系统的稳定性 常见判据

合集下载

线性定常系统稳定性及稳定判据

线性定常系统稳定性及稳定判据

s2+1=0
对其求导得零行系数: 2s1
表 s1 02
继续计算劳斯表
s0 1
劳斯表出现零行
1 2
出劳系现斯统零表一何行定时怎会么不出办稳现?定零行?
第一列全大于零,所以系统稳定
③ 解辅助错方啦程得!!对! 称根:
s1,2=±j
由综合除法可得另两
3 如何求对称的根?
个根为s3,4= -2,-3
系统稳定的充分条件:
劳斯表第一列元素不变号!
若变号系统不稳定!
变号的次数为特征根在s右半平面的个数!
劳斯表出现零行
设系统特征方程为: ① 有大小相等符号相反的
s4+5s3+7s2+5s+6=0
特征根时会出现零行
劳 s4 1 7 6
② 由零行的上一行构成 辅助方程:
s3 51 51
斯 s2 61 61
设系统特征方程为: 劳斯表介绍
s6+2s5+3s4+4s3+5s2+6s+7=0
s6 1 3

s5 2 s4 1
4 2
57
6
((61-1(064-)-/614=))//-228==1 2
77 劳斯表特点
斯 s3 0ε --88
1 右移一位降两阶

ε s2 2ε +8 7ε
s1 -8(2 +8) -7ε 2
2 行列式第一列不动 3 次对角线减主对角线 4 每两行个数相等
s0 乘以或同除以某正数
7 第一列出现零元素时,
用正无穷小量ε代替。
劳斯判据
系统稳定的必要条件: 特征方程各项系数
均大于零!

系统稳定性分析—劳斯稳定判据

系统稳定性分析—劳斯稳定判据
No.25
© BIP
例题4:s6 s5 6s4 5s3 9s2 4s 4 0
S6 1
6
S5 1
5
9
4
辅助方程
4
0
S4 1
5
4
S3
0 4
0 10
0 0
S2 2.5
4
0
0 s4 5s2 4 0
0 0 4s3 10s 0 0
S1 3.6
0
0
0
S0 4
0

0
0
某一行全为零,说明存在对称于原点的根,系统不稳定
No.15
© BIP
图7 K=15时系统的单位阶跃响应曲线
No.16
© BIP
图8 K=20时系统的单位阶跃响应曲线
No.17
© BIP
例题2:液位控制系统的稳定性分析。
进水
阀门
进水阀门的 传递函数K3
减速器
+ 电位器
-
连杆
执行电机和 减速器的传
递函数
K2/S(TS+1)
电动机
放大器
控制对象水箱的
系统稳定性分析之 ——劳斯判据
一、系统稳定的重要性
图1“舞动的格蒂”—首座塔科马大桥
No.2
© BIP
二、系统稳定性的基本概念和条件
1、定义:如果线性控制系统在初始扰动的作 用下,使被控量产生偏差,当扰动消失后,该 偏差随着时间的推移逐渐减小并趋于零,即系 统趋于原来的工作状态,则称该系统为渐进稳 定。反之,如果在初始扰动的作用下,系统的 偏差随着时间的推移而发散,系统无法趋于原 来的工作状态,则称系统不稳定。
传递函数K4/S

系统的稳定性和代数稳定判据

系统的稳定性和代数稳定判据

系统的稳定性和代数稳定判据系统的稳定性和代数稳定判据系统稳的定和代性稳数定判据系统的稳定性和代数稳定判据稳定性的本概基一、念统系稳定的性如一个果性定线常统在扰系作用消动后,失如一个果性定常线统系在扰作动用失消,能后恢够到复始的原衡状平态,能够复恢到始的平原衡态状,系即的零统输响入应是收的,则称敛统系是定的。

稳应收敛是的则,称统是系定的。

反之稳,若统不能恢系复到始的平原衡状,态反之若系,统能不复到原恢的平始衡态状,即系的零统入响应具输有幅震荡或等发性散,质即系统的零入输响具应等幅有荡或震发性质,散则称统是不稳系的。

定则称系统不是稳定的。

系统的稳定性和代数稳定判据二、线性统稳定系的充条件要设闭环系统的传函数C(s)递bmsm+m1bsm1 + +bs +b B(s)0 Φ1s( ) = = = nn 1(R) ans s+ n1sa++ a1 + as0D s()(m ≤ n )令p 系为特征统程) 方0= (Ds ,, , (i =i 12 n)而R( ) =s1 彼此等不干扰为理。

