一个经典的ansys热分析实例(流程序)

合集下载

热分析(ansys教程)

热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模、材料和网格•分析求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。

2、施加载荷计算①、定义分析类型●如果进行新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为自由度约束施加于温度已知的边界上。

Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。

如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。

注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。

此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。

Ansys模拟水结冰的热分析过程

Ansys模拟水结冰的热分析过程

Ansys模拟水结冰的热分析过程一、问题描述:对一茶杯水的结冰过程进行分析,水和茶杯的初始温度为0℃,环境温度为-10℃,杯子侧面和顶面的对流换热系数为12.5W/m^2·℃,杯子放在桌面上,假设桌面可以对杯子底面提供-10℃的温度载荷。

计算3000s之后的温度分布。

模型如下:茶杯底面外径54.41mm,内径50mm,高度85mm,顶面内径60mm,抽壳厚度为5mm(内部水的高度80mm)。

分析采用SI单位制,水的材料属性如下:导热率:0.6密度:1000比热容:4200/prep7!进入前处理模块et,1,70!定义70单元mp,kxx,1,0.6!设置材料属性mp,c,1,4200mp,dens,1,1000mptemp,1,-10,-1,0,10mpdata,enth,1,1,0,37.8e6,79.8e6,121.8e6!焓值定义mp,kxx,2,70mp,dens,2,7833mp,c,2,448这里定义1号材料为水,2号材料为茶杯3、定义参数r1=50e-3r2=60e-3r3=54.41e-3r4=65e-3h1=80e-3h2=85e-34、建模wprot,,-90!旋转工作平面/pnum,volu,1!打开体积显示/view,1,1,1,1!Iso视角cone,r1,r2,0,h2,0,90!建立水的1/4圆台模型cone,r3,r4,0,h2,0,90!建立茶杯轮廓模型wpoff,,,h2-h1!移动工作平面vsbw,all!用工作平面切割体,方便扫掠划分网格vovlap,all!对体进行叠分操作vglue,all!对体进行粘接操作numcmp,all!压缩所有编号wpcsys,-1,0!工作平面回归原点/replot!重新显示5、对体赋予材料属性vsel,,,,1,3!体积1到3vatt,2,,1!赋予2号材料属性vsel,,,,4!体积4vatt,1,,1!赋予1号材料属性Allsel!选择所有/pnum,mat,1!打开材料编号显示Vplot!模型显示模型显示如上,紫色部分为茶杯,材料属性2 6、分网esize,2.5e-3!单元尺寸2.5e-3vsweep,all!扫掠划分网格划分如上,可见网格密度还是可以接受的。

ANSYS流体与热分析第10章热分析典型工程实例

ANSYS流体与热分析第10章热分析典型工程实例

第10 章热分析典型工程实例本章要点拉伸特征旋转特征扫掠特征混合特征孔特征壳特征本章案例某型号手机电池的散热分析冷库复合隔热板热量流动分析电子元器件散热装置温度分析10.1 工程实例1——某型号手机电池的散热分析该算例为某型手机电池的散热分析,如图10-1为某型号手机背面的照片,图中可见手机的电池的位置。

在手机工作时,电池可向外传递热量。

使用手机的读者应该都体会过手机电池发热的现象,特别是在长时间接打电话时,这种现象尤为明显。

本实例对某型号手机进行分析,电池的标准电压为3.7V,电池容量为750mAh。

试求手机开机状态下外壳的温度分布。

手机的各部分材料性能参数如表10.1所示。

图10-1 手机背面照片在计算分析过程中我们将手机看做三个组成部分:塑料外壳、手机内部材料和手机电池。

忽略手机内部线路和芯片,可以将手机电池看做唯一热源。

简化后的手机模型如图10-2所示,图中单位均为cm。

本实例拟采用Solid Tet 10node 87单元进行分析。

由于电池功率和环境温度均可视为恒定不变,因此分析类型为稳态。

图10-2 简化后的手机模型由电池的电压和电流可以算得电池的功率:==⨯=P UI 3.70.75 2.775W电池的体积为:3=⨯⨯=V0.040.010.050.00002m电池的发热量:3==Q P/V138750W/m——附带光盘“Ch10\实例10-1_start”——附带光盘“Ch10\实例10-1_end”——附带光盘“A VI\Ch10\10-1.avi”1、定义分析文件名1、选择Utility Menu>File>Change Jobname,在弹出的单元增添对话框中输入Example10-1,然后点击OK按钮。

