§8.7 用z变换解差分方程
Z变换和差分方程
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k
n 0
n 1
f (nT ) z n
若
f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节
差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。
利用z变换解差分方程(精选)共15页文档
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
利用z变换解为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
§8.7 用z变换解差分方程
n
( n ≥ 0)
第
例8-7-2
已知系统框图 列出系统的差分方程。 列出系统的差分方程。
n
6 页
x(n)
1 E
+ + +
−3
1 E 1 E
y(n)
(− 2) n ≥ 0 x(n) = , y(0) = y(1) = 0, 0 n<0
求系统的响应 y(n)。 。 解: (1) 列差分方程,从加法器入手 ) 列差分方程,
第
一.应用z变换求解差分方程步骤
一.步骤
(1)对差分方程进行单边 变换(移位性质); 对差分方程进行单边 变换(移位性质) 对差分方程进行单边z变换 (2)由z变换方程求出响应 由 变换方程求出响应 变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到 的反变换,得到y(n) 。
3 页
0.9y ( −1) z 0.05z2 Y ( z) = + ( z −1)( z − 0.9) z − 0.9
z −1
Y ( z) A A2 1 = + z z −1 z − 0.9
第 5 页
Y ( z) A A2 1 = + z z −1 z − 0.9
A = 0.5 1
A2 = 0.45
z z Y ( z) = 0.5 + 0.45 z −1 z − 0.9
§8.7 用z变换解差分方程
第
序言
2 页
描述离散时间系统的数学模型为差分方程。 描述离散时间系统的数学模型为差分方程。求解差分 方程是我们分析离散时间系统的一个重要途径。 方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法 时域方法 •z变换方法 变换方法 •差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •可以将时域卷积→频域(z域)乘积; 可以将时域卷积→ 可以将时域卷积 频域( 域 乘积; •部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表 •求解过程自动包含了初始状态(相当于0-的 求解过程自动包含了初始状态( 求解过程自动包含了初始状态 相当于0 条件)。 条件)。
差分方程的求解
计算机控制技术课程讲义
17
4.6 方框图及其分析
脉冲传递函数也可用方块图表示,增加一个部件 —— 采样开关
4.6.1 采样开关位置与脉冲传递函数的关系
1、连续输入,连续输出 2、连续输入,离散输出 3、离散输入,离散输出 4、离散输入,连续输出
例:方框图分析
例1、例2、
计算机控制技术课程讲义 18
计算机控制技术课程讲义 2
做Z反变换,由于 Y ( z) 1 1 1 2 z z 3z 2 z 1 z 2 z z 则Y ( z ) z 1 z 2 查Z变换表可得 y (k T) Z 1[Y ( z )] (1) k (2) k , k 0,1,2,...
两个环节中间无采样开关时
a z (1 e aT ) G ( z ) Z [G1 ( s )G2 ( s )] Z s ( s a ) ( z 1)( z e aT )
G1 ( z )G2 ( z ) G1G2 ( z )
计算机控制技术课程讲义 13
T
Y (s)
D( z ) G1 ( z ) R( z ) Y ( z ) G2 ( z ) D( z ) G1 ( z )G2 ( z ) R( z )
Y ( z) G( z) G1 ( z )G2 ( z ) R( z )
计算机控制技术课程讲义
脉冲传递函数等于两个环 节的脉冲传递函数之积。
但是,对离散系统而言,串联环节的脉冲传递函数不 一定如此,这由各环节之间有无同步采样开关来确定
计算机控制技术课程讲义
10
二、离散系统串联环节 1、串联各环节之间有采样器的情况
G( z)
G1 ( z ) G2 ( z )
Z域变换分析方法
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )
因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0
n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:
利用z变换解差分方程
于是
Y(z) =
br z−r ∑ ak z−k ∑
k= 0 M r= 0 N
M
X(z)
令
H(z) =
∑b z
r r= 0 N k= 0
−r
ak z−k ∑
则
Y(z) = X (z)H(z)
−1
此时对应的序列为 y(n) = F [X(z)H(z)]
差分方程为 例:若描述离散系统的 1 1 y(n) + y(n −1) − y(n − 2) = x(n) 2 2 x(n) = 2n u(n) , y( 已知激励 初始状态 −1) =1, y(−2) = 0, 求系统的零输入响应、 零状态响应和全响应。 求系统的零输入响应、 零状态响应和全响应。
ak z−k [Y(z) = ∑br z−r [X(z) + ∑x(m)z−m] ∑
k= 0 r= 0 m=−r N M −1
如果激励x(n)为因果序列, 如果激励x(n)为因果序列,上式可以写成 x(n)为因果序列
ak z−k [Y(z) = ∑br z−r X(z) ∑
k= 0 r= 0 N M
8.5节已经给出利用 节已经给出利用z 在8.5节已经给出利用z变换解差分方程的简 单实例,本节给出一般规律。 单实例,本节给出一般规律。这种方法的原 理是基于z变换的线性和位移性, 理是基于z变换的线性和位移性,把差分方程 转化为代数方程,从而使求解过程简化。 转化为代数方程,从而使求解过程简化。
k= 0 l =−k r= 0 m=−r −1
若激励x(n)=0,即系统处于零输入状态,此时 若激励x(n)=0,即系统处于零输入状态, x(n)=0,即系统处于零输入状态 差分方程( 差分方程(1)成为齐次方程∑a y(n −源自) =0k=0 kN
第八章_离散时间系统的z域分析4_北京交通真题库_大学915916通信系统及原
z0
七阶极点
j Im[z]
z
1 3
一阶极点
Re[z]
z 0
27
§8.4 逆z变换
X (z) ZT[x(n)] x(n)zn n
x(n) ZT 1[ X (z)] 1 X (z)zn1dz
2 j C
C是包围X(z)zn-1所有极点的逆时针闭合积分路线,一
般取z平面收敛域内以原点为中心的圆。
n0
n
an zn 1 bn zn
n0
n0
z a, z b
X (z) z 1 b za zb zz
za zb
25
jIm(z)
a
0
Re(z)
jIm(z)
a
0 b
Re(z)
图8.1序列单边Z变换的收敛域
图8.2序列双边Z变换的收敛域
当 z a时,X (z) z 当a z b时,X (z) z z
d s j
j
)
!
d
zs
j
(z
zi )s
X (z)
z
zzi
32
或X (z)
A0
M m1
1
Am zm
z
1
s j 1
Cj (1 zi z1) j
A0
M m1
Am z z zm
C1z z zi
C2 z2 (z zi )2
Cs (z
zs zi )s
Cs
1 zi z1
s
X
(
z
)
z
6
§8.2 z变换的定义、典型序列的z变换
➢ 借助于抽样信号的拉氏变换引出。 ➢ 连续因果信号x(t)经均匀冲激抽样,则抽样信号xs(t)
Z变换的基本性质
第
22 页
Y z A1 A2 z z 1 z 0.9
A1 0.5
A2 0.45
z z Y z 0.5 0.45 z 1 z 0.9
y n 0.5 0.45 0.9
n
n 0
第
例8-7-2
已知系统框图 列出系统的差分方程。
a,b为任意常数。
二.位移性
1.双边z变换 2.单边z变换
(1) 左移位性质
(2) 右移位性质
第 4 页
1.双边z变换的位移性质
x ( n) 4
第 5 页
x ( n 2) 4
4
x ( n 2)
1O Hale Waihona Puke 2n 1O 1 2
n
2 1 O 1
n
的z变换为Z x( n m ) z m X ( z )
1 m k z X z x k z k m
(z域微分) 三.序列线性加权
若 则 Z x( n) X ( z )
第
12 页
d X (z) 1 d X z nx( n) z z dz d z 1
例:求na
解:
n
z2 Yzs z 2 z 2
n Yzs z yzs n n 1 2 un
第
b.由储能引起的零输入响应(对n 2都成立)
Yzi z 1 3z 1 2z 2 2z 1 y 1 3 y 1 2 y 2
z z 1 3z 2z Yzi z z 2z 1 z 2 z 1 零输入响应为
25 页
差分方程及其Z变换法求解
例1:右图所示的一阶系统描述它的微分方程为
y(t ) Ke(t ) K (r (t ) y(t ))
y(t ) Ky(t ) Kr (t )
用一阶前向差分方程近似:
(1)
r( t ) e( t ) -
K
1/s
y( t )
y (k 1)T y (kT ) dy y (t ) lim dt T 0 T
由图:x1 (k 1)T x2 (kT )
zX 1 ( z ) zx1 (0) X 2 ( z )