脉冲函数想:C ()s=k的根,B( ) s(Bs) R( s) =D( )s D (s)则αr js +β cji =∑ ∑ j +=1 (sσ j+j ωj ) (σs j jω j ) =i1 s pi[][]k+ 2 r=n ct() = ∑ i cei =1kpi t ∑+ej=1 rσ jt( A joc ωs j t+ B j s n i ω jt )(t≥ )0系统的稳定性和代数稳定判据式上明表:式表明上:1 当且。

仅系统当的征特根全具有负部部(和实均小。

当于且当系仅统特的征全部具有根实负部(),即征特的位根分布置在面平左半的时部,即征特根的置分布在S平面位的半左部时),零即特征根位置的分在布平的左面半时,才能成部此系时在扰动统消后能失恢复原来的平衡到态,状立此时,系统在扰消动失后能复到恢来的原衡状平态,系则统是稳的定统。

§3-5线性系统稳定性及稳定判据

§3-5线性系统稳定性及稳定判据

K* 0
560- K* 0
14 0 K* 560 即 0 K 14
若要求闭环极点 s平在面上全部位s 于1垂线之,左 则令s s1 1,代入原特征方 ,得程
s13 11s12 15s1 ( K * 27) 0 相 应 的Ro uth表 为
s13 s12
s 11
s10 则解得
或其特征根全部位于s平面的左半部。
例. 试判断系统 C(S)
1
的稳定性。
R(S) S 3 4S 2 5S 2
解:
32 S 4S
5S 2 0
2
2
(S 1)(S 3S 2) (S 1) (S 2) 0
S1 -1, S2 -1, S3 -2 由 于 三 个 特 征 根 都 具负有实 部,
00 n 0 0
an-1 an-3 0 an an-2 0
0 0
0
00 00 00
0 0 a0 0 0 0 a1 0 0 0 a2 a0
例: 设系统的特征方程式为2s4 s3 3s2 5s10 0, 试用胡尔维茨判据
判断该系统的稳定性。
解: 1 50 0
2 3 10 0 4 0 1 5 0
解: (1)特征方程各项系数大于0
(2)列劳斯阵
s4
1
1
1
s3
2
2
s2 0(用代替) 1
当ε→0时s1, s0
2
2
, 该项符号为负,因此,劳斯阵中第一列系数符号改
1
2 2 0
例设系统的特征方程为 s3 3s 2 0
试应用判据判别实部为正的特征根的个数。

s3
1
-3
改变一次
s2 0

系统的稳定性分析与判据

系统的稳定性分析与判据

系统的稳定性分析与判据在信息技术快速发展的背景下,系统的稳定性成为了一个重要的议题。

不论是计算机系统、电力系统还是金融系统,其稳定性都是保证其正常运行和可靠性的关键。

因此,对系统的稳定性进行分析和判据是非常必要的。

一、稳定性分析的概念与意义稳定性分析是指对系统的各个方面进行评估和分析,以确定系统是否能够在各种条件下保持稳定运行的能力。

系统的稳定性直接关系到系统的可靠性、可用性和性能,对于用户来说也是一个重要的参考因素。

稳定性分析可以帮助我们了解系统的薄弱环节和潜在问题,并采取相应的措施来加以改进和完善。

二、稳定性分析的方法与步骤稳定性分析是一个系统工程,需要综合考虑各个方面的因素。

下面将介绍稳定性分析的一般方法与步骤。

1. 收集数据稳定性分析需要收集系统的各种数据,包括系统的架构、硬件配置、软件版本、历史运行数据等。

这些数据将为后续的分析提供基础。

2. 确定评价指标根据系统的特点和要求,确定适用的评价指标,如系统响应时间、故障率、可用性等。

评价指标的选择应当与系统的功能和使用环境相匹配。

3. 进行问题分析通过对系统的运行数据和用户反馈进行分析,确定系统存在的问题和潜在的风险。

可以利用统计学方法、故障树分析等手段来找出系统的薄弱环节和关键问题。

4. 制定改进措施根据问题分析的结果,制定相应的改进措施。

这些措施可以包括改进软件算法、优化硬件配置、增加冗余容量等。

改进措施的制定应当综合考虑成本、可行性和效果。

5. 实施和监控将改进措施付诸实施,并进行监控和评估。

通过监控系统的运行数据,评估改进措施的效果,不断优化系统的稳定性和性能。

三、稳定性判据的依据与指标稳定性判据是对系统稳定性进行评判的依据和指标,通常包括以下方面:1. 故障率故障率是指系统在一定时间内出现故障的频率。

较低的故障率意味着系统具有更高的稳定性和可靠性。

2. 可用性可用性是指系统在一定时间内能够正常工作的概率。

高可用性表示系统具有更好的稳定性和可靠性。

10 系统的稳定性分析Nyquist稳定判据

10 系统的稳定性分析Nyquist稳定判据
开环稳定时
根据米哈伊洛夫定理推论: arg DK ( j ) n 若闭环也稳定,当由0变化到时:
arg DB ( j ) n