2、选择Main Menu>Preferences,弹出Preferences for GUI Filtering对话框,点选Thermal复选框,单击OK按钮关闭该对话框。

ansys热分析实例教程

ansys热分析实例教程

Temperature distribution in a CylinderWe wish to compute the temperature distribution in a long steel cylinder with inner radius 5 inches and outer radius 10 inches. The interior of the cylinder is kept at 75 deg F, and heatis lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F and the thermal conductivity for steel is 0.69 BTU/hr-in-F.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. Recognize symmetry of the problem, and a quadrant of a section through the cylinder is created using ANSYS area creation tools. Preprocessor -> Modeling -> Create -> Areas -> Circle -> Partial annulusThe following geometry is created.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Thermal Solid -> Solid 8 node 77 -> OK -> Close5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area and refine using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the convection coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesTo account for symmetry, select the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperaturesThe temperature on the interior is 75 F and on the outside wall it is found to be 45. These results can be checked using results from heat transfer theory.BackThermal Stress of a Cylinder using Axisymmetric ElementsA steel cylinder with inner radius 5 inches and outer radius 10 inches is 40 inches long and has spherical end caps. The interior of the cylinder is kept at 75 deg F, and heat is lost on the exterior by convection to a fluid whose temperature is 40 deg F. The convection coefficient is 0.56 BTU/hr-sq.in-F. Calculate the stresses in the cylinder caused by the temperature distribution.The problem is solved in two steps. First, the geometry is created, the preference set to'thermal', and the heat transfer problem is modeled and solved. The results of the heat transfer analysis are saved in a file 'jobname.RTH' (Results THermal analysis) when you issue a save jobname.db command.Next the heat transfer boundary conditions and loads are removed from the mesh, the preference is changed to 'structural', the element type is changed from 'thermal' to 'structural', and the temperatures saved in 'jobname.RTH' are recalled and applied as loads.1. Start ANSYS and assign a job name to the project. Run Interactive -> set working directory and jobname.2. Preferences -> Thermal will show -> OK3. A quadrant of a section through the cylinder is created using ANSYS area creation tools.4. Preprocessor -> Element Type -> Add/Edit/Delete -> Add -> Solid 8 node 77 -> OK ->Options -> K3 Axisymmetric -> OK5. Preprocessor -> Material Props -> Isotropic -> Material Number 1 -> OKEX = 3.E7 (psi)DENS = 7.36E-4 (lb sec^2/in^4)ALPHAX = 6.5E-6PRXY = 0.3KXX = 0.69 (BTU/hr-in-F)6. Mesh the area using methods discussed in previous examples.7. Preprocessor -> Loads -> Apply -> Temperatures -> NodesSelect the nodes on the interior and set the temperature to 75.8. Preprocessor -> Loads -> Apply -> Convection -> LinesSelect the lines defining the outer surface and set the coefficient to 0.56 and the fluid temp to 40.9. Preprocessor -> Loads -> Apply -> Heat Flux -> LinesSelect the vertical and horizontal lines of symmetry and set the heat flux to zero.10. Solution -> Solve current LS11. General Postprocessor -> Plot Results -> Nodal Solution -> TemperatureThe temperature on the interior is 75 F and on the outside wall it is found to be 43.12. File -> Save Jobname.db13. Preprocessor -> Loads -> Delete -> Delete All -> Delete All Opts.14. Preferences -> Structural will show, Thermal will NOT show.15. Preprocessor -> Element Type -> Switch Element Type -> OK (This changes the element to structural)16. Preprocessor -> Loads -> Apply -> Displacements -> Nodes(Fix nodes on vertical and horizontal lines of symmetry from crossing the lines of symmetry.)17. Preprocessor -> Loads -> Apply -> Temperature -> From Thermal AnalysisSelect Jobname.RTH (If it isn't present, look for the default 'file.RTH' in the root directory)18. Solution -> Solve Current LS19. General Postprocessor -> Plot Results -> Element Solution - von Mises StressThe von Mises stress is seen to be a maximum in the end cap on the interior of the cylinder and would govern a yield-based design decision.Back。

ANSYS_热分析报告(两个实例)有限元热分析报告上机指导书

ANSYS_热分析报告(两个实例)有限元热分析报告上机指导书

第四讲 热分析上机指导书CAD/CAM 实验室,USTC实验要求:1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进展稳态热分析的根本过程,熟悉用直接耦合法、间接耦合法进展热应力分析的根本过程。

2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进展瞬态热分析的根本过程。

容1:冷却栅管问题问题描述:本实例确定一个冷却栅管〔图a 〕的温度场分布与位移和应力分布。

一个轴对称的冷却栅结构管为热流体,管外流体为空气。

冷却栅材料为不锈钢,特性如下:W/m ℃×109 MPa×10-5/℃边界条件:〔1〕管:压力:6.89 MPa流体温度:250 ℃对流系数249.23 W/m 2℃〔2〕管外:空气温度39℃对流系数:62.3 W/m 2℃假定冷却栅管无限长,根据冷却栅结构的对称性特点可以构造出的有限元模型如图b 。

其上下边界承受边界约束,管部承受均布压力。

练习1-1:冷却栅管的稳态热分析步骤:1. 定义工作文件名与工作标题1) 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【ChangeJobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。

2) 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。

3) 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> WindowOptions ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。

