九年级数学: 概率初步中考真题精选

合集下载

概率(共50题)(解析版)--2023年中考数学真题分项汇编(全国通用)

概率(共50题)(解析版)--2023年中考数学真题分项汇编(全国通用)

专题概率(50题)一、单选题1(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人,随机抽取一个学号共有10种等可能结果,抽到的学号为男生的可能有6种,则抽到的学号为男生的概率为:610=35,故选:B.【点睛】本题考查了概率公式求概率;解题的关键是熟练掌握概率公式.2(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果,再找出符合题意的结果数,最后利用概率公式计算即可.【详解】∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种,∴朝上点数是偶数的概率为36=12.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3(2023·湖北武汉·统考中考真题)某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画出树状图,找到所有情况数和满足要求的情况数,利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画树状图如下:由树状图可知共有12种等可能情况,他选择“100米”与“400米”两个项目即选择C 和D 的情况数共有2种,∴选择“100米”与“400米”两个项目的概率为212=16,故选:C .【点睛】此题考查了树状图或列表法求概率,正确画出树状图或列表,找到所有等可能情况数和满足要求情况数是解题的关键.4(2023·河北·统考中考真题)1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选:B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.14B.13C.12D.34【答案】C【分析】根据灰色区域与整个面积的比即可求解.【详解】解:∵转盘中四个扇形的面积都相等,设整个圆的面积为1,∴灰色区域的面积为12,∴当转盘停止转动时,指针落在灰色区域的概率是12,故选:C.【点睛】本题考查了几何概率,熟练掌握概率公式是解题的关键.6(2023·湖南永州·统考中考真题)今年2月,某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.1【答案】B【分析】根据概率公式,即可解答.【详解】解:从三首歌曲中选择两首进行排练,有《在希望的田野上》《我和我的祖国》、《在希望的田野上》《十送红军》、《我和我的祖国》《十送红军》共三种选择方式,故选到前两首的概率是1 3,故选:B.【点睛】本题考查了根据概率公式计算概率,排列出总共可能的情况的数量是解题的关键.7(2023·山东临沂·统考中考真题)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.23【答案】D【分析】画树状图得出所有等可能的结果数和抽取的两名同学恰好是一名男生和一名女生的结果数,再利用概率公式可得出答案.【详解】解:设两名男生分别记为A,B,两名女生分别记为C,D,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为812=23,故选:D.【点睛】本题考查列表法或树状图法求概率,解题时要注意是放回试验还是不放回试验;概率等于所求情况数与总情况数之比.用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.8(2023·浙江温州·统考中考真题)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.23【答案】C【分析】根据概率公式可直接求解.【详解】解:∵有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山,∴若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为24=12;故选:C .【点睛】本题考查了根据概率公式求简单事件的概率,正确理解题意是关键.9(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.57【答案】C【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.10(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm ,大圆半径为20cm ,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()A.16B.18C.110D.112【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可.【详解】解:由题意得,大圆面积为π×202=400πcm 2,免一次作业对应区域的面积为60×π×202360-60×π×102360=50πcm 2,∴投中“免一次作业”的概率是50π400π=18,故选B.【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.11(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.29【答案】C【分析】根据题意列出所有可能,根据新定义,得出2种可能是“平稳数”,根据概率公式即可求解.【详解】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123,321是“平稳数”∴恰好是“平稳数”的概率为26=13故选:C.【点睛】本题考查了新定义,概率公式求概率,熟练掌握概率公式是解题的关键.12(2023·浙江·统考中考真题)某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是()A.12B.14C.13D.34【答案】B【分析】直接根据概率公式求解即可.【详解】解:从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,总共有4种选择,选中梅岐红色教育基地有1种,则概率为1 4,故选:B【点睛】此题考查了概率的求法,通过所有可能结果得出n,再从中选出符合事件结果的数目m,然后根据概率公式P=mn求出事件概率.13(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.12B.13C.14D.16【答案】B【分析】根据概率公式求解即可.【详解】解:由题意,随机抽取一张,共有6种等可能的结果,其中恰好抽中水果类卡片的有2种,∴小明随机抽取一张,他恰好抽中水果类卡片的概率是26=13,故选:B .【点睛】本题考查求简单事件的概率,关键是熟知求概率公式:所求情况数与总情况数之比.14(2023·四川泸州·统考中考真题)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()A.16B.13C.12D.23【答案】B【分析】由众数的概念可知六个数中众数为5,然后根据简单概率计算公式求解即可.【详解】解:1,2,3,4,5,5六个数中,数字5出现了2次,出现的次数最多,故这组数据的众数为5,所以从六个数中随机选取一个数,这个数恰为该组数据的众数的概率为P =26=13.故选:B .【点睛】本题主要考查了求一组数据的众数以及简单概率计算,正确确定该组数据的众数是解题关键.15(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为()A.18 B.16C.14D.12【答案】C【分析】根据概率公式可直接进行求解.【详解】解:由题意可知小明恰好选中“烹饪”的概率为14;故选C .【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.二、填空题16(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.【答案】16【分析】用树状图把所有情况列出来,即可求出.【详解】总共有12种组合,《论语》和《大学》的概率112=16,故答案为:16.【点睛】此题考查了用树状图或列表法求概率,解题的关键是熟悉树状图或列表法,并掌握概率计算公式.17(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是.【答案】710【分析】根据概率公式进行计算即可.【详解】解:由题意,得,随机取出一个球共有10种等可能的结果,其中取出的是红球共有7种等可能的结果,∴P =710;故答案为:710.【点睛】本题考查概率.熟练掌握概率的计算公式,是解题的关键.18(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+n =25,去分母,得6×5=26+n ,解得n =9,经检验n =9是所列分式方程的根,∴n =9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.19(2023·天津·统考中考真题)不透明袋子中装有10个球,其中有7个绿球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.【答案】710【分析】直接利用概率公式求解即可.【详解】解:由题意,从装有10个球的不透明袋子中,随机取出1个球,则它是绿球的概率为710,故答案为:710.【点睛】本题考查求简单事件的概率,理解题意是解答的关键.20(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是.【答案】16【分析】利用表格或树状图列示出所有可能结果,找出满足条件的结果,根据概率公式计算即可.【详解】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为636=16故答案为:16.【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.21(2023·新疆·统考中考真题)在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,从中任选一个点恰好在第一象限的概率是.【答案】25【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,其中A 1,2 ,D 4,3 ,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是25,故答案为:25.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.22(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是.【答案】25【分析】根据概率的公式即可求出答案.【详解】解:由题意得摸出红球的情况有两种,总共有5个球,∴摸出红球的概率:22+3=25.故答案为:25.【点睛】本题考查了概率的求法,解题的关键在于熟练掌握概率的简单计算公式:概率=事件发生的可能情况÷事件总情况.23(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.【答案】25【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为P =410=25,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.24(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是.“偏瘦”“标准”“超重”“肥胖”803504624【答案】710【分析】根据概率公式计算即可得出结果.【详解】解:该生体重“标准”的概率是350500=710,故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.25(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是.【答案】13【分析】根据概率公式即可求解.【详解】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.【点睛】本题考查了概率公式求概率,熟练掌握概率公式是解题的关键.26(2023·四川南充·统考中考真题)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.【答案】6【分析】设袋中红球有x 个,然后根据概率计算公式列出方程求解即可.【详解】解:设袋中红球有x 个,由题意得:xx +4=0.6,解得x =6,检验,当x =6时,x +4≠0,∴x =6是原方程的解,∴袋中红球有6个,故答案为:6.【点睛】本题主要考查了已知概率求数量,熟知红球的概率=红球数量÷球的总数是解题的关键.27(2023·重庆·统考中考真题)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.【答案】19【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.28(2023·四川自贡·统考中考真题)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是.【答案】25【分析】画树状图可得,共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,再利用概率公式求解即可.【详解】解:设蛋黄粽为A ,鲜肉粽为B ,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,∴爷爷奶奶吃到同类粽子的概率是820=25,故答案为:25.【点睛】本题考查用列表法或树状图求概率、概率公式,熟练掌握相关知识是解题的关键.29(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为.【答案】12【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为P =24=12,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.30(2023·山东·统考中考真题)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为.【答案】59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.三、解答题31(2023·四川内江·统考中考真题)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了名学生,补全条形统计图(要求在条形图上方注明人数);(2)扇形统计图中圆心角α=度;(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.【答案】(1)200,补全条形统计图见解析(2)54(3)恰好选中甲、乙两名同学的概率为16【分析】(1)用B类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A、B、D、E 四个类型社团的人数得到C类型社团的人数,即可补全条形统计图;(2)用360°乘以C类型社团的人数占比即可求出扇形统计图中α的度数;(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率计算公式求解即可.【详解】(1)解:50÷25%=200(人),C类型社团的人数为200-30-50-70-20=30(人),补全条形统计图如图,故答案为:200;=54°,(2)解:α=360°×30200故答案为:54;(3)解:画树状图如下:∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,∴恰好选中甲、乙两名同学的概率为212=16.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图并画出树状图或列出表格是解题的关键.32(2023·湖北宜昌·统考中考真题)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A 文学类,B 科幻类,C 漫画类,D 数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:书籍类别学生人数A 文学类24B 科幻类mC 漫画类16D 数理类8(1)本次抽查的学生人数是,统计表中的m =;(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是;(3)若该校共有1200名学生,请你估计该校学生选择“D 数理类”书籍的学生人数;(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.【答案】(1)80,32(2)72°(3)120(4)14【分析】(1)利用A 文学类的人数除以对应的百分比即可得到本次抽查的学生人数,用抽查总人数乘以B 科幻类的百分比即可得到m 的值;(2)用360°乘以“C 漫画类”对应的百分比即可得到“C 漫画类”对应的圆心角的度数;(3)用该校共有学生数乘以抽查学生中选择“D 数理类”书籍的学生的百分比即可得到该校学生选择“D 数理类”书籍的学生人数;(4)画出树状图,找到等可能情况总数和小文、小明选择同一社团的情况数,利用概率公式求解即可.【详解】(1)解:由题意得,本次抽查的学生人数是24÷30%=80(人),统计表中的m =80×40%=32,故答案为:80,32(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是:360°×1680×100%=72°,故答案为:72°(3)由题意得,1200×880×100%=120(人),即估计该校学生选择“D 数理类”书籍的学生为120人;(4)树状图如下:从树状图可看出共有16种等可能的情况,小文、小明选择同一社团的情况数共有4种,∴P (小文、小明选择同一社团)=416=14.【点睛】此题考查了树状图或列表法求概率、样本估计总体、扇形统计图等相关知识,读懂题意,熟练掌握树状图或列表法求概率和准确计算是解题的关键.33(2023·湖北黄冈·统考中考真题)打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m =,n =,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)18,6,72°(2)480人(3)29【分析】(1)根据选择“E :其他类”的人数及比例求出总人数,总人数乘以A 占的比例即为m ,总人数减去A ,B ,C ,E 的人数即为n ,360度乘以B 占的比例即为文学类书籍对应扇形圆心角;。

中考数学专题复习题 概率(含解析)