2

2
从而:
argF ( j) argDB ( j) argDK ( j) 0
上式表明,若系统开环稳定,则当由0变化到时, F(j) 的相角变化量等于0 时,系统闭环也稳定。
注意到: F ( j) 1 G( j) H ( j) 即:
G( j ) H ( j ) F ( j ) 1
上式表明,在复平面上将F(j)的轨迹向左移动一 个单位,便得到G(j)H(j) 的轨迹。
Im
=
-1 0
=0
Re
1
G(j)H(j)
F(j)
7.4 乃奎斯特稳定性判据
7.4 乃奎斯特稳定性判据 Im
D(j)
Im

-p
j 0
'
-p
Re
由图易知,当由0变化到时, D(j)逆时针旋转 90°,即相角变化了 /2。 arg D ( j )
2
若特征根为正实根,则当由0变化到时:
arg D ( j )

2
7.4 乃奎斯特稳定性判据
代数稳定性判据判别系统的稳定性,要求必须知 道闭环系统的特征方程,而实际系统的特征方程是 难以写出来的,另外它很难判别系统稳定或不稳定 的程度,也很难知道系统中的各个参数对系统性能 的影响。
两种常用的频域稳定判据:Nyquist稳定判据(简称
乃氏判据)和对数频率稳定判据。