x2(kT)
z
1
x1(kT)
z 1
x1(0) 1
x1 ( z)
x2(z) y[(k+1)T]
例2:画出例2所示离散系统的模拟图
y[(k 1)T ] -( KT -1) y(kT ) + KTr (kT ) r(kT)
y (k 1)T y (kT ) T
(T 很小)
(2)
式中:T为采样周期,(2)代入(1)得:
y (k 1)T (KT 1) y(kT ) KTr(kT )
y(k 1) ( K 1) y(k ) Kr (k )
(3)
二、离散系统差分方程的模拟图
连续系统采用积分器s-1作为模拟连续系统微分方程的主要器件; 与此相对应,在离散系统中,采用单位延迟器z-1。 单位延迟器:把输入信号延迟一个采样周期T秒或延迟1拍。
再利用初始条件,逐次迭代得到各采样时刻的值。
特点:适用于计算机处理求解。 例3:用迭代法解二阶差分方程 y(k+2) +3y(k+1)+2y(k)=1(k)
利用初始条件 y(0)=0, y(1)=1,则有: y(k+2) =-3y(k+1) -2y(k)+1(k) y(2) =-3y(1) -2y(0)+1(0)= -3*1-2*0+1= -2
Z变换和差分方程
• 引入变量: 引入变量:
z=e
Ts
sT s
或者写成: s = 1 ln z 或者写成:
S: 拉普拉斯变换的算子; Ts:采样周期; 拉普拉斯变换的算子; Ts:采样周期 采样周期; 一个复变量, 平面上, 变换算子, Z:一个复变量,定义在 Z 平面上,称为 Z 变换算子, 记为:采样信号的Z变换: 记为:采样信号的Z变换:Z[f*(t)] = F(z) 变换, F (z)是采样脉冲序列的 Z变换, 它只考虑了采样时刻的信号值。 它只考虑了采样时刻的信号值。
y ( 0 ) = 0 , y (1) = 2 , 激励 f ( k )= 2 k ε ( k ),
求: y (k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, 以外的各项都移到等号右边, • 得: y (k ) = −3 y (k − 1) − 2 y (k − 2) + f (k ) • 对于 k = 2, 将已知初始值y (0) = 0, y (1) = 2代入上式,得:
s z 1 z R2 = lim ( s + jω ) = sT s → − jω ( s − jω )( s + jω ) z − e 2 z − e − jωT
例8—6 求
解:
f ( t ) = t 的Z变换
两阶重极点!! 两阶重极点!!
1 F (s) = 2 s
d z d z Tz 2 1 R = lim (s − 0) 2 = lim = sT sT 2 s →0 ds s →0 ds z − e s z −e ( z − 1)
c ( k ) = (1 − T ) k c ( 0 ) + T
∑
利用z变换解差分方程 ppt课件
利用z变换解差分方程
6
于是 令 则
M
br z r
Y(z)
r=0 N
X (z)
ak zk
k=0
M
br z r
H (z)
r=0 N
ak zk
k=0
Y(z)X(z)H (z)
此时对应的序列为 F y(n) 1[X(z)H (z)]
利用z变换解差分方程
7
例: 已知系统的差分方达程式表为
y(n)0.9y(n1) 0.05u(n) 若边界条y件(1) 1,求系统的完全响应。
5
若系统的起始状态y(l)=0(-N≤l≤-1),即系统处于 零起始状态,此时式(2)变成
N
M
1
a kz k[Y (z)b rz r[X (z) x (m )z m ]
k = 0
r= 0
m r
如果激励x(n)为因X(z)
k= 0
r= 0
利用z变换解差分方程
3
线性常系数差分一方般程形的式为
N
M
ak y(nk) brx(nr)
k0
r0
(1)
将 等 式 两 边 取 换单 ,边 利z用变z 变性换得位 移 特
N
1
M
1
akzk[Y(z) y(l)zl] brzr[X(z) x(m)zm] (2)
k=0
lk
r=0
mr
利用z变换解差分方程
§7.7 利用z变换解差分方程
• 主要内容
•z变换解差分方程的一般步骤 •举例说明
• 重点:利用z变换解差分方程的一般步骤
利用z变换解差分方程
1
解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法
用单边Z变换解差分方程
n
h( n)
15
可以稳定
x ( n)
h( n)
k
y(n) x(n) * h(n)
h(k ) x(n k )
x(n) M
y ( n)
k
h ( k ) x ( n k ) M h( k )
k
k x ( k ) z
1 m k k z x ( k ) z x ( k ) z k m k 0 1 m k z X ( z ) x(k ) z k m
4
(4)对于因果序列x(n)
k m k x ( k ) z 0 1
1 2 2