中考数学专题复习题 概率(含解析)

xx中考数学专题复习题:概率一、选择题1.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是”,小明做了下列三个模拟实验来验证.取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值.把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值.将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥如图,从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的实验中,合理的有A. 0个B. 1个C. 2个D. 3个2.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在附近,则n的值约为A. 20B. 30C. 40D. 503.小明做“用频率估计概率”的实验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是A. 同时抛掷两枚硬币,落地后两枚硬币正面都朝上B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C. 抛一个质地均匀的正方体骰子,朝上的面点数是3D. 一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球4.下列事件中是必然事件的是A. 明天太阳从西边升起B. 篮球队员在罚球线上投篮一次,未投中C. 抛出一枚硬币,落地后正面朝上D. 实心铁球投入水中会沉入水底5.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球6.下列说法中不正确的是A. 函数的一次项系数是B. “明天降雨的概率是”表示明天有半天都在降雨C. 若a为实数,则是不可能事件D. 一个盒子中有白球m个,红球6个,黑球n个每个球除了颜色外都相同,如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是67.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是A. B. C. D.8.把八个完全相同的小球平分为两组,每组中每个分别协商1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点落在直线上的概率是A. B. C. D.9.下列算式;;;;.运算结果正确的概率是A. B. C. D.10.向如图所示的地砖上随机地掷一个小球,当小球停下时,最终停在地砖上阴影部分的概率是A. B. C. D.二、填空题11.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是______ .12.已知四个点的坐标分别是,,,,从中随机选取一个点,在反比例函数图象上的概率是______.13.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为______ .14.如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是______ .15.下列事件:过三角形的三个顶点可以作一个圆;检验员从被检查的产品中抽取一件,就是合格品;度量五边形的内角和,结果是;测得某天的最高气温是;掷一枚骰子,向上一面的数字是3,其中必然事件的有______ ,随机事件的有______ 只填序号16.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率进行估计,用计算机随机产生m个有序数对y是实数,且,,它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计的值为______ 用含m,n的式子表示17.为了估计一个不透明的袋子中白球的数量袋中只有白球,现将5个红球放进去这些球除颜色外均相同随机摸出一个球记下颜色后放回每次摸球前先将袋中的球摇匀,通过多次重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中白球的个数大约为______.18.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是______ kg.19.“的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下:如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m 与正方形内的米粒数n,并计算频率;在相同条件下,大量重复以上试验,当显现出一定稳定性时,就可以估计出的值为请说出其中所蕴含的原理:_____.20.小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去哥哥设计的游戏规则______填“公平”或“不公平”.三、计算题21.甲、乙两个人做游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜这个游戏对双方公平吗?请列表格或画树状图说明理由.22.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:无记号有记号球的颜色红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:盒中红球、黄球各占总球数的百分比分别是多少?盒中有红球多少个?23.某篮球运动员去年共参加40场比赛,其中3分球的命中率为,平均每场有12次3分球未投中.该运动员去年的比赛中共投中多少个3分球?在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.24.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.25.小明学习电学知识后,用四个开关按键每个开关键闭合的可能性相等、一个电源和一个灯泡设计了一个电路图若小明设计的电路图四个开关按键都处于打开状态如图所示,求任意闭合一个开关按键,灯泡能发光的概率;若小明设计的电路图四个开关按键都处于打开状态如图所示,求同时闭合其中的两个开关按键,灯泡能发光的概率用列表或树状图法【答案】1. D2. B3. C4. D5. A6. B7. A8. B9. A10. B11. 红球12.13.14.15. ;16.17. 20个18. 56019. 用频率估计概率20. 不公平21. 解:根据题意列表如下:1234 1234所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:,,,,,共5种,甲获胜,乙获胜,则该游戏不公平.22. 解:由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,红球所占百分比为,黄球所占百分比为,答:红球占,黄球占;由题意可知,50次摸球实验活动中,出现有记号的球4次,总球数为,红球数为,答:盒中红球有40个.23. 解:设该运动员共出手x个3分球,根据题意,得,解得,个,答:运动员去年的比赛中共投中160个3分球;小亮的说法不正确;3分球的命中率为,是40场比赛来说的平均水平,而在其中的一场比赛中,命中率并不一定是,所以该运动员这场比赛中不一定投中了5个3分球.24. 解:,所以本次抽样调查共抽取了50名学生;测试结果为C等级的学生数为人;补全条形图如图所示:中考数学专题复习题 概率(含解析)11 /11,所以估计该中学八年级学生中体能测试结果为D 等级的学生有56名; 画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2, 所以抽取的两人恰好都是男生的概率.25. 解:任意闭合一个开关按键,灯泡能发光的概率; 画树状图为:共有12种等可能的结果数,其中同时闭合其中的两个开关按键,灯泡能发光的结果数为6, 所以同时闭合其中的两个开关按键,灯泡能发光的概率.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。

中考数学复习《概率》经典题型及测试题(含答案)

中考数学复习《概率》经典题型及测试题(含答案)

中考数学复习《概率》经典题型及测试题(含答案)命题点分类集训命题点1 事件的分类【命题规律】1.事件的分类主要考查事件的判断,确定事件分为必然事件(概率为1)和不可能事件(概率为0),随机事件发生概率介于 0和1 之间.2.考查形式:①下列事件是…事件的是;②下列说法正确的是;③…事件是….【命题预测】事件的分类是研究概率知识的基础,值得关注.1.在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是( )A . 不确定事件B . 不可能事件C . 可能性大的事件D . 必然事件1. D 【解析】在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,是一定发生的事件,因而是必然事件,故选D.2.下列事件中,是必然事件是( )A . 两条线段可以组成一个三角形B . 400人中有两个人的生日在同一天C . 早上的太阳从西方升起D . 打开电视机,它正在播放动画片2. B3.下列说法中,正确的是( )A . 不可能事件发生的概率为0B . 随机事件发生的概率为12C . 概率很小的事件不可能发生D . 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3. A正面朝上的次数不确定命题点2 一步概率计算【命题规律】1.主要考查概率计算公式P (A )=mn (m 表示满足事件A 的可能结果数,n 表示所有可能结果数)的应用,只需一步便可解决.2.解决此类问题,首先找准所有可能发生的结果数,再找准事件A 发生的可能结果数,最后应用概率公式直接运算,注意事件A 的可能结果数要不重不漏,避免出错.【命题趋势】一步概率计算结合一些简单的游戏设计进行计算,是常考的基础概率计算. 4.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( )A . 110B . 19C . 13D . 124. A 【解析】随机选取一个数字,共有10种等可能结果,能打开密码锁的结果只有一种,所以一次就能打开密码锁的概率是110.5.已知袋中有若干个球,其中只有2个红球,它们除颜色外其他都相同,若随机摸出一个,摸到红球的概率是14,则袋中球的总个数是( )A . 2B . 4C . 6D . 85. D 【解析】由概率的意义可知:袋中球的总数=红球的个数÷摸到红球的概率,即袋中球的总个数是2÷14=8(个).6.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是________.6. 34 【解析】由题意知,C ,D ,F 三点可与A ,B 构成等腰三角形,E 点不可以,则概率为34.第6题图 第7题图7.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是________.7. 35 【解析】∵黑色地砖有2块,白色地砖有3块,且小球停在每块地砖上的可能性相同,∴小球停在白色地砖上的概率为35.8.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是________.8. 45 【解析】从五个图形中任取一个,则共有5种等可能的结果,取到既是轴对称图形又是中心对称图形的有4种,故其概率为45.命题点3 树状图或列表法计算概率【命题规律】1.这类题的考查与实际生活比较贴近,命题背景一般有:①摸球游戏(分两次摸球或从两个袋子中分别摸球);②掷骰子游戏(两次求点数之和等);③抽卡片游戏;④和其他知识相结合如物理电路图.2.试题解法有固定的模式:主要是利用画树状图或列表法将所有等可能结果不重不漏地列举出来,使所有等可能结果清晰呈现,进而根据题设条件选择满足要求的事件的可能结果,最后再运用概率公式求解即可.【命题趋势】用树状图或列表法计算概率主要考查两步以上概率计算的方法,是概率计算命题的一大趋势.9.一个盒子装有除颜色外其他均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( )A . 25B . 23C . 35D . 3109. C 【解析】画树状图分析如下:红1、红2、白1、白2、白3,由树状图可知,共有20种均等可能的结果,其中取到一红一白的结果有12种,所以P (一红一白)=1220=35.故选C. 10.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A . 12B . 14C . 310D . 1610. B 【解析】列表如下:第一次第二次 积1 2 3 4 5 6 1 1 2 3 4 5 6 2 2 4 6 8 10 12 3 3 6 9 12 15 18 4 4 8 12 16 20 24 5 5 10 15 20 25 30 661218243036共有36种等可能情况,其中积为奇数的有9种,所以P (积为奇数)=936=14.11.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是________. 11. 15【解析】画树状图如解图:共有60种等可能结果,符合要求的结果是12种,故概率为1260=15.12.从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是________. 12. 16【解析】画树状图如下:第由树状图可知共有12种等可能的结果,其中k =mn 为正的有2种,当k =mn 是正数时,正比例函数y =kx 的图象经过第一、第三象限.∴P =212=16.13.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级. (1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果; (2)求选手A 晋级的概率.13. 解:(1)用树状图表示选手A 获得三位评委评定的各种可能的结果,如解图:由树形图可知,选手A 一共能获得8种等可能的结果,这些结果的可能性相等. (2)由(1)中树状图可知,符合晋级要求的结果4种, ∴P(A 晋级)=48=12.14.A 、B 两组卡片共5张,A 中三张分别写有数字2、4、6,B 中两张分别写有3、5.它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?14. 解:(1)P(抽到数字为2)=13.(2)游戏规则不公平,理由如下.画树状图表示所有可能结果,如解图:由图知共有6种等可能结果,其中两数之积为3的倍数的有4种. ∴P(甲获胜)=46=23,P(乙获胜)=26=13∴游戏规则不公平.15.在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示) (2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.15. 解:(1)列表法如下:A B C D A AB AC AD B BA BC BD C CA CB CD DDADBDC或画树状图如下:(2)在A 中,22+32≠42;在B 中,32+42=52;在C 中,62+82=102;在D 中52+122=132,则A 中正整数不是勾股数,B ,C ,D 中的正整数是勾股数. ∴P(抽到的两张卡片上的数都是勾股数)=612=12.命题点4 统计与概率结合【命题规律】此类题将概率和统计结合,一般为2~3问,第1问通常考查统计知识,最后1问涉及列表或树状图法计算概率,有时还会涉及到游戏的公平性.【命题预测】统计与概率都是与日常生活结合紧密,联系实验生活,是全国命题趋势之一,值得关注. 16.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意、一般、满意、非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)求此次调查中接受调查的人数; (2)求此次调查中结果为非常满意的人数; (3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或画树状图的方法求出选择的市民均来自甲区的概率. 16. 解:(1)由图知,满意20人,占调查人数的40%.∴此次调查中接受调查的人数为:20÷40%=50(人). (2)∵非常满意的人数占调查人数的36%, ∴非常满意的人数为:50×36%=18(人). (3)画树状图如下:∴市民均来自甲区的概率为:212=16.中考冲刺集训一、选择题1.在英文单词“parallel”(平行)中任意选择一个字母“a”的概率为( )A . 12B . 38C . 14D . 182.下列说法正确的是( )A . 为了审核书稿中的错别字,选择抽样调查B . 为了了解春节联欢晚会的收视率,选择全面调查C . “射击运动员射击一次,命中靶心”是随机事件D . “经过有交通信号灯的路口,遇到红灯”是必然事件3.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是( )A . 16 B . 14 C . 13 D . 124.有5张看上去无差别的卡片,上面分别写着1,2,3,4,5.随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是( )A . 310B . 320C . 720D . 7105.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A . 613 B . 513 C . 413 D . 313二、填空题6.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记.掷一次骰子,向上的一面出现的点数是3的倍数的概率是________.7.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图,在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是________.8.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是________.9.已知四个点的坐标分别是(-1,1),(2,2),(23,32),(-5,-15),从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.三、解答题10.已知反比例函数y =kx 与一次函数y =x +2的图象交于点A(-3,m).(1)求反比例函数的解析式;(2)如果点M 的横、纵坐标都是不大于3的正整数,求点M 在反比例函数图象上的概率.11.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数. (1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.12.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.13.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如下尚不完整的统计图表.评估成绩n(分) 评定等级频数90≤n≤100 A 280≤n<90 B70≤n<80 C 15n<70 D 6根据以上信息解答下列问题:(1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.答案与解析:1. C2. C3. C 【解析】任意抛掷一次,朝上的面的点数有6种等可能的结果,其中满足|x -4|=2的有2和6两种,所以所求概率为26=13.4. A 【解析】从这5张卡片中,随机抽取3张,不同的抽法有:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种,其中抽到的三个数字作为边长能构成三角形的有(2,3,4),(2,4,5),(3,4,5),共3种,则P (能构成三角形)=310.5. B 【解析】∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5种情况,如解图所示,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是513.第5题解图6. 13 【解析】抛一枚质地均匀的正方体骰子,向上的一面有1,2,3,4,5,6这6种均等的结果,其中是3的倍数只有3和6两个,∴P(3的倍数)=26=13.7. 12 【解析】棕色糖果占总数的百分比为1-(20%+15%+30%+15%)=20%.绿色糖果或棕色糖果占总数的百分比为30%+20%=50%,∴取出的糖果的颜色为绿色或棕色的概率=50%,即12.8. 49 【解析】本题主要考查了古典概型中的概率问题.做此类型题目注意放回和不放回的区别,列表或画树状图都可解决此类问题.本题列表如下:红黄 黄由上表可知:4种,所以两次摸出球都是黄球的概率为49.9. 12 【解析】先将各点分别代入反比例函数解析式中,即y =1-1=-1≠1,y =12≠2,y =123=32,y =1-5=-15,所以(23,32),(-5,-15)这两个点在反比例函数y =1x 的图象上,因此,所求的概率为24=12.10. 解:(1)把A(-3,m)代入y =x +2中,得m =-3+2=-1, ∴A(-3,-1),把A(-3,-1)代入y =kx 中,得k =3,∴反比例函数的解析式为y =3x .(2)由题意列表如下:由上可知,共有9与(3,1)两种结果, ∴点M 在反比例函数图象上的概率P =29.11. 解:(1)所有可能的两位数用列表法列举如下表:(2)7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.12. 解:(1)12.(2)画树状图如解图,第12题解图或列表如下:甲 乙4 5 6 7 4 (4,5) (4,6) (4,7) 5 (5,4) (5,6) (5,7) 6(6,4)(6,5)(6,7)7 (7,4) (7,5) (7,6)由树状图或列表法可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:甲 9 9 9 10 10 10 0 0 0 0 0 0 乙109910910(7分)比较甲、乙两人的“最终点数”,可得P (乙获胜)=512.13. 解:(1)由统计图表知,评定为C 等级的有15家,占总评估连锁店数的60%, 则m =15÷60%=25.(2)由题意知B 等级的频数为25-(2+15+6)=2, 则B 等级所在扇形的圆心角大小为 225×360°=28.8°=28°48′. (3)评估成绩不少于80分的为A 、B 两个等级的连锁店.A 等级有两家,分别用A 1、A 2表示;B 等级有两家,分别用B 1、B 2表示,画树状图如下:第13题解图由树状图可知,任选2家共有12种等可能的情况,其中至少有一家是A 等级的情况有10种. 所以,从评估成绩不少于80分的连锁店中任选2家,其中至少有一家是A 等级的概率是P =1012=56.。