Nyquist判据根据开环幅相曲线判别闭环系统稳定性;
7.4 乃奎斯特稳定性判据

控制系统稳定性分析

控制系统稳定性分析

控制系统稳定性分析引言控制系统是一种通过控制输入信号以达到预期输出的系统。

在实际应用中,控制系统的稳定性是非常重要的,因为它直接关系到系统的可靠性和性能。

本文将介绍控制系统稳定性分析的基本概念、稳定性判据以及常见的稳定性分析方法。

基本概念在控制系统中,稳定性是指系统的输出在输入信号发生变化或扰动时,是否能够以某种方式趋向于稳定的状态,而不产生超调或振荡。

在进行稳定性分析之前,我们需要了解几个重要的概念。

稳定性定义对于一个连续时间的线性时不变系统,如果对于任意有界输入信号,系统的输出始终有界,则称该系统是稳定的。

换句话说,稳定系统的输出不会发散或趋向于无穷大。

极点(Pole)系统的极点是指其传递函数分母化简后得到的方程的根。

极点的位置对系统的稳定性有很大的影响,不同的极点位置可能使得系统的稳定性不同。

范围稳定性(Range Stability)当输入信号有界时,系统的输出也保持有界,即系统是范围稳定的。

渐进稳定性(Asymptotic Stability)当输入信号趋向于有界时,系统的输出也趋向于有界,即系统是渐进稳定的。

稳定性判据稳定性判据是用来判断控制系统是否稳定的方法或准则。

常见的稳定性判据有:Routh-Hurwitz判据、Nyquist判据以及Bode稳定判据。

Routh-Hurwitz判据Routh-Hurwitz稳定性判据是一种基于极点位置的方法。

具体步骤如下:1.根据系统的传递函数确定极点。

2.构造Routh表。

3.根据Routh表的符号判断系统的稳定性。

Nyquist判据Nyquist稳定性判据是一种基于频率响应的方法。

具体步骤如下:1.根据系统的传递函数绘制频率响应曲线。

2.根据频率响应曲线的特征判断系统稳定性。

Bode稳定判据Bode稳定判据是一种基于系统的幅频特性和相频特性的方法。

具体步骤如下:1.根据系统的传递函数绘制Bode图。

2.根据Bode图的特征判断系统稳定性。

稳定性分析方法除了以上的稳定性判据外,还有一些常用的稳定性分析方法可以应用于控制系统的稳定性分析。

自动控制系统的稳定性分析

自动控制系统的稳定性分析

自动控制系统的稳定性分析自动控制系统在现代工程中起着至关重要的作用。

稳定性是评价自动控制系统性能的一个重要指标,系统稳定性的分析对于系统设计、调试和优化至关重要。

本文将对自动控制系统的稳定性进行分析,并探讨常用的稳定性分析方法。

1. 引言自动控制系统的稳定性是指在外部扰动或参数变化的情况下,系统能够保持稳定的能力。

稳定性分析是评价系统的关键特性之一,它决定了系统的可靠性和性能。

稳定性分析的目的是通过研究系统的传递函数或状态方程,确定系统的稳定性边界并评估系统的稳定性。

2. 稳定性的判据用于判断自动控制系统稳定性的最常见方法是分析系统的极点位置。

极点是系统传递函数或状态方程的特征根,它们的位置决定了系统的稳定性。

常见的判据有:- 实部均小于零:当系统的所有极点的实部都小于零时,系统是稳定的。

- 实部均小于等于零:当系统的所有极点的实部都小于等于零时,系统是边界稳定的。

- 实部均小于一:当系统的所有极点的实部都小于一时,系统是渐进稳定的。

- Nyquist稳定判据:通过绘制系统开环传递函数的Nyquist曲线,判断曲线与负实轴的交点个数来确定系统的稳定性。

3. 稳定性分析方法3.1 根轨迹法根轨迹法是一种图形化分析方法,通过绘制系统极点随参数变化的轨迹,可以直观地了解系统的稳定性边界。

根轨迹图能够反映了系统参数变化时的稳定性情况,并通过分析轨迹与虚轴的交点个数来判断系统的稳定性。

3.2 频率响应法频率响应法是一种以频域为基础的稳定性分析方法,它通过研究系统在不同频率下的响应特性来判断系统的稳定性。

常用的频率响应法包括振荡器法、相频曲线法和伯德图等。

这些方法通过测量输入输出之间的幅度和相位差来评估系统的稳定性。

3.3 状态空间法状态空间法是一种基于系统的状态方程进行稳定性分析的方法。

通过将系统的状态方程转化为特征方程,可以分析特征根的位置来判断系统的稳定性。

状态空间法具有较强的灵活性,可以应用于复杂的多变量系统。

第六讲 机电系统的稳定性及稳定性判据

第六讲  机电系统的稳定性及稳定性判据

改变了一次,故系统在s1 右半平面有一个根。因此,系 统在垂直线 s = 1的右边有一个根。
根轨迹判稳:
R(s)
-
K
C(s)
s(0.5s 1)
(s)

s2

K* 2s
K*
s1,2 1
1 K*
令K*(由0到∞ )变动,s1、s2在s平面的移动
轨迹即为根轨迹。
K* 0, s1 0, s2 2 K* 1, s1 1, s2 1 K* 2, s1 1 j, s2 1 j K* 5, s1 1 2 j, s2 1 2 j
(2)从对数相频特性来看, G(j)平面上的负实轴,对应 于对数相频特性上的()=-180°。
(3) (-1,j0)点的向量表达式为1∠-180°,对应于波德 图上穿过0分贝线,并同时穿过()=-180°的点。
2019年11月10日
EXIT
第5章第25页
2、穿越在波德图上的含义 (1)穿越:在L()>0dB的频率
2019年11月10日
EXIT
第5章第18页
简化奈奎斯特稳定判据
1. 绘制由0变到+ 时的开环幅相频率特性G(j) 由0变到+ 时的开环幅相频率特性 G(j) 顺时针包
围(-1,j0)点的圈数为 N , 已知系统开环右极点数为 P ,则系统闭环右极点个数
为 Z (不包括虚轴上的极点):
例6-1 设有下列特征方程 D(s) = s4 +2s3 + 3s2 + 4s + 5 = 0,试用劳斯判据判别该特征 方程的正实部根的数目。
解:劳斯表
s4
1
35
s3 2
4