10 z Y ( z ) 0.1z [Y ( z ) zy (1)] 0.02 z [Y ( z ) z y (2) zy (1)] z 1 10 z (1 0.1z 1 0.02 z 2 )Y ( z ) 0.08 z 1 0.28 z 1
2 1
yss (n) B sin[n 2 ( )]
28
Y (e ) H (e ) j X (e )
j
j
H (e ) H (e ) e B H (e ) A
j
j
j
j ( )
B j[ 2 ( ) 1 ( )] e A
( ) 2 ( ) 1 ( )
§8.7 用单边Z变换解差分方程
解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法
1
(一)复习Z变换的位移特性
若x(n)分别是双边序列、双边左移序列、 双边右移序列时,它们的双边和单边Z变 换是不同的: (1)双边序列的双边Z变换(p79-p83)
利用z变换解差分方程ppt课件
N
l k
1
a z
k= 0
1
N
k
对应的响应序列是上式的逆变换,即
y ( n ) [ Y ( z )] F
若系统的起始状态y(l)=0(-N≤l≤-1),即系统处于 零起始状态,此时式(2)变成
m a z [ Y ( z ) b z [ X ( z ) x ( m ) z ] r k k k = 0 r r = 0 m r N M 1
解:第一步将差分方程 两边取z变换 1 1 1 2 得 Y(z) [z Y(z) y(1)] [z Y(z) z1y(1)y(2)] X(z) 2 2 将上式整理,得 1 1 1 y( 1)(z 1) y( 2) 1 2 2 Y(z) X(z) 1 1 1 2 1 1 1 2 1 z z 1 z z 2 2 2 2 Y zi(z) Y zs (z)
1
Y z A z A z 1 2 z z 1 z 0 . 9
Y z A z A z 1 2 z z 1 z 0 . 9
A 0 . 5 A 0 . 45 1 2
Y z z z 0 . 5 0 . 45 z z 1 z 0 . 9
达式为 例: 已知系统的差分方程表 y(n) 0.9y(n1) 0.05 u(n) 若边界条件 y(1) 1,求系统的完全响应。
解: 方程两端取z变换
z Y z 0 . 9 z Y z y 1 0 . 05 z 1 2 0 . 05 z 0 . 0 . 9
第二步求零输入响象 应函 的 数zY i( z ) 将y(1) 1,y(2) 0代 入 Y z i( z ) 表 达 式 中 得 1 1 1 1 ( z 1) z( z 1) z( z 1) Yzi( z) 2 2 2 1 1 1 2 1 1 1 2 1 z z z z ( z 1)(z ) 2 2 2 2 2 2 1 z z 3 6 z 1 z 1 2
Z变换和差分方程
04
离散系统稳定性分析与判断
离散系统稳定性概念及意义
稳定性定义
离散系统的稳定性是指系统在受到外部 扰动后,能够恢复到原平衡状态的能力 。
VS
稳定性意义
稳定性是离散系统正常工作的前提,不稳 定的系统可能导致输出失控、性能恶化甚 至损坏。
基于差分方程稳定性分析方法
差分方程
描述离散系统动态行为的数学模型, 通过求解差分方程可得到系统输出。
若$x[n]$的Z变换为$X(z)$ ,则$x[n]e^{jomega n}$ 的Z变换为 $X(ze^{ jomega})$。证明 过程基于复指数函数的性质 和Z变换的定义。
若$x_1[n]$和$x_2[n]$的Z 变换分别为$X_1(z)$和 $X_2(z)$,则它们的卷积 $x_1[n]*x_2[n]$的Z变换为 $X_1(z)X_2(z)$。证明过程 利用卷积的定义和Z变换的 性质进行推导。
系统函数与稳定性分析
系统函数是描述系统频率响应特性的 重要工具,可通过Z变换求得。同时 ,利用系统函数可进行系统稳定性分 析,如判断系统是否稳定等。
Z变换和差分方程在其他领域应用前景探讨
数字信号处理
Z变换和差分方程在数字信号处理领域具有广泛应用,如滤波器设计 、信号压缩与重构等。
控制系统分析
在控制系统中,Z变换和差分方程可用于分析系统稳定性、设计控制 器等。
收敛域
Z变换的收敛域是指使得级数 $sum_{n=-infty}^{infty} |x[n]z^{n}|$收敛的所有$z$的集合。收敛域对 于Z变换的分析和性质至关重要。
常见函数Z变换表
单位样值信号
$delta[n]$的Z变换为$1$,收敛 域为整个复平面。
单位阶跃信号
z变换求解差分方程例题
z变换求解差分方程例题
当我们求解差分方程时,可以使用Z 变换。
下面以一个简单的例子来说明如何使用Z 变
换求解差分方程。
假设我们有一个差分方程:y[n] - y[n-1] = x[n]
其中,y[n] 表示输出序列,x[n] 表示输入序列,n 表示时间索引。
现在,我们将以上方程进行Z 变换:Y(z) - z^(-1)Y(z) = X(z)
其中,Y(z) 和X(z) 分别表示Z 变换后的输出和输入序列。