中考数学复习专题《概率》专项训练-附带答案

中考数学复习专题《概率》专项训练-附带答案

中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。

人教版数学九年级上册第二十五章《概率初步》中考汇编试题

人教版数学九年级上册第二十五章《概率初步》中考汇编试题

中考分类概率初步解析附参考答案一.选择题1.(福建龙岩)下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为 3、5、9 厘米的三条线段能围成一个三角形.其中确定事件的个数是().A.1B.2C.3D.4B解析:③④是确定事件2. (广东梅州)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后, 6 点朝上是必然事件B.甲、乙两人在相同条件下各射击10 次,他们的成绩平均数相同,方差分别是S甲2 0.4 , S乙20.6 ,则甲的射击成绩较稳定C.“明天降雨的概率为1”,表示明天有半天都在降雨2D.了解一批电视机的使用寿命,适合用普查的方式考点:方差;全面调查与抽样调查;随机事件;概率的意义..分析:利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.解答:解: A、掷一枚均匀的骰子,骰子停止转动后, 6 点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击 10 次,他们的成绩平均数相同,方差分别是S 甲2=0.4 ,S 乙2=0.6 ,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选 B.点评:本题主要考查了方差、全面调查与抽样调查、随机事件以及概率的意义等知识,解答本题的关键是熟练掌握方差性质、概率的意义以及抽样调查与普查的特点,此题难度不大.3.(汕尾)下列说法正确的是A.掷一枚均匀的骰子,骰子停止转动后, 6 点朝上是必然事件B.甲、乙两人在相同条件下各射击 10 次,他们的成绩平均数相同,方差是s2 甲 = 0.4,s2 乙 = 0.6 ,则甲的射击成绩较稳定1C.“明天降雨的概率为2”, 表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式4.( 呼和浩特 ) 在一个不透明的袋中装着 3 个红球和 1 个黄球,它们只有颜色上的区别,随机从袋中摸出 2 个小球,两球恰好是一个黄球和一个红球的概率为11 1 1 A. 2B. 3C. 4D . 65. (杭州) 如图,已知点 A , B ,C ,D ,E ,F 是边长为 1 的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为 ()A.1B.2C.2D.545 3 9AFCEEDGD BCDAC F BA第9题第【答案】 B.【考点】 概率;正六边形的性质 .【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的 情况数目;二者的比值就是其发生的概率 . 因此,如答图,∵正六边形的顶点,连接任意两点可得15 条线段,其中 6 条的连长度为 3 :AC 、 AE 、 BD 、BF 、CE 、 DF ,∴所求概率为62 .15 5故选 B.xK b 1. Co m二、填空题1.(福建龙岩)小明“六·一”去公园玩投掷飞镖的游戏,投中图中阴影部分有奖品(飞镖盘被平均分成 8 份),小明能获得奖品的概率是.382.(广东梅州)一个学习兴趣小组有 4 名女生, 6 名男生,现要从这 10 名学生中选出一人担任组长,则女生当选组长的概率是.考点:概率公式. .分析:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数÷所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可.解答:解:女生当选组长的概率是:4÷10=.故答案为:.点评:此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件 A 的概率 P(A)=事件 A 可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件) =1.( 3) P(不可能事件) =0.3. (汕尾)一个学习兴趣小组有 4 名女生, 6 名男生,现要从这10 名学生中选出一人担任组长,则女生当选组长的概率是.2 54.(河南)现有四张分别标有数字 1,2,3,4 的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数字不同的概率是.585.(湖北滨州)用 2、3、4 三个数字排成一个三位数,则排出的数是偶数的概率为.236.(益阳)( 2015?益阳)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.考点:列表法与树状图法.分析:列举出所有情况,看甲没排在中间的情况占所有情况的多少即为所求的概率.解答:解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部 6 种情况,有 4 种甲没在中间,所以甲没排在中间的概率是=.故答案为.点评:本题考查用列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比.7.(呼和浩特)如图,四边形 ABCD 是菱形, E、F 、G、H 分别是各边的中点,随机地向菱形 ABCD内掷一粒米,则米粒落到阴影区域内的概率是__________.1 2A E BHFD G C8. (上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7 位同学参加,现有包括小杰在内的50 位同学报名,因此学生会将从这 50 位同学中随机抽取7 位,小杰被抽到参加首次活动的概率是__________【答案】 0.14.【解析】9. (深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被 3 整除的概率是。

(常考题)人教版初中数学九年级数学上册第五单元《概率初步》测试(有答案解析)

(常考题)人教版初中数学九年级数学上册第五单元《概率初步》测试(有答案解析)

一、选择题1.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2022年世界杯德国队一定能夺得冠军C.某彩票中奖率是1%,买100张一定会中奖D.在一只装有5个红球的袋中摸出1球,一定是红球2.从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程211x a ax x++--=3有正数解,则符合条件的概率是()A.15B.25C.35D.453.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下:甲说:“第二组得第一,第四组得第三”;乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是()A.第一组B.第二组C.第三组D.第四组4.如图,正方形ABCD内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.2πB.2πC.12πD2π5.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内6.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.127.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.掷一枚质地均匀的硬币,正面朝上的概率B.任意买一张电影票,座位号是2的倍数的概率C.从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率8.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613B.513C.413D.3139.下列事件是必然事件的是()A.阴天一定会下雨B.购买一张体育彩票,中奖C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.任意画一个三角形,其内角和是180°10.小王掷一枚质地均匀的硬币,连续抛3次,硬币均正面朝上落地,如果他再抛第4次,那么硬币正面朝上的概率为()A.1 B.12C.14D.1511.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19B.16C.13D.2312.从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是( )A.15B.25C.310D.45二、填空题13.下表显示了在同样条件下对某种小麦种子进行发芽实验的部分结果.①随着试验次数的增加,此种小麦种子发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计此种小麦种子发芽的概率是0.95;②当试验种子数为500粒时,发芽频率是476,所以此小麦种子发芽的概率是0.952;③若再次试验,则当试验种子数为1000时,此种小麦种子发芽的频率一定是0.951;其中合理的是____________(填序号)14.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.则点P在以原点为圆心,5为半径的圆上的概率为_____.15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.16.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是____.17.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.18.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是_______.19.有黄色抹子9只,绿色袜子7只,白色袜子4只,红色袜子2只,黑色袜子1只,盲人摸袜子(摸出的袜子不放回):(1)若每次摸1只,连续摸两次,恰好凑成一双黄袜子的概率是________.(2)若要保证凑出2双不同色袜子,则至少要摸出________只袜子。

初中九年级上册数学课件 概率 概率中考题

初中九年级上册数学课件 概率 概率中考题

11、在一次口试中,要从20道题中随机抽出6道 题进行回答,答对了其中的5道就获得优秀, 答对其中的4道题就获得及格,某考生会回答 12道题中的8道,试求:
(1)他获得优秀的概率是多少?
(2)他获得及格与及格以上的概率有多大?
13、某人有5把钥匙,但忘记了开房门的是哪 一把,于是,他逐把不重复地试开,问 (1)恰好第三次打开房门锁的概率是多少? (2)三次内打开的概率是多少? (3)如果5把内有2把房门钥匙,那么三次内 打开的概率是多少?
Aቤተ መጻሕፍቲ ባይዱ
圆桌
6、把3个歌舞、4个独唱和2个小品排成一 份节目单,计算:
(1)节目单中2个小品恰好排在开头和 结尾的概率是多少?
(2)节目单中4个独唱恰好排在一起的 概率是多少?
(3)节目单中3个歌舞中的任意两个都 不排在一起的概率是多少?
7、某小组的甲、乙、丙三成员,每人在7天内参 加一天的社会服务活动,活动时间可以在7天 之中随意安排,则3人在不同的三天参加社会 服务活动的概率为( )
甲、乙两人参加普法知识问答,共有10个 不同的题目,其中选择题6个,判断题4 个,甲、乙两人依次各抽一题。 (1)甲抽到选择题、乙抽到判断题的概 率是多少? (2)甲、乙两人至少有一人抽到选择题 的概率是多少?
11.一张圆桌旁有四个座位,A先 坐在如图所示的座位上,B.C.D三 人随机坐到其他三个座位上.则A 与B不相邻而坐的概率为___;
4
a 时,指针顺时针方向转动同样的格
转盘A
数 a, 所得结果数应是 2a 或(2a– 6)(a≥3),即所得结果数总是偶数.
1
6
2 (2)如果指针指向偶数b, 如6,
指针顺时针方向转动同样的格数 b,