线性系统的稳定性分析与判据

线性系统的稳定性分析与判据

线性系统的稳定性分析与判据稳定性是线性系统分析中的重要概念,它描述了系统在输入和干扰下的响应是否趋于有界。

稳定性分析和判据在控制工程、通信工程等领域具有广泛的应用。

本文将介绍线性系统稳定性的基本概念、分析方法和判据。

一、线性系统稳定性的基本概念线性系统由一组线性方程表示,可用状态空间模型描述。

在进行稳定性分析之前,我们先来了解一些基本概念。

1. 输入与输出:线性系统接收一个或多个输入信号,并产生相应的输出信号。

输入和输出可以是连续的信号或离散的序列。

2. 状态:系统的状态是指能够完全描述系统行为的一组变量。

状态可以是连续的或离散的,通常用向量表示。

3. 零状态响应与完全响应:零状态响应是指系统在无外部输入的情况下的输出。

完全响应是指系统在有外部输入的情况下的输出。

4. 稳定性:一个线性系统是稳定的,当且仅当其任何有界的输入所产生的响应也是有界的。

如果系统输出在有界输入下有界,我们称系统是BIBO(Bounded-Input, Bounded-Output)稳定的。

二、系统稳定性的分析方法稳定性分析主要通过判定系统的特征值来实现。

系统的特征值决定着系统的响应特性,在稳定性分析中起着关键作用。

1. 特征值分析:特征值是描述系统动态特性的重要指标。

对于连续系统,特征值是状态方程的解的指数项;对于离散系统,特征值是状态方程的解的系数。

通过计算特征值,可以判断系统的稳定性。

2. 极点分析:极点是特征值的实部和虚部共同确定的。

稳定系统的特征值的实部都小于零,不稳定系统至少有一个特征值的实部大于零。

3. 频域分析:稳定性分析还可以通过频域方法进行。

常见的频域分析方法包括幅频响应法和相频响应法。

通过分析系统的频率特性,我们可以得到系统的稳定性信息。

三、线性系统稳定性的判据除了特征值分析和频域分析,我们还可以利用一些判据来判断系统的稳定性。

1. Nyquist准则:Nyquist准则是常用的稳定性判据之一。

通过计算系统的传递函数在复平面上的闭合轨迹,可以判断系统的稳定性。

自动控制原理总结之判断系统稳定性方法

自动控制原理总结之判断系统稳定性方法

自动控制原理总结之判断系统稳定性方法判断系统稳定性是控制理论研究中的重要内容,正确判断系统的稳定性对于设计和实施控制策略非常关键。

在自动控制原理中,常见的判断系统稳定性的方法主要包括根轨迹法、频率响应法和状态空间法等。

根轨迹法是一种基于系统传递函数的方式来判断系统稳定性的方法。

通过分析系统传递函数的极点和零点的分布,在复平面上绘制出根轨迹图来描述系统特性。

根轨迹图上的点表示系统传递函数的闭环极点位置随控制参数变化的轨迹,通过观察根轨迹图,可以判断系统的稳定性。

一般来说,当根轨迹图上所有的闭环极点都位于左半平面时,系统是稳定的;而如果存在闭环极点位于右半平面,系统就是不稳定的。

此外,根轨迹法还可以通过分析根轨迹图的形状、离散角和角度条件等来进一步评估系统的稳定性。

频率响应法是一种基于系统的频率特性来判断稳定性的方法。

通过分析系统的频率响应曲线,可以得到系统的增益和相位信息,进而判断系统的稳定性。

在频率响应法中,常见的评估指标有增益裕度和相位裕度。

增益裕度表示系统增益与临界增益之间的差距,而相位裕度则表示系统相位与临界相位之间的差距。

一般来说,增益裕度和相位裕度越大,系统的稳定性就越好。

根据增益裕度和相位裕度的要求,可以设计合适的控制器来保证系统的稳定性。

状态空间法是一种基于系统状态方程来判断稳定性的方法。

在状态空间表示中,系统的动态特性由一组一阶微分方程组表示。

通过求解状态方程的特征值,可以得到系统的特征根。

一般来说,当系统的特征根都位于左半平面时,系统是稳定的;而如果存在特征根位于右半平面,系统就是不稳定的。

此外,状态空间法可以通过观察系统的可控和可观测性来进一步判断系统稳定性。

当系统可控和可观测时,系统往往是稳定的。

除了以上几种常见的判断系统稳定性的方法外,还有一些其他的方法,如Nyquist稳定性判据、Bode稳定性判据、李雅普诺夫稳定性判据等。

这些方法各有特点,常常根据具体的系统和问题选择合适的方法来判断稳定性。

自控判断稳定性4种方法

自控判断稳定性4种方法
从闭环系统的零、极点来看,只要闭环系统的特征方程的根都分布在s平面的左半平面,系统就是稳定的。
1、劳斯判据——判定多项式方程在S平面的右半平面是否存在根的充要判据。——特征方程具有正实部根的数目与劳斯表第一列中符号变化的次数相同。
2、奈奎斯特判据——利用开环频率的几何特性来判断闭环系统的稳定性和稳定性程度,更便于分析开环参数和结构变化对闭环系统瞬态性能影响。——利用幅角原理——Z、P分别为右半平面闭环、开环极点,要想闭环系统稳定,则Z=P+N=0,其中N为开环频率特性曲线GH(jw)顺时针绕(-1,j0)的圈数。
4、根轨迹——系统开环传递函数的某一参数变化造成闭环特征根在根平面上变化的轨迹。
——增加开环零点,根轨迹左移,提高相对稳定性,改善动态性能。零点越靠近虚轴影响越大。
——增加开环极点,根轨迹右移,不利于系统稳定和动态性能。
低频段——稳态误差有关。L(w)在低频段常见频率为[-20]、[-40],也就是一阶或二阶无差(v=Байду номын сангаас/v=2)
中频段——截止频率附近的频段,与系统的瞬态性能有关。为了具有合适的相位裕度(30~60),L(w)在中频段穿过0分贝线的斜率应为[-20],并且具有足够的宽度。
高频段——抗高频干扰能力。高频段闭环频率特性近似于开环频率特性,高频段幅值分贝越小,则抑制高频信号衰落的作用越大,抗高频干扰越强。L(w)在高频段应具有较大的负斜率。
3、波特图——幅值裕度——系统开环频率特性相位为-180时(穿越频率),其幅值倒数K,意义为闭环稳定系统,如果系统的开环传递系数再增大K倍,系统临界稳定。
——相位裕度——系统开环频率特性的幅值为1时(截止频率),其相位与180之和。意义为:闭环稳定系统,如果系统开环频率特性再滞后r,系统进入临界稳定。

