小组需要完成以下任务:
1.总结合并同类项的方法。
2.讨论:如何将实际问题抽象为一元一次方程?
3.互相出题,练习解一元一次方程。
在此过程中,我会巡回指导,关注学生的讨论情况,及时解答他们的疑问。
(四)总结归纳
在小组讨论结束后,我会邀请学生代表进行总结发言,分享他们的学习成果。我会对学生的发言进行点评,强调合并同类项解一元一次方程的关键步骤和注意事项。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2用“合并同类项”解一元一次方程
一、教材分析
本节课选自人教版《数学》七年级上册第三章第二节节第1课时内容,是一堂探究用“合并同类项法”来解一元一次方程的探究活动课。

人们对方程的研究有悠久的历史,方程是重要的数学基本概念,它随着实践需要而产生,并且具有极其广泛的应用。

列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”,是本节乃至全章始终渗透的主要数学思想。

通过本节教学,使学生认识到方程是更方便、更有力的数学工具,体会解法中蕴涵的化归思想,这将为后面几节进一步讨论一元一次方程中的“移项”、“去括号”和“去分母”解法准备理论依据.因此这节课是一节承上启下的课。

二、学情分析:
七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。

于是我根据学生和中小学教材衔接的特点设计了这节课。

三、教学目标
1、知识目标
经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。

学会合并同类项,会解“ax+bx+……mx=p”类型的一元一次方程。

2、能力目标
能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程。

3. 情感目标
(1).在学习中互相帮助、交流、合作、培养团队的精神.
(2).在学习的过程中,培养学生严谨的科学态度.
四、教学重点难点
教学重点:找相等关系列一元一次方程,用合并同类项解一元一次方程。

教学难点:找相等关系列方程,正确用合并同类项解一元一次方程。

五、教法学法分析
1、教法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的
解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形
式,在教师的指导下发现、分析和解决问题。

2、学法分析
教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下
充分发挥主体性作用。

六、教学过程
1、 自主学习
计算
(1)=++x x x 62 (2)=-+-x x x 327
(3) =+232x x (4)=+-x x x 3
221 等式性质2:
等式两边乘同一个数,或除以同一个不为0的数,结果仍相等
()5a b a b =⨯=⨯如果,那么,,(),a b =÷÷如果
那么a 7=b 2、合作探究(认真仔细的预习课本86页,完成下列小题)
合作探究1:某校三年共购买计算机180台,去年购买数量是前年的2倍,今年购买的数量又是去年的3倍.前年这个学校购买了多少台计算机?
(1)合作探究中是如何列方程的?分哪些步骤?
① 设出未知数:( )年购买计算机x 台,则去年的购买量为( ),今年的购买量为( )。

② 找出等量关系: 前年购买量+去年购买量+今年购买量=( )台。

③ 列出方程: ( )
(2)怎样解这个题?
(3) 用合并同类项的方法解此类一元一次方程的步骤有哪些?
合作探究2:思考并解答
若三个连续自然数的和是45,求这三个自然数.
3、检测展示
(1)解下列方程:
① 2316x x +=- ② 3327-=-+-x x x ③3722
x x += ④ 7 4.5 2.535x x -=⨯- (2)、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?
5、作业布置
(1).教科书第92页习题3.2第1、3的(1)(2),7题.
(2).补充作业
三个连续偶数之和为42,求:这三个偶数分别是多少?
4、课堂小结
(1).今天我们学习了用什么方法来解一元一次方程?
(2).合并同类项在解方程的过程中起到了什么作用?
七、板书设计
3.2用“合并同类项”解一元一次方程
列方程步骤:
1) 设未知数 24140x x x ++= 例题演算 2) 找等量关系 7140x = 例1
3) 列方程 20x = 例2
八、教学反思
对于更多的实际问题,教师应该注重加强学生对剖析数学知识的方法和途径能力的训练。

合并同类项
系数化为1。

相关文档
最新文档