人教版九年级数学中考概率专项练习及参考答案

人教版九年级数学中考概率专项练习及参考答案

人教版九年级数学中考概率专项练习夯实基础1.(2018·黑龙江齐齐哈尔)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地A.2.(2018·湖南衡阳)已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故选项A错误;连续抛一枚均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故选项B正确;因为已知抛一枚均匀硬币正面朝上的概率为12,所以大量反复抛一枚均匀硬币,平均100次出现正面朝上50次,故选项C正确;通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的,概率均为12,故选项D正确.故选A.3.(2018·广东广州)甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.164种等可能的结果:(1,1),(1,2),(2,1),(2,2),所以取出的两个小球上都写有数字2的概率是14,故答案为C.4.(2017·北京)下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1 000时,“钉尖向上”的概率一定是0.620.其中合理的是( ) A.① B.②C.①②D.①③5.(2018·浙江金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( ) A.16 B.14C.13D.712黄色扇形的圆心角度数为90°,占周角的14,∴黄色扇形面积占圆面积的14,∴指针停止后落在黄色区域的概率是14,故选B .6.(2018·山东聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是 ( )A.12B.13C.23D.16:由树状图可知,所有可能出现的站法共有6种,其中小亮恰好站在中间的情况有2种,故小亮恰好站在中间的概率是26=13.7.(2018·湖北武汉)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A.14B.12C.34D.56,由表可知,共有16种等可能结果,其中两次抽取的卡片上数字之积为偶数的有12种结果,所以P (两次抽取的卡片上数字之积为偶数)=1216=34.故选C .8.(2018·四川内江)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形又是中心对称图形的概率是 . ①⑤两个,故从中任取一张既是轴对称图形又是中心对称图形的概率是25.9.(2018·山东聊城)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是 . 解析遇到绿灯的概率是4230+3+42=1425.10.(2018·江苏盐城)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 画树状图如下,或列表:(2)从树状图或列表可以得出共有12种等可能的结果,其中小悦拿到的两个粽子都是肉馅的情况有2种结果,所以小悦拿到的两个粽子都是肉馅的概率为212=16.提升能力11.(2018·湖南益阳)2018年5月18日,益阳新建西流湾大桥竣工通车.如图,从沅江A 地到资阳B 地有两条路线可走,从资阳B 地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A 地出发经过资阳B 地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是 .A 到资阳B 的两条路分别记为M 和N ,从资阳B 到益阳火车站的三条路分别记会龙山大桥为C ,西流湾大桥为D ,龙洲大桥为E ,画树状图如下:共有6条路可走,其中经过西流湾大桥D 的路线有两种,∴P=26=13.12.(2017·四川成都)已知☉O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在☉O 内的概率为P 2,则P1P 2= .O 的半径为1,则S ☉O =π,AO=1,AD=√2.所以S阴影=4[12π·(√22)2-(14π-12)]=2, 又因为该图形的总面积为2+π. 所以P 1=22+π,P 2=π2+π,所以P 1P 2=2π.13.(2018·山东烟台)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;(2)将条形统计图补充完整,观察此图,支付方式的“众数”是“ ”;(3)在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.81°(2)微信;补全条形统计图如图所示:(3)方法1:设使用“微信”支付为a ,使用“支付宝”支付为b ,使用“银行卡”支付为c ,画树状图如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ), 故两人恰好选择同一种支付方式的概率为39=13.方法2:设使用“微信”支付为a ,使用“支付宝”支付为b ,使用“银行卡”支付为c ,列表如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ),故两人恰好选择同一种支付方式的概率为39=13.创新拓展14.(2017·安徽名校模拟卷)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生; (2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(2)C类女生有20×25%-2=3(人),D类男生有20×(1-15%-25%-50%)-1=1(人),补充完整条形统计图如图所示:(3)列表如下:A类中的两名男生分别记为A1和A2.共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一名男生和一名女生的概率为36=12.。

初三数学概率试题

初三数学概率试题

初三数学概率试题一、选择题1、下列哪个事件发生的可能性最小? ( )A.通过长期努力学习,小明的成绩有所提高B.明天会有暴风雨C.在太阳上看到一个黑点D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最小的是:B.明天会有暴风雨。

解释:选项A、C、D都是有可能发生的事件,而选项B中的“明天会有暴风雨”不是必然会发生的事件,它只是一种可能发生的情况,因此可能性最小。

2、以下哪个事件发生的可能性最大? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是蓝球发生可能性最大的是:C.在一个密封、不透明的袋子里随机抽取一个球,恰好是红球。

解释:选项C中,袋子里有10个红球,因此随机抽取一个球,恰好是红球的可能性最大。

而选项A中,找到两片完全相同的叶子是不可能的;选项B中,太阳上看到一个黑点也是不可能的;选项D中,袋子里蓝球的个数少,抽到蓝球的可能性也较小。

因此,选项C发生的可能性最大。

3、下列哪个事件发生的可能性最小? ( )A.在地球上找到两片完全相同的叶子B.在太阳上看到一个黑点C.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取一个球,恰好是红球D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球发生可能性最小的是:D.在一个密封、不透明的袋子里装有10个红球,5个蓝球,随机抽取两个球,都是蓝球。

解释:选项A中虽然找到两片完全相同的叶子是不可能的,但是这并不是一个随机事件;选项B中太阳上看到一个黑点也是不可能的;选项C中随机抽取一个球恰好是红球的可能性较大;而选项D中随机抽取两个球都是蓝球的可能性非常小。

因此选项D发生的可能性最小。

随着全球的教育改革,数学教育在中考中占据了越来越重要的地位。

九年级数学上概率初步测试题(含答案)(3)(K12教育文档)

九年级数学上概率初步测试题(含答案)(3)(K12教育文档)

九年级数学上概率初步测试题(含答案)(3)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上概率初步测试题(含答案)(3)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上概率初步测试题(含答案)(3)(word版可编辑修改)的全部内容。

九年级数学上 概率初步测试题(说明:全卷考试时间100分钟,满分120分)一、选择题(每小题3分,共30分) 1. 下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖 C .一年中,大、小月份数刚好一样多 D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中。

从A 地到B 地有2条水路、2.条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A .20种 B.8种 C. 5种 D 。

13种 3.一只小狗在如图1的方砖上走来走去,最终停在阴 影方砖上的概率是( ) A .154 B 。

31 C 。

51 D.1524.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5。

某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

(常考题)人教版初中数学九年级数学上册第五单元《概率初步》测试(答案解析)

(常考题)人教版初中数学九年级数学上册第五单元《概率初步》测试(答案解析)