自动控制原理地的总结之判断系统稳定性方法

自动控制原理地的总结之判断系统稳定性方法
解:W:
幅值趋于0,相角趋于-270°。
N=-1,P=0,Z=P-2N=2
故闭环系统不稳定。
2、对数频率判定系统稳定性
在截止频率之前,在对数幅频曲线L(W)>0.对应的频率范围对应的相角是否穿越 -180°
在V≠0时,也需要做增补线,从对数相频特性曲线上 处开始,用虚线向上补90°角(补到0°或180°)
例:已知系统的开环传递函数为 试用对数频率稳定判据判别系统闭环的稳定性。
解:
N=(N+)-(N-)=0-0=P/2
例1:已知系统特征方程为
判别系统是否稳定,若不稳定,求不稳定根的数目。
解:根据特征方程可知,其各项系数均为正。
列写劳思计算表并计算得:
当ε →0时, 故第一列有两次变号,系统特征方程有两个正根,系统不稳定。
例2:已知控制系统的特征方程为
试判定系统的稳定性。
解:根据系统的特征方程可知,其各项系数均为正。
(-1,j0)的圈ຫໍສະໝຸດ N,得到闭环传递函数在S平面的极点的个数Z
P通过G(S)可知 N:顺时针为负,逆时针为正
当V≠0时,需要做增补线 W:0
从幅相曲线 位置开始沿逆时针方向画 V×90°的圆弧增补线(理论半径为 ) 计算圈数时要包括所画圆弧的增补线在内。
例:某单位负反馈系统的开环传递函数为
试用奈氏判据判别闭环稳定性。
(b)实轴上 为根轨迹段
(c)渐近线的夹角与坐标:
(d)分离点坐标d:
解得 d1= -0.423
d2= -1.58 (舍去)因为d2不在根轨迹上
(e)与虚轴的交点坐标:
令S=jw 代入到式中得:
解得:

根轨迹图如下所示:
三、频率特性

第5章控制系统的稳定性分析

第5章控制系统的稳定性分析

设系统闭环传递函数为
Y (s) X (s)
bm sm an s n
bm1sm1 an1sn1
则系统的特征方程为
b1s b0 a1s a0
ansn an-1sn-1 a1s a0 0
(5-5)
例 某单位反馈系统的开环传递函数 G(s) k
则系统的闭环传递函数
s(Ts 1)
(5-7)
a0
an
s1s2 s3 s4
sn2 sn1sn
从式(5-7)可知,要使全部特征根s1, s2,···, sn-1,sn均具有负实部,就必须满足以下两个条件:
(1)特征方程的各项系数ai(i=0,1,2, ···,n) 都不等于零。因为若有一个系数为零,则必出 现实部为零的特征根或实部有正有负的特征根, 才能满足式(5-7) 。此时系统为临界稳定(根 在虚轴上)或不稳定(根的实部为正)。
均不为零。
2. 特征方程的各项系数ai符号一致。
以上只是判定系统稳定的必要条件,而非充要条件, 因为此时还不能排除有不稳定根的存在。
罗斯稳定判据可以用来校验特征方程是否满足系 统稳定的充分条件。罗斯判据的证明比较麻烦, 这里只介绍它的应用。
特征方程系数的罗斯阵列如下:
sn an an-2 an-4 an-6
图示小球处在a点时,是稳定平衡点,因为作用 于小球上的有限干扰力消失后,小球总能回到a 点,而小球处于b、c点时为不稳定平衡点, 因 为只要有干扰力作用于小球,小球便不再回到 点b或c点。
c
b
a 小球的稳定性
上述两个实例说明系统的稳定性反映在干扰消 失后的过渡过程的性质上。这样,在干扰消失 的时刻,系统与平衡状态的偏差可以看作是系 统的初始偏差。

自动控制原理总结之判断系统稳定性方法

自动控制原理总结之判断系统稳定性方法

判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式;21231425310000000000000000a a a a a a a a a a a a a n nn n n n n n n n n--------=∆当主行列式及其对角线上的各子行列式均大于零时,即00031425313231211>∆>=∆>=∆>=∆-----------n n n n n n n n n n n n n n a a a a a a a a a a a a a则方程无正根,系统稳定。

赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。

例;若已知系统的特征方程为0516188234=++++s s s s试判断系统是否稳定。

解:系统特征方程的各项系数均为正数。

根据特征方程,列写系统的赫尔维茨行列式。

5181016800518100168=∆由△得各阶子行列式;8690017281685181016801281811680884321>=∆=∆>==∆>==∆>==∆各阶子行列式都大于零,故系统稳定。

2、 劳思判据(1)劳思判据充要条件:A 、系统特征方程的各项系数均大于零,即a i >0;B 、劳思计算表第一列各项符号皆相同。

满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。

(2)劳思计算表的求法:A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:111212432134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n n----------B 、计算劳思表176131541213211-------------=-=-=n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b系数b i 的计算要一直进行到其余的b i 值都等于零为止。

系统稳定性判别方法

系统稳定性判别方法

于无穷远处。
举例如题,G(S)
K S(S 1)
,起点:0,-1,无零点,n=2,
m=0,n-m=2,有两条根轨迹→∞
21
三.根轨迹的分支数
根轨迹由若干分支构成,分支数与开环极点数相同。
四.实轴上的根轨迹
在实轴上存在根轨迹的条件是,其右边开环零 点和开环极点数目之和为奇数。
22
五.根轨迹的渐近线
1.根轨迹中(n-m)条趋向无穷远处的分支的 渐近线的倾角为
s2 u1 u2
b1
a1a2a0a3 a1
b2a1a4a0a5 a1
b3a1a6a0a7 a1
c1
b1a3a1b2 b1
b1a5a1b3 c2 b1
c3
b1a7a1b4 b1
......
......
...... ...... ...... ...... ......
s1 替
v1
若某行第一个s n 元素为0,则用一个趋于0的数ε代
3
劳斯稳定性判据 代数稳定性判据
赫尔维兹稳定性判据
劳斯稳定性判据是一种代数判据方法。它是根据系统特征方程 式来判断特征根在S平面的位置,从而决定系统的稳定性. 判断依据:1、特征方程的各项系数都不等于0;
2、特征方程各项系数符号相同; 3、劳斯表的第一列是否均大于零。
4
sn a0 a2 a4 a6 ..... sn-1 a1 a3 a5 a7 ....... sn-2 b1 b2 b4 b6 ....... sn-3 c0 c2 c4 c6 ........
伯德图是系统频率响应的一种图示方法,由幅值图和相角图组 成,两者都按频率的对数分度绘制
判断方法:在开环状态下,特征方程有P个根在右半平面内。 此时,在L(ω)≥0的范围内,相频特性曲线ɸ(ω)在-π线上正、 负穿越次数只差为P/2次,则闭环系统是稳定的。

系统的稳定性常见判据

系统的稳定性常见判据
实验? 如果不稳定,可能导致严重后果
思路:
①特征方程→根的分布(避免求解) ②开环传递函数→闭环系统的稳定性
(开环极点易知,闭环极点难求)
稳定判据
二、Routh (劳斯)稳定判据
——代数判据(依据根与系数的关系判断根的分布)
1. 系统稳定的必要条件
设系统特征方程为: D(s) ansn an1sn1 a1s a0 0
s3
2 n
(
s
K
)
2
n s 2
2 n
s
K
2 n
特征方程:
D(s)
s3
2
ns2
2 n
s
K
2 n
0
即: D(s)=s3+34.6s2+7500s+7500K=0
由系统稳定的充要条件,有
s3
1
7500 0
s2
34.6
7500K 0
s1 34.6 7500 7500K
0
34.6
s0
7500K
0
(1) 7500K>0,亦即K>0。显然,这就是由必要条件所 34.6 7500 7500K 0
① 确定P
② 作G(j)H(j)的Nyquist图 ③ 运用判据
三、Nyquist 稳定判据
例1
三、Nyquist 稳定判据
例2 G(s)H (s)
(T12 s2
K (Ta s 1)(Tb s 1)
2T1s 1)(T2s 1)(T3s
1)
P=1
开环不稳定, 闭环稳定
三、Nyquist 稳定判据
② LF包围原点的圈数 = LGH包围(-1,j0)点的圈数 N=Z-P
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自由响应收敛,系统稳定 2) 若有任一sk具有正实部(位于[s]平面的右半平面)
l i me
t sk t

n n si t si t A1i e A2 i e lim t i 1 i 1
自由响应发散,系统不稳定
2. 系统稳定条件
3) 若有特征根sk =±jω(位于[s]平面的虚轴上),其余极点 位于[s]平面的左半平面
如果不稳定,可能导致严重后果
①特征方程→根的分布(避免求解)
②开环传递函数→闭环系统的稳定性
(开环极点易知,闭环极点难求)
稳定判据
二、Routh (劳斯)稳定判据
——代数判据(依据根与系数的关系判断根的分布)
1. 系统稳定的必要条件
设系统特征方程为: D( s) an s n an1 s n1 a1 s a0 0
第六章