将Y(z) 和X(z) 汇总,得到:Y(z) = X(z) / (1 - z^(-1))
现在,我们可以通过对Y(z) 进行逆Z 变换来求解差分方程。
首先,我们将Y(z) 展开为分式形式:Y(z) = X(z) / (1 - z^(-1)) = X(z) / (1 - 1/z) 然后,我们可以使用部分分式分解来简化表达式:Y(z) = X(z) / (1 - 1/z) = X(z) * z / (z - 1)
接下来,我们需要将Y(z) 逆变换为时间域的序列。
这可以通过查找Z 变换表格或使用Z 变换的逆变换公式来完成。
在这个例子中,逆变换公式告诉我们:y[n] = (z^n * X(z) * z / (z - 1))的逆变换
最后,我们需要将逆变换公式转化为时间域的表达式。
这可以通过查找逆变换表格或使用逆变换的公式来完成。
总结起来,如果要使用Z 变换求解差分方程,可以按照以下步骤进行操作:
.将差分方程进行Z 变换。
.将Z 变换后的表达式简化。
.使用逆变换公式将Z 变换的表达式转化为时间域的表达式。
.最后,得到差分方程的解析解。
差分方程_z_变换___概述说明以及解释
差分方程z 变换概述说明以及解释1. 引言1.1 概述差分方程是描述离散时间系统行为的重要数学工具。
在现实生活中,许多系统的变化是按照离散时间步骤进行的,例如数字信号处理、数字滤波、通信系统等。
而差分方程则可以描述这些系统在每个时间步骤上的状态和演变。
与此同时,z变换是一种重要的数学工具,用于分析离散信号和离散系统。
它将差分方程从时域(自变量是时间)转换到z域(自变量是复平面上的复数z),并且能够提供更加简洁和便于分析的表达形式。
本文将概述差分方程z变换的基本概念以及其在离散系统分析和设计中的应用。
我们将解释差分方程z变换过程,并讨论其优势和局限性。
最后,我们将总结主要观点和结论,并对未来发展提出展望和建议。
1.2 文章结构本文共分为五个部分:引言、差分方程z变换概述、解释差分方程z变换过程、差分方程z变换的优势与局限性以及结论和总结。
1.3 目的本文的目的是介绍差分方程z变换的基本概念和原理,并探讨其在离散系统分析和设计中的应用。
通过阐述z变换与时域之间的关系,传递函数和频率响应描述以及求解差分方程的步骤与方法,读者将能够理解并运用这一重要数学工具。
同时,我们还将提供对差分方程z变换优势与局限性的考察,以及对未来发展的展望和建议。
2. 差分方程z 变换概述:2.1 差分方程基础知识:差分方程是离散时间系统建模和分析中的重要工具,它可以描述离散时间的动态过程。
差分方程以递推关系式的形式表示系统的行为,其中当前时刻输出值与过去一段时间内输入值和输出值之间存在着数学上的关系。
2.2 z 变换介绍:z 变换是一种用于将差分方程从时域转换到复平面上的方法。
在信号处理领域中,z 变换常被用于对离散系统进行频域分析和设计数字滤波器。
z 变换将离散时间信号表示成复变量z 的函数,使得我们可以通过对复平面上的频率响应进行分析来理解系统的特性。
2.3 z 变换的应用领域:z 变换在许多领域都有广泛的应用。
在控制系统工程领域,z 变换可用于建立数字控制器模型、设计数字滤波器以及实现各种控制算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 页
描述离散时间系统的数学模型为差分方程。 描述离散时间系统的数学模型为差分方程。求解差分 方程是我们分析离散时间系统的一个重要途径。 方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法 时域方法——第七章中介绍,烦琐 第七章中介绍, 时域方法 第七章中介绍 •z变换方法 变换方法 •差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •可以将时域卷积→频域(z域)乘积; 可以将时域卷积→ 可以将时域卷积 频域( 域 乘积; •部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表 •求解过程自动包含了初始状态(相当于0-的 求解过程自动包含了初始状态( 求解过程自动包含了初始状态 相当于0 条件)。 条件)。
X
第
二.差分方程响应y(n)的起始点确定
4 页
X
第
三.差分方程解的验证
y(0), y(1), y(2)L两种迭代结果相同 , y 解的表达式迭代出 (0), y(1), y(2)L 解答是正确的 原方程迭代出
5 页
X
第
四.补充
6 页
X
第
四.补充
7 页
X
第
四.补充
8 页
X
X
第
一.应用z变换求解差分方程步骤
一.步骤
(1)对差分方程进行单边 变换(移位性质); 对差分方程进行单边 变换(移位性质) 对差分方程进行单边z变换 (2)由z变换方程求出响应 由 变换方程求出响应 变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到 的反变换,得到y(n) 。
3 页