一、选择题1.小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥,⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率为( ) A .15B .25C .35D .452.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )A .34B .13C .23D .123.做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( ) A .0.50B .0.21C .0.42D .0.584.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )A .14B .34C .12D .385.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次( ) A .只有①正确B .只有②正确C .①②都正确D .①②都错误6.某射击运动员在同一条件下的射击成绩记录如下: 射击次数 20801002004001000“射中九环以上”的次数 186882168327823“射中九环0.900.850.820.840.820.82以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90 B.0.82 C.0.85 D.0.847.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613B.513C.413D.3138.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.149.汉代数学家赵爽在注解(周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边分别是2和3.现随机向该图形内掷一枚飞镖,则飞镖落在小正方形内(非阴影区域)的概率为()A.1 B.1213C.112D.11310.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.19B.13C.12D.7911.下列事件:(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( )A.0个B.1个C.2个D.3个12.下列事件:①篮球队员在罚球线上投篮一次,未投中;②翻开八年级数学课本,恰好翻到第28页;③任取两个正整数,其和大于1;④长为3,5,9的三条线段能围成一个三角形.其中确定事件有()A.1个B.2个C.3个D.4个二、填空题13.—个不透明的口袋里有4颗球,除颜色以外完全相同,其中2颗红球,2颗白球,从口袋中随机摸出两颗球,则恰好摸出1颗红球1颗白球的概率是______.14.在一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一个球,不再放回袋中,充分搅匀后再随机摸出一球,则两次都摸到红球的概率是_____.15.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.16.同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是____________17.四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为___________________.18.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.19.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800100020004000发芽的频数8530065279316043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_____(精确到0.1).小方格的正方形雷区中,随机埋藏着10 20.如图是计算机中“扫雷"游戏的画面,在99颗地雷,每个小方格内最多只能藏1颗地雷.小红在游戏开始时随机踩中一个方格,踩中后出现了如图所示的情况,我们把与标号1的方格相邻的方格记为A区域(画线部分),A 区域外的部分记为B区域,数字1表示在A区域中有1颗地雷,那么第二步踩到地雷的概率A区域______B区域(填“>”“<”“=”).三、解答题21.如图,一个质地均匀的转盘分为A、B两个扇形区域,A区域的圆心角为120°(1)随意转动转盘一次,指针指在B区域的概率是多少.(2)随意转动两次转盘,指针第一次指在B区域,第二次指在A区域的概率是多少,用树状图或列表方法来说明理由.22.电影《我和我的家乡》和《姜子牙》分别夺得国庆档8天票房的冠、亚军.周末,小明和爸爸一起去看电影,但是小明想看《姜子牙》爸爸想看《我和我的家乡》,于是他们决定采用摸牌的办法决定去看哪部电影.摸牌规则如下:把一副新扑克牌中的红桃2,3,4,5四张背面朝上洗匀后放置在桌面上,小明从中随机摸出一张牌,记下数字后放回,爸爸再从中摸出一张牌,记下数字若两次数字之和为奇数,则看《我和我的家乡》,若两次数字之和为偶数,则看《姜子牙》.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;(2)请判断这个游戏是否公平.23.某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整).请根据统计图解答下列问题:(1)将两幅不完整的统计图补充完整;(2)若居民区有8000人,请估计爱吃D粽的人数;(3)若有外形完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.一个不透明的袋中装有2个红球、3个黑球和5个白球,它们除颜色外其余都相同.小明和小红玩摸球游戏,规定每人摸球后再将摸到的球放回去为一次游戏.若小明摸到红球,则小明得10分;若小红摸到黑球,则小红得10分,这个游戏对双方公平吗?为什么?若不公平,怎样修改游戏规则,才能保证游戏公平?25.2019年5月,某校八年级部分同学参加了学校首届“中国诗词大会”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)请把条形图补充完整.(2)扇形统计图中,m=______.(3)某班要从B等级中的小明和小刚中选一人参加复赛,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.26.在一个不透明的盒子中装有a个除颜色外完全相同的红球和白球,其中红球有b个,将盒中的球摇匀后从中任意摸出1个球,记录颜色后将球放回盒中,重复进行这过程,如表记录了某班一次摸球实验情况:摸球总数n400150035007000900014000摸到红球数m325133632036335807312628摸到红球的频率0.8130.8910.9150.9050.8970.902(1)由此估计任意摸出1个球为红球的概率约是(精确到0.1)(2)实验结束后,小明发现了一个一般性的结论:盒子中共有a个球,其中红球有b个,则摇匀后从中任意摸出1个球为红球的概率P可以表示为ba,这个结论也得到了老师的证实根据小明的发现,若在该盒子中再放入除颜色外与原来的球完全相同的2个红球和2个白球,摇匀后从中任意摸出1个球为红球的概率为P’,请通过计算比较P与P'的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据菱形的判定方法求解即可.【详解】解::①AB BC=;根据有一组邻边相等的平行四边形是菱形,可判定ABCD是菱形;②AB BC⊥;根据有一个内角是直角的平行四边形是矩形,可判定ABCD是矩形;③AD BC=;是ABCD本身具有的性质,无法判定ABCD是菱形;④AC BD⊥,根据对角线互相垂直的平行四边形是菱形,可判定ABCD是菱形;⑤AC BD=.根据对角线相等的平行四边形是矩形,可判定ABCD是矩形∴共有5种等可能结果,其中符合题意的有2种∴能判定ABCD是菱形的概率为25故选:B.【点睛】本题考查概率的计算及菱形的判定,掌握菱形的判定方法正确分析推理是解题关键.2.D解析:D【分析】根据题意画出树状图,进而得出以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形是等腰三角形的情况,求出概率即可.【详解】解:∵以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA1B1,△OA2B2,所作三角形是等腰三角形的概率是:21 =42.故选:D.【点睛】此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键.3.C解析:C【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】解:∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42,故选:C.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.4.D解析:D【分析】根据几何概率的求法,可得:小球最终停在黑色区域的概率等于黑色区域的面积与总面积的比值.【详解】根据图示,∵黑色区域的面积等于6块方砖的面积,总面积等于16块方砖的面积,∴小球最终停留在黑色区域的概率是:63=168.故选D.【点睛】此题主要考查了几何概率问题,用到的知识点为:概率=黑色区域的面积与总面积之比.5.D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【详解】①“明天的降水概率为80%”是指是指明天下雨的可能性是80%,不是有80%的时间在下雨,故①错误;②“连续抛一枚硬币50次,出现正面朝上的次数一定是25次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故②错误;①和②都是错误的.故选D.【点睛】本题考查概率的相关概念.不确定事件是可能发生也可能不发生的事件.正确理解随机事件、不确定事件的概念是解决本题的关键.6.B解析:B【分析】根据大量的实验结果稳定在0.82左右即可得出结论.【详解】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.【点睛】本题主要考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.7.B解析:B【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【详解】解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:513P=;故选:B.【点睛】本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.8.C解析:C【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴22,∴2,222=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.9.D解析:D【分析】根据勾股定理先求出大正方形的边长,再求出小正方形的边长,从而得出两个正方形的面积,然后根据概率公式即可得出答案.【详解】解:∵两直角边分别是2和3,∴131,∴S大正方形=13,S小正方形=1,∴飞镖落在小正方形内(非阴影区域)的概率为1 13;故选D.【点睛】此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.10.A解析:A【分析】从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.【详解】解:∵既是2的倍数,又是3的倍数只有6一个,∴P(既是2的倍数,又是3的倍数)=1.9故选:A.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.11.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念找到各类事件的个数即可.【详解】(1)如果a、b都是实数,那么a+b=b+a,是必然事件,故此选项错误;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签,是随机事件;(3)同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件,故此选项错误;(4)射击1次,中靶,是随机事件.故随机事件的个数有2个.故选:C.【点睛】此题主要考查了随机事件、不可能事件和随机事件定义,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.B解析:B【分析】根据随机事件的定义对各选项进行逐一分析即可得到答案;【详解】①篮球队员在罚球线上投篮一次,未投中是随机事件,不是确定事件,故错误;②翻开八年级数学课本,恰好翻到第28页是随机事件,不是确定事件,故错误;③任取两个正整数,其和大于1是必然事件,即是确定事件,故正确;④长为3,5,9的三条线段因为3+5<9,故不能能围成一个三角形,是必然不可能发生的,故确定不发生事件,故正确故选B【点睛】本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件,一定会发生的事件或者一定不发生的事件称为确定事件.二、填空题13.【分析】画树状图展示所有12种等可能的结果找出摸出的一颗红球和一颗白球的结果数然后根据概率公式计算【详解】画树状图为:共有12种等可能的结果其中摸出的1颗红球1颗白球的结果数为8所以摸出的一个红球和解析:2 3【分析】画树状图展示所有12种等可能的结果,找出摸出的一颗红球和一颗白球的结果数,然后根据概率公式计算.【详解】画树状图为:共有12种等可能的结果,其中摸出的1颗红球1颗白球的结果数为8,所以摸出的一个红球和一个白球的概率=82 123.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.14.【分析】先画树状图展示所有20种等可能的结果数再找出两次都摸到红球的结果数然后根据概率公式求解【详解】解:画树状图为:共有20种等可能的结果数其中两次都摸到红球的结果数为6种所以两次都摸到红球的概率解析:3 10【分析】先画树状图展示所有20种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有20种等可能的结果数,其中两次都摸到红球的结果数为6种,所以两次都摸到红球的概率=620=310.故答案为3 10.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.【解析】分析:设勾为2k则股为3k弦为k由此求出大正方形面积和阴影区域面积由此能求出针尖落在阴影区域的概率详解:设勾为2k则股为3k弦为k∴大正方形面积S=k×k=13k2中间小正方形的面积S′=(解析:12 13【解析】分析:设勾为2k,则股为3k13,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k13,∴大正方形面积13132,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13 k2-k2=12 k2∴针尖落在阴影区域的概率为:221212 1313kk.故答案为12 13.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.16.【分析】画树状图展示所有36种等可能的结果数再找出两枚骰子点数之和小于5的结果数然后根据概率公式求解【详解】解:画树状图为:共有36种等可能的结果数其中两枚骰子点数的和是小于5的结果数为6∴两枚骰子解析:1 6【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子点数之和小于5”的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为16.【点睛】此题考查列表法与树状图法求概率,解题关键在于画出树状图.17.【分析】由四张质地大小背面完全相同的卡片上正面分别画有平行四边形矩形等腰三角形菱形四个图案平行四边形矩形菱形是中心对称图形等腰三角形是轴对称图形直接利用概率公式求解即可求得答案【详解】解:∵四张质地解析:3 4【分析】由四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.平行四边形、矩形、菱形是中心对称图形,等腰三角形是轴对称图形,直接利用概率公式求解即可求得答案.【详解】解:∵四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.中心对称图形的是平行四边形、矩形、菱形,∴从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为:34.故答案为:34.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】用白球的个数除以球的总个数即可确定摸到白球的概率【详解】解:盒子中装有9个大小相同的乒乓球其中3个是黄球6个是白球则摸到白球的概率是:故答案为【点睛】本题考查概率的求法与运用正确应用概率公式解析:2 3【分析】用白球的个数除以球的总个数,即可确定摸到白球的概率.【详解】解:盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,则摸到白球的概率是:62 93 =.故答案为23.【点睛】本题考查概率的求法与运用,正确应用概率公式是解答本题的关键.19.08【分析】观察表格得到这种玉米种子发芽的频率稳定在0801附近据此可估计出这种玉米种子发芽的概率【详解】观察表格得到这种玉米种子发芽的频率稳定在0801附近则这种玉米种子发芽的概率是08故答案为:解析:0.8【分析】观察表格得到这种玉米种子发芽的频率稳定在0.801附近,据此可估计出这种玉米种子发芽的概率.【详解】观察表格得到这种玉米种子发芽的频率稳定在0.801附近,0.8010.8≈,则这种玉米种子发芽的概率是0.8,故答案为:0.8.【点睛】本题考查概率计算.当频数足够大时,所对应的频率相当于概率.20.=【分析】分别求出A区域踩到地雷的概率和B区域踩到地雷的概率即可【详解】∵A区域踩到地雷的概率为B区域踩到地雷的概率为∴第二步踩到地雷的概率区域和区域是相等的故填=【点睛】本题主要考查了几何概率在解解析:=【分析】分别求出A区域踩到地雷的概率和B区域踩到地雷的概率即可.【详解】∵A区域踩到地雷的概率为18,B区域踩到地雷的概率为91=728,∴第二步踩到地雷的概率A区域和B区域是相等的.故填=.【点睛】本题主要考查了几何概率,在解题时要注意知识的综合应用以及概率的算法是本题的关键.三、解答题21.(1)23;(2)29【分析】 (1)算出B 所在的圆心角度数,进行计算即可;(2)将转盘分成三等分,列树状图计算即可;【详解】(1)360120240︒-︒=︒,∴24023603︒=︒, ∴指针指在B 区域的概率为23. (2)将转盘分成三等分,一共有三种等分区域,列树状图如下,一共有9种结果,其中第1次是B ,第2次是A 的有2种,∴概率为:29. 【点睛】本题主要考查了列表法与树状图法求概率,准确画图计算是解题的关键.22.(1)答案见解析;(2)这个游戏公平.【分析】(1)利用树状图展示所有16种等可能的等可能的结果数;(2)找出两次数字之和为奇数的结果数和两次数字之和为偶数的结果数,然后根据概率公式计算即可.【详解】解:(1)画树状图如下:共16种等可能的结果.(2)由(1)得共有16种结果,每种结果出现的可能性相同,两次数字之和为奇数的结果有8种.∴看《我和我的家乡》的概率为81 162=.两次数字之和为偶数的结果有8种,∴看《姜子牙》的概率为81 162=.1122=∴这个游戏公平.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23.(1)见解析;(2)3200人;(3)1 4【分析】(1)条形图补C,扇形图补A、C,由A知180人,只要知总数,用D来求总数,总人数=D类人数÷D类占的百分比即可,(2)用部分估计总体,用D类在样本中百分比×8000即可,(3)外形完全相同的A、B、C、D粽各一个,小韦吃了一个,有四种可能选取,剩下三个时再吃一个,有三种可能,把各种情况用树状图表示,共12种情况,第二个吃到的恰好是C粽,只有第一次吃A、B、D三种情况,用概率公式计算即可.【详解】解:(1)总人数=240÷40%=600(人),A类百分比:180÷600×100%=30%,C类百分比1-40%-10%-30%=20%,C类人数=600×20%=120(人),补全统计图如下:(2)爱吃D粽的人数有:800040%3200⨯=(人),(3)根据题意,画树状图为:由图可知,一共有12种等可能的结果,其中第二个吃到的恰好是C粽的有3种结果,P∴(第二个吃到C粽)31 124 ==.【点睛】本题考查补全图形,爱吃人数,概率等知识,掌握公式:各类中人数=总人数×各部分占的比例,用样本估计总体,概率公式是关键.24.不公平,理由见解析,把3个黑球改为放2个黑球,这样才能保证游戏公平【分析】利用概率公式分别求出小明和小红获胜的概率,进而得出这个游戏对双方不公平,把3个黑球改为放2个黑球,这样摸到的红球和黑球的概率相等,这样才能保证游戏公平.【详解】解:不公平.∵不透明的袋中装有有2个红球、3个黑球和5个白球,小明摸到红球,得10分,若小红摸到黑球,则小红得10分,∴小明摸到红球的概率为:210=15,小红摸到黑球的概率为:310,∴这个游戏对双方不公平;把3个黑球改为放2个黑球,这样才能保证游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)补图见解析;(2)10;(3)游戏不公平,理由见解析.【分析】(1)根据D等级有12人,所占百分比为30%,求得参加演讲比赛的学生总数,再用学生总数乘以B等级所占百分比得到B等级的人数,即可补全条形图;(2)用A等级的人数除以学生总数乘以100%得到m的值;(3)根据题意列出树状图,分别求出小明去和小刚去的概率即可判断.【详解】(1)参加演讲比赛的学生共有12÷30%=40(人),B等级的人数是40×20%=8(人).条形图补充:。