系统的稳定性
——系统能正常工作的首要条件
系统的稳定性与稳定条件 Routh(劳斯)稳定判据 Nyquist 稳定判据 Bode稳定判据 系统的相对稳定性
一、系统的稳定性与稳定条件
1. 系统不稳定现象
例:液压位置随动系统
原理: 外力→阀芯初始位移Xi(0)→阀口2、4打开
→活塞右移→阀口关闭(回复平衡位置)
n
或: an>0, an-1>0, … , a1>0, a0>0
二、Routh (劳斯)稳定判据
2. 系统稳定的充要条件
特征方程: D( s) an s n an1 s n1 a1 s a0 0
s
n
an
an 2 an 3 A2 B2 D2
an 4 an 5 A3 B3
n n si t si t jt lim A e A e A e 1i 2i k t i 1 i 1
简谐运动
自由响应等幅振动,系统临界稳定
4) 若有特征根sk =0(位于[s]平面的原点),其余极点位于[s]
平面的左半平面
Ak e sk t Ak
收敛(回复平衡位置)
发散(偏离越来越大)
2. 系统稳定条件
线性定常系统:
( n) ( n1) o(t ) a0 xo(t ) xi(t ) anxo (t ) an 1 xo (t ) a1 x
自由响应
强迫响应
n
xo( t ) A1i e
i 1
n
si t
A2 i e si t B( t )
an 6 an 7 A4 B4
其中:
a n 1a n 2 a n a n 3 a n 1 a a an an 5 A2 n1 n 4 a n 1 a a an an 7 A3 n 1 n 6 a n 1 A1

B1 B2 B3 A1a n 3 a n 1 A2 A1 A1a n 5 a n 1 A3 A1 A1a n 7 a n 1 A4 A1
1 19 30 s4 1 11 0 s 3 1 ( 19) 1 11 30 30 0 (改变符号一次) s2 1 s 1 ( 30) 11 1 30 12 0 0 (改变符号一次) 0 30 s 30 0 0
i 1
(
比较系数:
n a n 1 si , an i 1
i j i 1, j 2
s s )s
n
( 1)
n
s
i 1
n
i
an 3 an
i jk i 1, j 2 , k 3
s s s
i
n
j k
,
s s i j i j i 1, j 2 n a0 n ( 1) si an i 1 an 2 an
→(惯性)活塞继续右移→阀口1、3开启→活塞左移→ 平衡位置 →(惯性)活塞继续左移→阀口2、4开启…… ① 随动:活塞跟随阀芯运动 ② 惯性:引起振荡 ③ 振荡结果: ③ 增幅振荡 ① 减幅振荡 ② 等幅振荡 (收敛,稳定) (临界稳定) (发散,不稳定)
一、系统的稳定性与稳定条件
结论:
1. 系统是否稳定,取决于系统本身(结构,参数), 与输入无关 2. 不稳定现象的存在是由于反馈作用 3. 稳定性是指自由响应的收敛性 定义: 系统在初始状态作用下 输出 (响应) 无输入时的初态 输入引起的初态 系统稳定 系统不稳定
i 1
系统的初态引 起的自由响应
输入引起的 自由响应
si:系统的特征根
2. 系统稳定条件
1) 当系统所有的特征根si(i=1,2,…,n)均具有负实部(位 于[s]平面的左半平面)
n n si t si t lim A e A e 1i 2i 0 t i 1 i 1
sn a n 1 n 1 a a s 1 s 0 ( s s1 )(s s2 )( s sn ) an an an
n n n 1
s1,s2,…,sn:特征根
n 2 i j
因为
( s s1 )(s s2 )( s sn ) s ( si ) s
n n si t si t A1i e A2 i e lim Ak t i 1 i 1
自由响应收敛于常值,系统稳定
2. 系统稳定条件
结论:线性定常系统是否稳定,完全取决于系统的
特征根。
如何判别? 求出闭环极点? 实验? 思路:
①高阶难求 ②不必要
s n 1 a n 1 s n 2 A1 s n 3 B1 s s
2
D1 E1 F1
s1
0
Routh 判据:Routh表中第一列各元符号改变的次数等于系统特 征方程具有正实部特征根的个数。因此,系统稳定 的充要条件是Routh表中第一列各元的符号均为正, 且值不为零。
例1 系统的特征方程 D(s)=s4+s3-19s2+11s+30=0
相关文档
最新文档