初三数学中考复习随机事件的概率专项综合练习题含答案

初三数学中考复习随机事件的概率专项综合练习题含答案

初三数学中考复习随机事件的概率专项综合练习题含答案1.从一副洗匀的普通扑克牌中随机抽取一张,那么抽出红桃的概率是( ) A.154 B .1354 C.113 D .142. 以下事情中,是肯定事情的是( )A .将油滴入水中,油会浮会水面上B .车辆随机到在一个路口,遇到红灯C .假设a 2+b 2,那么a =bD .掷一枚质地平均的硬币,一定正面向上3.以下事情中的不能够事情是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交能信号灯的路口,遇到红灯D .恣意画一个三角形,其内角和是360°4. 如图,共有12个大小相反的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其他的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是( )A.47 B .37 C.27 D .175. 一个不透明的盒子里有n 个除颜色外其他完全相反的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,恣意摸出一个球记下颜色后再放回盒子,经过少量重复摸球实验后发现,摸到黄球的频率动摇在30%,那么估量盒子中小球的个数n 为( )A .20B .24 C.28 D .306. 在课外实际活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法预算正面朝上的概率,其实验次数区分为10次、50次、100次,200次,其中实验相对迷信的是( )A .甲组B .乙组C .丙组D .丁组7. 从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率为( )A.15 B .25 C.35 D .458.某品牌电插座抽样反省的合格率为99%,那么以下说法中正确的选项是( )A .购置20个该品牌的电插座,一定都合格B .购置1000个该品牌的电插座,一定有10个不合格C .即使购置一个该品牌的电插座,也能够不合格D .购置100个该品牌的电插座,一定有99个合格9.九一(1)班在参与学校4×100m 接力赛时,布置了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决议,那么甲跑第一棒的概率为( )A .1B .12 C.13 D .1410. 一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其他都相反.从袋中恣意找出1个球,是黄球的概率为( )A.12 B .15 C.310 D .71011. 小明恣意掷一枚平均的硬币,前9次都是正面朝上,当他掷第10次时,你以为正面朝上的概率是_____.12. 在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差异,从袋子中随机摸出一个球,那么摸出白球的概率是_____.13. 我国魏晋时期数学家刘徽首创〝割圆术〞计算圆周率.随着时代开展,如古人们依据频率估量概率这一原理,常用随机模拟的方法对圆周率π停止估量,用计算机随机发生m 个有序数对(x ,y)(x ,y 是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其外部.假设统计出这些点中到原点的距离小于或等于1的点有n 个,那么据此可估量π的值为_______.(用含m ,n 的式子表示)14. 在一个不透明的箱子里装有白色、蓝色、黄色的球共20个,除颜色外,外形、大小、质地等完全相反,小明经过屡次摸球实验后发现摸到白色、黄色球的频率区分动摇在10%和15%,那么箱子里蓝色球的个数很能够是______个.15. ⊙O 的两条直径AC 、BD 相互垂直,区分以AB 、BC 、CD 、DA 为直径向外作半圆失掉如下图的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,那么P 1P 2=______. 16. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差异,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.17. 在3×3的方格纸中,点A 、B 、C 、D 、E 、F 区分位于如下图的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,那么所画三角形是等腰三角形的概率是________;(2)从A 、D 、E 、F 四个点中先后恣意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).18. 为了调查甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1) 一?(2) 现将停止两种小麦优秀种类杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株停止配对,以预估全体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰恰都等于各自平均株高的概率. 参考答案:1---10 BDBBD DCADC11. 1212. 1313. 4n m14. 1515. 2π16. 解:如下图:一切的能够有12种,契合题意的有2种,故两次均摸到红球的概率为:212=16. 17. 解:(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,有△ABC ,△DBC ,△EBC ,△FBC ,但只要△DBC 是等腰三角形,所以P(所画三角形是等腰三角形)=14; (2)用〝树状图〞或应用表格列出一切能够的结果:∵以点A ∴P(所画的四边形是平行四边形)=412=13.18. 解:(1)∵x 甲=63+66+63+61+64+616=63, ∴s 2甲=16×[(63-63)2×2+(66-63)2+2×(61-63)2+(64-63)2]=3; ∵x 乙=63+65+60+63+64+636=63, ∴S 2乙=16×[(63-63)2×3+(65-63)2+(60-63)2+(64-63)2]=73; ∵s 2乙<s 2甲. ∴乙种小麦的株高长势比拟划一;(2)列表如下:的有6种, ∴所抽取的两株配对小麦株高恰恰都等于各自平均株高的的概率为636=16.。

新人教版九年级数学上册-概率中考真题-精选.

新人教版九年级数学上册-概率中考真题-精选.

概率中考真题一、选择题1. (2011 广东东莞) 在一个不透明的口袋中,装有 5 个红球 3 个白球,它们除颜色外都同样,从中任意摸出一个球,摸到红球的概率为( )A . 1B . 1C .5 D .35 3 882. ( 2011 福建福州)从 1,23 三个数中 , 随机抽取两个数相乘 , 积是正数的概率是( )A . 0B .1C .2D . 1333. (2011 山东滨州) 四张质地、大小、反面完整同样的卡片上 , 正面分别画有圆、矩形、等边三角形、等腰梯形四个图案 . 现把它们的正面向下随机摆放在桌面上, 从中任意抽出一张 , 则抽出的卡片正面图案是中心对称图形的概率为 ( )A. 1B.41 C.3 D. 1244. (2011 山东日照) 两个正四周体骰子的各面上分别注明数字 1,2,3,4 ,好像时扔掷这两个正四周体骰子,则 着地的面所得的点数之和等于 5 的概率为( )(A ) 1 (B ) 3 (C )3(D )3416 485. (2011 山东泰安) 袋中装有编号为 1, 2,3 的三个质地平均、大小同样 的球,从中随机拿出一球记下编号后,放入袋中搅匀,再从袋中随机拿出一 球,两次所取球的编号同样的概率为A.B.C.D.6. (2011浙江湖州 ) 以下事件中,必定事件是word.A.掷一枚硬币,正面向上.B.a是实数,≥ 0.C.某运动员跳高的最好成绩是20 .1米.D.从车间刚生产的产品中任意抽取一个,是次品.7. ( 2011 浙江绍兴)在一个不透明的盒子中装有8 个白球,若干个黄球,它们除颜色不一样外,其他均同样.若从中随机摸出一个球,它是白球的概率为2,则黄球的个数为()3A.2B.4C.12D.168.(2011 浙江义乌)某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,此中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.9.(2011广西南宁)在边长为l 的小正方形构成的网格中,犹如图 4 所示的 A、 B 两点,在格点中任意搁置点 c,恰巧能使△的面积为l 的概率为:word.( A) 3 (B) 4 (C) 1 (D) 625 25 5 2510. (2011 广东深圳)如图,是两个能够自由转动的转盘,转盘各被平分红三个扇形 ,并分别标上1, 2, 3和6, 7, 8 这 6 个数字 ,假如同时转动两个转盘各一次( 指针落在平分线上重转), 转盘停止后 ,则指针指向的数字和为偶数的概率是()A. 1B.2 2 9C. 4D. 19 311.(2011 内蒙古呼和浩特市)经过某十字路口的汽车,它可能持续直行,也可能向左或向右转 . 若这三种可能性大小同样,则两辆汽车经过该十字路口所有持续直行的概率为()1 2 1 1A. 3B. 3C. 9D. 2word.12.( 2011 四川自贡)已知 A、B 两个口袋中都有 6 个分别标有数字0、1、2、3、 4、 5 的彩球,所有彩球除标示的数字外没有差别。

人教版九年级数学上册《概率初步》真题精选学案(含答案解析)

人教版九年级数学上册《概率初步》真题精选学案(含答案解析)

拓视野·真题备选1.( 厦门中考 ) 掷一个质地均匀的正方体骰子, 当骰子停止后 , 朝上一面的点数为 5 的概率是()A.1B.C.D.0【解析】选 C. 掷一枚普通的正方体骰子 , 当骰子停止后 , 朝上一面的点数可能是 :1,2,3,4,5,6,共有 6 种等可能的结果 , 其中 , 向上一面点数是 5 的有 1 种, 则出现向上一面点数是 5 的概率是.2.( 南充中考 ) 有五张卡片 ( 形状、大小、质地都相同 ), 上面分别画有下列图形 : ①线段 ; ②正三角形 ; ③平行四边形 ; ④等腰梯形 ; ⑤圆 . 将卡片背面朝上洗匀 , 从中抽取一张 , 正面图形一定满足既是轴对称图形 , 又是中心对称图形的概率是()A. B. C. D.【解析】选 B. ∵在 5 种图形中既是轴对称图形, 又是中心对称图形的有 : 线段和圆 , ∴其概率为 .3.( 宁波中考 ) 在一个不透明的布袋中装有 3 个白球和 5 个红球 , 它们除颜色不同外 , 其余均相同, 从中随机摸出一个球 , 摸到红球的概率是 ()A. B. C. D.【解析】选 D.根据题意可得 : 从中随机摸出一个, 可能出现8 种可能性 , 是红球的可能性有5种, 则摸到红球的概率是= .4.( 临沂中考 ) 如图 , 在平面直角坐标系中 , 点 A1,A 2在 x 轴上 , 点 B1,B 2在 y 轴上 , 其坐标分别为A1 (1,0),A 2(2,0),B 1(0,1),B 2(0,2), 分别以 A1,A 2,B 1,B 2其中的任意两点与点 O为顶点作三角形 ,所作三角形是等腰三角形的概率是()A. B. C. D.【解析】选 D.分别以 A1,A 2 ,B 1,B 2其中的任意两点与点 O为顶点作三角形的所有情况有 :△A1OB2, △A1OB1, △ A2 OB1, △A2OB2共 4 种情况 , 其中是等腰三角形的是△A1OB1和△ A2OB2两种情况 , ∴P= = .5.( 天水中考 ) 从 1 至 9 这 9 个自然数中任取一个数 , 使它既是 2 的倍数又是 3 的倍数的概率是.【解析】从 1 至 9 这 9 个自然数中任取一个数 , 一共有 9 种可能性 , 既是 2 的倍数又是 3 的倍数的数只有 6, 所以概率是.答案 :6.( 孝感中考 ) 在 5 瓶饮料中 , 有 2 瓶已过了保质期 , 从这 5 瓶饮料中任取 1 瓶, 取到已过保质期饮料的概率为.( 结果用分数表示 )【解析】任取 1 瓶饮料 , 一共有 5 种可能性 , 符合条件的有 2 种可能性 , ∴从这 5 瓶饮料中任取1 瓶, 取到已过保质期饮料的概率为 .答案 :7.( 河北中考 ) 如图 , A 是正方体小木块 ( 质地均匀 ) 的一顶点 , 将木块随机投掷在水平桌面上,则 A 与桌面接触的概率是.【解析】正方体有 6 个面, 投掷在桌面时朝下的面有 6 种可能性 , 其中能够使 A 与桌面接触的有3 种可能性 , 故 P(A 与桌面接触 )= .答案 :8.( 重庆中考 ) 从 3,0,-1,-2,-3 这五个数中随机抽取一个数 , 作为函数 y=(5-m2)x 和关于 x 的方程(m+1)x2 +mx+1=0中 m的值 , 恰好使所得函数的图象经过第一、三象限 , 且方程有实数根的概率为.【解析】当y=(5 -m2)x的图象经过第一、三象限时,5-m 2>0, 易知m=0,-1,-2满足上式; 将2m=0,-1,-2分别代入方程(m+1)x +mx+1=0,可知当m=-1,-2时,该方程有实数根.答案 :9.(·乌鲁木齐中考) 在一个不透明的口袋中装有仅颜色不同的红、白两种小球, 其中红球 3 只 ,白球n 只, 若从袋中任取一个球, 摸出白球的概率是, 则 n=.【解析】由题意得P( 从袋中任取一个球, 摸出白球 )== ,解得n=9.答案: 910.( ·普洱中考 ) 如图 , 有 A,B 两个可以自由转动的转盘 , 指针固定不动 , 转盘各被等分成三个扇形 , 并分别标上 -1,2,3 和-4,-6,8 这 6 个数字 . 同时转动两个转盘各一次 ( 指针落在等分线上时重转 ), 转盘自由停止后 ,A 转盘中指针指向的数字记为 x, B 转盘中指针指向的数字记为 y,点 Q的坐标记为 Q(x,y).(1)用列表法或树状图法表示 (x,y) 所有可能出现的结果 .(2)求出点 Q(x,y) 落在第四象限的概率 .【解析】 (1) 列表如下 :B(y)Q(x,y)-4-68 A(x)-1(-1,-4)(-1,-6)(-1,8)2(2,-4)(2,-6)(2,8)3(3, -4)(3,-6)(3,8)画树状图如下 :(2)由(1) 中的表格或树状图可知 : 点 Q 出现的所有可能结果有 9 种, 位于第四象限的结果有 4 种, ∴点Q(x,y)落在第四象限的概率为.11.(·毕节中考) 甲、乙两同学玩转盘游戏时, 把质地相同的两个盘A,B 分别平均分成 2 份和3 份,并在每一份内标有数字如图. 游戏规则: 甲、乙两同学分别同时转动两个转盘各一次, 当转盘停止后 , 指针所在区域的数字之和为偶数时甲胜 ; 数字之和为奇数时乙胜 . 若指针恰好在分割线上 , 则需要重新转动转盘 .(1)用树状图或列表的方法 , 求甲获胜的概率 .(2)这个游戏规则对甲、乙双方公平吗 ?请判断并说明理由 .【解析】 (1) 列表如下 :B 盘和234A 盘13453567由上述表格可知 : 所有等可能的结果共有 6 种, 其中和为偶数有 2 种 , 和为奇数有 4 种 ,∴P(甲获胜 )= = .(2)P(乙获胜 )== ≠, 所以这个游戏规则对双方不公平.12.(·营口中考 ) 小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛, 游戏规则是:在一个不透明的袋子里装有除数字外完全相同的 4 个小球 , 上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球, 另一人再从袋中剩下的3个小球中随机摸出一个小球. 若摸出的两个小球上的数字和为偶数, 则小丽去参赛 ; 否则小华去参赛 .(1)用列表法或画树状图法 , 求小丽参赛的概率 .(2)你认为这个游戏公平吗 ?请说明理由 .【解析】 (1) 根据题意画树状图如下:所有可能结果 :(2,3),(2,4),(2,5),(3,2),(3,4),(3,5),(4,2),(4,3),(4,5),(5,2),(5,3),(5,4),一共12种可能性,且每种结果发生的可能性相同, 其中摸出的两个小球上的数字和为偶数的结果有 4 种, 分别是 (2,4),(3,5),(4,2),(5,3),所以小丽参赛的概率为= .(2)游戏不公平 . ∵小丽参赛的概率为 ,∴小华参赛的概率为1- = ,∵ ≠ , ∴这个游戏不公平 .。

九年级数学测试题(五)--概率初步(含答案)

九年级数学测试题(五)--概率初步(含答案)

九年级数学测试题(五)概率初步学校 班别 姓名 学校 分数一、选择题(每题3分,共30分) 1.下列事件为必然事件的是( )A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数 2.一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A.61 B.31 C.21 D.32 3.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( ) A.21 B.31 C.32 D.41 4.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为( ) A.21 B.31 C.41 D.51 5.公路上行驶的一辆汽车车牌最后一位数字为偶数的频率约是( ) A.25% B.100% C.50% D.无法确定 6.下列不是随机事件的是( ) A.打开电视机正好在播放广告B.从有黑球和白球的盒子任意拿出一个球正好是白球C.从中学课本中任意拿出一本书正好拿到数学书D.明天太阳会从西方升起7.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是( ) A.21 B.31 C.32 D.41 8.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( ) A.41 B.21 C.43D.1 9.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A.频率就是概率 B.频率与试验次数无关C.概率是随机的,与频率无关D.随机试验次数的增加,频率一般会越来越接近概率 10.同时抛掷A ,B 两个均匀的小立方体(六个面上分别标有数字1,2,3,4,5,6),设这两个立方体朝上一面的数字分别为,,y x 并以此确定P (y x ,),那么点P 落在抛物线x x y 32+-=上的概率为( )A.181 B.121 C.91 D.61 二、填空(每题4分,共24分)11.九年级(8)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 .(填“大”或“小”)12.现有四张背面完全相同的卡片,正面分别标有数-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是 .13.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到的字母e 的概率为 .14.如图,数轴上两点A ,B ,在线段AB 上任取一点C ,则点C 到表示1的点的距离不大于2的概率是 .15.从三名男生和两名女生中选出两名同学担任文艺演出主持人,则选出的恰为一男一女的概率是 .16.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率 是 .三、解答题一(每题6分,共18分)17.有一个质地均匀的正方体骰子,骰子的六个面上分别有1到6个点,请你分别写出两个必然发生的事件、不可能发生的事件和随机事件.18.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币. (1)求取出的纸币的总额是30元的概率.(2)求取出的纸币的总额可购买一件51元的商品的概率.19.一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色不同外没有任何其他区别,现从中任意摸出一个球.计算摸到的是绿球的概率.四、解答题二(每题7分,共21分)投篮次数(n )50100 150 200 250 300 500 投中次数(m ) 286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1) (2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?21、将如图所示的牌面数字分别是1,2,3,4的4张扑克牌背面朝上,洗均后放在桌面. (1)从中随机抽出一张牌,试求出牌面数字是偶数的概率.(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘①,则他能得到优惠的概率为多少?(2)选择转动转盘②或①两种方式中,哪种方式对于小张更合算?请通过计算加以说明.五、解答题三(每题9分,共27分)23、有三张正面分别写有数-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x 的值,放回卡片重新洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y 的值,两次结果记为).,(y x (1)用列表法表示),(y x 所有可能出现的结果..,32222)出现的概率有意义的()求使分式(y x yx yy x xy x -+--.,,33222)出现的概率的(并求使分式的值为整数)化简分式(y x yx yy x xy x -+--24、小明、小芳玩一个“配色”的游戏,下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色,同时转动两个转盘,如果转盘A 转出了红色、转盘B 转出了蓝色,或者转盘A 转出了蓝色、转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏规则对小明、小芳公平吗?试说明理由.抽取的乒乓球数n200 500 1000 1500 2000 优等品频数m188 471 946 1426 1898 优等品频率mn0.9400.9420.9460.9510.949(1)这批乒乓球“优等品”的概率的估计值是多少?(精确到0.01)(2)从这批乒乓球中选择5个黄球、13个白球、22个红球,它们除颜色外都相同.将它们放入一个不透明袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个白球,并放入相同数量的黄球,使搅拌均匀后从袋中摸出一个黄球的概率不小于31,问:至少取出了多少个白球?九年级数学测试题(五) 概率初步参考答案一、CBDCC DCBDA 二、 11.大 12.32 13.7214.32 15.53 16.31 三、17.答案不唯一 18.解:(1)列表如下:共有6种可能的结果数,其中总额是30元的有2种,所以取出纸币的总额是30元的概率为3162=.(2)共有6种等可能的结果数,其中总额超过51元的有4种,所以取出纸币的总额可购买一件51元的商品的概率为.3264=613963.19=(摸到绿球)=解:++P四、 20、解:(1)估计这名同学投篮一次,投中的概率约是0.5.(次)=)(3115.06222⨯所以估计这名同学投篮622次,投中的次数约是311次. 21、解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,所以P (牌面是偶数)= .(2)根据题意,画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好是4的倍数的共有4种,所以2142=.411644=的倍数)=(P22、解:(1)因为整个圆被分成了12个扇形,其中有6个扇形能享受折扣,所以.21126=(得到优惠)=P(2)转盘①能获得的优惠为:(元),251233001.023002.03003.0=⨯⨯+⨯⨯+⨯转盘②能获得的优惠为4042⨯=20(元),故选择转动转盘①更合算. 五、23、解:(1)用列表法表示)(y x ,所有可能出现的结果如下:-2 -1 1 -2 (-2,-2) (-1,-2) (1,-2) -1 (-2,-1) (-1,-1) (1,-1) 1(-2,1)(-1,1)(1,1).94,312222)出现的概率是有意义的()知使分式)由((y x y x y y x xy x -+--,33222yx yx y x y y x xy x +-=-+-- )(使分式的值为整数的)(y x ,有(1,-2),(-2,1)2种情况. .92,)出现的概率是使分式的值为整数的(y x ∴24、解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.(2)不公平.上面等可能出现的12种结果中,有3种情况得到紫色,故配成紫色的概率是123,即小芳获胜的概率是41;只有2种情况得到绿色,故配成绿色的概率是122,即小明获胜的概率是61.而6141>,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.25、解:(1)这批乒乓球“优等品”的概率的估计值是0.95. (2)①因为袋中一共有球5+13+22=40(个),其中有5个黄球,所以从袋中摸出一个球是黄球的概率为405=81.②设从袋中取出了x 个白球.由题意,得,318,31405≥≥+x x 解得 所以至少取出了9个白球.。

人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案

人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案

人教版九年级数学上册《第二十五章概率初步》测试卷-附带答案一、单选题1.下列事件是必然事件的是()A.明年杨家坪房价一定下降B.两个负数相乘结果是正数C.九龙坡区明天一定会下雪D.小明努力学习这次数学考试一定得满分2.在1000张奖券中有1个一等奖 4个二等奖 15个三等奖. 从中任意抽取1张获奖的概率为()A.B.C.D.3.掷两枚普通正六面体骰子所得点数之和为11的概率为( )A.B.C.D.4.甲从标有1 2 3 4的4张卡片中任抽1张然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是()A.B.C.D.5.如图电路图上有四个开关A、B、C、D和一个小灯泡闭合开关D或同时闭合开关A、B、C都可使小灯泡发光则任意闭合其中两个开关小灯泡发光的概率是()A.B.C.D.6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只某学习小组作摸球实验将球搅匀后从中随机摸出一个球记下颜色再把它放回袋中不断重复下表示活动进行中的一组统计数据:请估算口袋中白球约是()只.A.8 B.9 C.12 D.137.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同)其中白球有2个黄球有1个篮球有3个第一次任意摸出一个球(不放回)第二次再摸出一个球请用树状图或列表法则两次摸到的都是白球的概率为()A.B.C.D.8.一个盒子中有个红球、8个白球、个黑球每个球除颜色外其他都相同.从中任取一个球如果取得的球是白球的概率与不是白球的概率相同那么与的关系是().A.B.C.D.二、填空题9.从这个数中任取两个数作为点的坐标则点在第四象限的概率是.10.十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7 则从4 5 6 9中任选两数与7组成“中高数”的概率是.11.现有三张正面分别标有数字的卡片它们除数字不同外其余完全相同将卡片背面朝上洗匀后从中随机抽取一张将卡片上的数字记为放回洗匀后再随机抽取一张将卡片上的数字记为则满足为偶数的概率为.12.有5张正面分别标有数字-2 0 2 4 6的不透明卡片它们除数不同外其余全部相同先将它们背面朝上洗匀后从中任取一张将该卡片上的数字记为则使关于不等式组有实数解的概率为13.如图所示小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分阴影部分是黑色石子小华随意向其内部抛一个小球则小球落在黑色石子区域内的概率是.三、解答题14.某医院计划选派护士支援某地的防疫工作甲、乙、丙、丁4名护士积极报名参加其中甲是共青团员其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)随机抽取1人甲恰好被抽中的概率是(2)若需从这4名护士中随机抽取2人请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.15.一个袋子中装有5个白球和若干个红球(袋中每个球除颜色外其余都相同).某活动小组想估计袋子中红球的个数分20个组进行摸球试验.每一组做400次试验汇总后摸到红球的次数为60000次.(1)估计从袋中任意摸出一个球恰好是红球的概率.(2)请你估计袋中红球接近多少个.16.小源的父母决定中考之后带她去旅游初步商量有意向的四个景点分别为:A.明月山 B.庐山 C.婺源 D.三清山.由于受到时间限制只能选两个景点于是小源的父母决定通过抽签选择用四张小纸条分别写上四个景点做成四个签(外表无任何不同)让小源随机抽两次每次抽一个签每个签抽到的机会相等.(1)小源最希望去婺源则小源第一次恰好抽到婺源的概率是多少(2)除婺源外小源还希望去明月山求小源抽到婺源、明月山两个景点中至少一个的概率是多少.(通过“画树状图”或“列表”进行分析)17.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张记好花色和数字后将牌放回重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率(2)当甲选择x为奇数乙选择x为偶数时他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)18.小强和小兵两位同学设计了一个游戏:将三张正面分别写有数-2 -1 1的卡片背面朝上洗匀.从中任意抽取一张以其正E面的数作为x的值.放回卡片.洗匀再从中任意抽取一张以其正面的数为y值两次结果记为(x y).(1)(x y)所有可能出现的结果有种.(2)游戏规定:若点(x y)使分式有意义则小强获胜若(x y)使分式无意义则小兵获胜.你认为这个游戏规则是否公平?为什么?参考答案:1.B2.B3.A4.A5.A6.C7.A8.D9.10.11.12.13.14.(1)(2)解:如图共有:团党、团党、团党、党团、党党、党党、党团、党党、党党、党团、党党、党党十二种可能所以两名护士都是党员的概率为:.答:随机抽取2人被抽到的两名护士恰好都是党员的概率为15.(1)解:∵20×400=8000∴摸到红球的概率为:因为试验次数很大大量试验时频率接近于理论概率所以估计从袋中任意摸出一个球恰好是红球的概率是0.75(2)解:设袋中红球有x个根据题意得:解得x=15经检验x=15是原方程的解.∴估计袋中红球接近15个.16.(1)解:∵有意向的四个景点分别为:A.明月山 B.庐山 C.婺源 D.三清山∴小源第一次恰好抽到婺源的概率是:(2)解:画树状图得:∵共有12种等可能的结果小源抽到婺源、明月山两个景点中至少一个的情况数有10种∴小源抽到婺源、明月山两个景点中至少一个的概率= =17.(1)解:如图所有可能的结果有9种两次抽得相同花色的可能性有5种∴P(相同花色)=∴两次抽得相同花色的概率为:(2)解:他们两次抽得的数字和是奇数的可能性大小一样∵x为奇数两次抽得的数字和是奇数的可能性有4种∴P(甲)=∵x为偶数两次抽得的数字和是奇数的可能性有4种∴P(乙)=∴P(甲)=P(乙)∴他们两次抽得的数字和是奇数的可能性大小一样.18.(1)9(2)解:不公平理由如下:∵∴当x+y=0或x-y=0时分式没有意义其他情况分式有意义∴使分式有意义的情况数有:(-2 -1) (-2 1) (-1 -2) (1 -2)四种∴P(小强获胜)=∵使分式无意义的情况数有:(-2 -2) (-1 -1) (1 1) (1 -1) (-1 1)五种∴P(小兵获胜)=∵∴这个游戏规则不公平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25概率初步专题总结及应用一、知识性专题专题1 事件的分类【专题解读】 这部分内容主要考查事件分类的方法,应结合不同事件的定义判断某事件的类型.例1 在一个只装有红球和白球的口袋中,摸出一个球为黑球是 ( )A .随机事件B .必然事件C .不可能事件D .无法确定专题2 概率的定义【专题解读】 涉及概率求值问题可以运用概率的定义,也可以采用其他方法.例2 在100张奖券中,有4张能中奖,小红从中任抽一张,她中奖的概率是 ( )A .B .C .D . 二、规律方法专题专题3 求随机事件的概率的常用方法【专题解读】 求随机事件的概率的常用方法有以下四种:(1)画树形图法;(2)列表法;(3)公式法;(4)面积法.其中(1)(2)两种方法应用更为广泛.例3 “石头、剪刀、布”是广为流传的游戏,游戏时,甲、乙双方每次出“石头”“剪刀”布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负.假定甲、乙两人每次都是等可能地出这三种手势,用画树形图和列表的方法分别求一次游戏中两人出同种手势的概率和甲获胜的概率.(提示:为书写方便,解答时可以用表示“石头”,用表示“剪刀”,用月表示“布”)例4 表示四个袋子,每个袋子中所装的白球和黑球如下: :12个黑球和4个白球;:20个黑球和20个白球;:20个黑球和10个白球;141201251100S J AB C D ,,,A B CD :12个黑球和6个白球.如果闭着眼睛从袋子中取出一个球,那么从哪个袋子中最有可能取到黑球?例5 (1)假如有一只小狗在如图25-64所示的方砖上随意地来回走动,求它最终落在阴影方砖上的可能性;(2)在一个口袋中装有形状、大小完全相同的12个白球和3个黑球,从袋中任意摸出一个球是黑球的可能性是多少?(3)(1)和(2)中的可能性相同吗?中考真题精选一、选择题1.已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是( ) A .连续抛一枚均匀硬币2次必有1次正面朝上B .连续抛一枚均匀硬币10次都可能正面朝上C .大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的2.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( )A .1B .C .D . 3.下列事件中属于随机事件的是( )A 、抛出的篮球会落下B 、从装有黑球,白球的袋里摸出红球C 、367人中有2人是同月同日出生D 、买1张彩票,中500万大奖4.下列说法正确的是( )12213141A .随机抛掷一枚均匀的硬币,落地后反面一定朝上.B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大.C .某彩票中奖率为,说明买100张彩票,有36张中奖.D .打开电视,中央一套正在播放新闻联播.5.下表表示某签筒中各种签的数量.已知每支签被抽中的机会均相等,若自此筒中抽出一支A .B .C .D . 6.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A 、B 、C 、D 、7.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是( )A 、必然事件B 、不可能事件C 、随机事件D 、确定事件8.袋子中装有2个红球和4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子中摸出1个球,则这个球是红球的概率是( ) A 、 B 、 C 、 D 、 9.某商场为促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指针指向阴影区域时,顾客才能获得奖品,下列有四个大小相同的转盘可供选择,使顾客获得奖品可能性最大的是( )A 、B 、C 、D 、10.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A. B. C. D. 1 11.如图,A 、B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于003631211571581412342的概率是()A 、B 、C 、D 、 12.抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是( )A 、出现的点数是7B 、出现的点数不会是0C 、出现的点数是2D 、出现的点数为奇数13.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是( )A 、B 、C 、D 、14.随意掷一枚正反方体骰子,均落在图中的小方格内(每个方格除颜色外完全相同),那么这枚骰子落在中阴影小方格中的概率为.15.下列事件中,属于必然事件的是( )A 、打开电视机,它正在播广告B 、打开数学书,恰好翻到第50页C 、抛掷一枚均匀的硬币,恰好正面朝上D 、一天有24小时16. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件,“这个四边形是等腰梯形”.下列推断正确的是( )A 、事件是不可能事件B 、事件是必然事件C 、事件发生的概率为D 、事件发生的概率为17.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )A .B .C .D . 18.下列事件为必然事件的是( )A .打开电视机,它正在播广告B .抛掷一枚硬币,一定正面朝上C .投掷一枚普通的正方体骰子,掷得的点数小于7D .某彩票的中奖机会是1%,买1张一定不会中奖19.有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为( )1223344521521314149M M M M M 18531152151A 、B 、C 、D 、20.下列事件中,必然事件是( )A 、掷一枚普通的正方体骰子,骰子停止后朝上的点数是1B 、掷一枚普通的正方体骰子,骰子停止后朝上的点数是偶数C 、抛掷一枚普通的硬币,掷得的结果不是正面就是反面D 、从装有99个红球和1个白球的布袋中随机取出一个球,这个球是红球21.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是( )A .m =3,n =5B .m =n =4C .m +n =4D .m +n =822.下列事件中,不是必然事件的是( )A 、对顶角相等B 、内错角相等C 、三角形内角和等于180°D 、等腰梯形是轴对称图形 23.下列事件是必然事件的是( )A 、抛掷一次硬币,正面朝上B 、任意购买一张电影票,座位号恰好是“7排8号”C 、某射击运动员射击一次,命中靶心D 、13名同学中,至少有两名同学出生的月份相同24.在一个不透明的口袋中装有10个除颜色外均相同的小球,其中5个红球,3个黑球,2个白球,从中任意摸出一球是红球的概率是( )A 、B 、C 、D 、 25.如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。

下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材料损耗速度与流经其表面水的数量成正比,则更换最慢一个三角形材料使用的时间约为更换一个三角形材料使用时间的8倍,其中正确的判断有( )第10题图15253545512110153A .1个B .2个C .3个D .4个26.下列事件中,为必然事件的是( )A .购买一张彩票,中奖B .打开电视机,正在播放广告C .抛一牧捌币,正面向上D .一个袋中装有5个黑球,从中摸出一个球是黑球27.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )A .李东夺冠的可能性较小 B. 李东和他的对手比赛10局时,他一定会赢8局C .李东夺冠的可能性较大 D. 李东肯定会赢28.下列说法正确的是( )A 、在一次抽奖活动中,“中奖概率是”表示抽奖100次就一定会中奖B 、随机抛一枚硬币,落地后正面一定朝上C 、同时掷两枚均匀的骰子,朝上一面的点数和为6D 、在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是 29. 下列说法正确的是( )A 、要调查人们对“低碳生活”的了解程度,宜采用普查方式B 、一组数据3,4,4,6,8,5的众数和中位数都是3C 、必然事件的概率是100%,随机事件的概率是50%D 、若甲组数据的方差S 甲2=0.128,乙组数据的方差S 乙2=0.036;则乙组数据比甲组数据稳定30.为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是( )A .B .C .D . 31.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是( )A、 B 、 C 、 D 、 32.小刚掷一枚质地匀的正方体体骰子,骰子的,六个面分别刻有l 刭6的点数,则这个骰子向上一面点数大于3的概率为( )A. B. C. D. 33.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( )1100113412191922161313212132314A 、B 、C 、D 、34.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .B .C .D . 35.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( ) A .2 B .4 C .12 D .1636.下列事件中,必然事件是( )A .掷一枚硬币,正面朝上B .a 是实数,|a |≥0C .某运动员跳高的最好成绩是20.1米D .从车间刚生产的产品中任意抽取一个,是次品37.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是 .38.下列事件中,属于必然事件的是( )A .抛掷一枚1元硬币落地后,有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条线段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是10%,则购买该种彩票100张一定中奖39.下列说法正确的是( )A 、若明天降水概率为50%,那么明天一定会降水B 、任意掷一枚均匀的1元硬币,一定是正面朝上C 、任意时刻打开电视,都正在播放动画片《喜洋洋》D 、本试卷共24小题如图,正方形ABCD 内接于⊙O,⊙O 分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A 、B 、C 、D 二、填空题1. “任意打开一本200页的数学书,正好是第35页”,这是 事件(选填“随机”或“必然”).2.在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为1229491351318583322π2π12π_______(注:π取3)3.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是-----------.4.在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球个,搅匀后随机从中摸取—个恰好是黄球的概率为,则放人的黄球总数=_____________.5.如图,有三个同心圆,由里向外的半径依次是2cm,4cm,6cm将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是 .6.在一个袋子里装有10个球,其中6个红球,3个黄球,1个绿球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球的概率是-------------.7.在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,-,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x图象上方的概率是.8.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分式方程+2=有正整数解的概率为.9.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是.10.在一个不透明布袋中装有红、黄、白三种颜色的乒乓球各一个,这些球除颜色外其它都相n13n21 31x112axx--12x-31同,从袋中随机地摸出一个乒乓球,那么摸到的球是红球的概率是.11.在4张完全相同的卡片上分别画上图①、②、③、④.在看不见图形的情况下随机抽取一张,卡片上的图形是中心对称图形的概率是.12.写出一个不可能事件 .13.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页,数学2页,英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为-------.14.从﹣2,﹣1,0,1,2这五个数中任取一个数,作为关于x 的一元二次方程x 2﹣x +k =0中的k 值,则所得的方程中有两个不相等的实数根的概率是-------------.15.已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是 .2.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16.在围棋盒中6颗黑色棋子和n 颗白色棋子,随机地取出一颗棋子,如果它是黑色棋子的概率是,则n =_ ▲ . 17.袋子中有3个红球和6个白球,这些球除颇色外均完全相同,则从袋子中随机摸出一个球是白球的概率是------------.18.口袋中有2个红球和3个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是------------------.19.某校对初三(2)班40名学生体育考试中“立定跳远”项目的得分情况进行了统计,结果得 分 10分 9分 8分 7分 6分以下人数(人) 2012 5 2 1 10分的概率是------------.35(第15题图)20.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是-------------.21.袋子中装有2个黑球和3个白球,这些球的形状.大小.质地等完全相同.随机地从袋子中摸出一个白球的概率是--------------.22.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是 .23.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率-------------.24.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色,形状、大小质地等完全相同。

相关文档
最新文档