Ansys电机电磁(Maxwell)、热(Fluent)耦合分析流程演示文稿

Ansys电机电磁(Maxwell)、热(Fluent)耦合分析流程演示文稿

• 启动Maxwell
• 导入Maxwell文件后会形成一个Maxwell分析系统 • 启动Maxwell
• 双击Maxwell分析系统中的solution
ANSYell)、热(Fluent)耦合分析流程
• 更新Maxwell项目
•右键点击solution •选择Update
Stator
Shaft
ANSYS 中国
Magnets
Rotor
w2
电机电磁(Maxwell)、热(Fluent)耦合分析流程
• Fluent项目
•The Maxwell project contains a 3D mesh model of a ITRI motor •The setup of this motor has already been partially done •注意:考虑到设置效率,建议对Fluent的设置在Workbench外完成,特别是当网格是 四面体,并希望在FLUENT中转化为多面体网格时。在Workbench下Fluent的所有操作 都会被记录,并在重新打开时重新运行所有操作,非常费时。所以建议在Workbench 外将Fluent设置好,这样在Workbench内打开时较为节省时间。
• 由于此处采用现有的Maxwell项目,所以只需要在Workbench中导入即可。用户也 可以新建一个项目,并进行重新设置。
• 导入Maxwell文件 • 菜单栏 File > Import • 更改文件类型为Maxwell Project File (*.mxwl) • 通过导航确定输入文件的位置 • 选择文件“modified.mxwl” • Open打开
• 该教程已经提供了一个完整的CFD案例,并且已经设置好,此处只需要导入,并 设置损耗的映射即可。

Ansys-第36例--热应力分析(间接法)实例—液体管路

Ansys-第36例--热应力分析(间接法)实例—液体管路

第36例热应力分析(间接法)实例一液体管路本例介绍了利用间接法进行热应力计算的方法和步骤:首先进行热分析得到结构节点温度分布,然后把温度作为载荷施加到结构上并进行结构分析。

36.1概述利用间接法计算热应力,首先进行热分析,然后进行结构分析。

热分析可以是瞬态的,也可以是稳态的,需要将热分析求得的节点温度作为体载荷施加到结构上。

当热分析是瞬态的时,需要找到温度梯度最大的时间点,并将该时间点的结构温度场作为体载荷施加到结构上。

由于•间接法可以使用所有热分析和结构分析的功能,所以对「•大多数情况都推荐使用该方法。

间接法进行热应力计算的主要步骤如下。

热分析瞬态热分析的过程在前例已经介绍过,下面介绍稳态热分析。

稳态热分析用于研究稳定的热载荷对结构的影响,有时还用于瞬态热分析时计算初始温度场。

稳态热分析主要步骤如bo1.建模稳态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。

但需注意的是:稳态热分析必须定义材料的导热系数。

2.施加载荷和求解⑴指定分析类型。

Main Menu-*Solution-*Analysis Type~*New Analysis,选择Static.⑵施加载荷。

nJ■以施加的载荷有恒定的温度、热流率、对流、热流密度、生热率,Main Menu-*Solution-*Define Loadsf Apply—Thermal.(3)设置载荷步选项。

普通选项包括时间〔用于定义载荷步和子步)、每一载荷步的子步数,以及阶跃选项等,Main Menu-*Solution-*Load Step Opts—k Time/Frequenc->Time->Time Step.非线性选项包括:一迭代次数(默认25), Main Menu-*Solution-*Load Step Opts-* Nonlinear-* Equilibrium Iter;翻开自动时间步长,Main Menu-*Solution-* Load Step Opts —Time/Frequenc—Time—Time Step 等.图36-11转换单元类型对话框设定单元轴对称选项拾取菜单Main Menu —Preprocessor—Element Type —Add/Edit/Delete 弹出“ElementTypes”对话框,单击其“Options”按钮,弹出如图36-12所示的对话框,选择“K3”下拉列表框为“Axisymmetric",单击“0K"按钮,然后单击"Element Types M对话框的“Close"按钮。

ANSYS瞬态热分析教程及实例[高级课件]

ANSYS瞬态热分析教程及实例[高级课件]
如果需要知道系统受随时间变化(或不变)的载荷和边 界条件时的响应,就需要进行“瞬态分析” 。
QUST
2
严选内容
4. 瞬态传热分析
QUST
3
严选内容
5. 瞬态传热分析
ANSYS 缺省是渐进加载的。渐进加载可以提 高瞬态求解的适应性,如果有非线性时可以提 高收敛性。
QUST
4
严选内容
5. 瞬态传热分析
Apply > Structural > Temperature > Uniform Temp
如果已知模型的起始温度是均匀的,可设定所有节点 初始温度。
严选内容
QUST
12
2. 设定参考温度 命令:TREF GUI:Main Menu > Solution > Define Loads
> Settings > Reference Temp
定义比热容;施加瞬态热载荷;设置瞬态热载荷 分析选项;显示模型温度等值线图;显示节点温 度随时间变化曲线。
严选内容
QUST
23
严选内容
QUST
24
长方形的板,几何参数及其边界条件如图3-6 所示。板的宽度为5cm,其中间有一个半径为 1cm 的圆孔。板的初始温度为20℃,将其右 侧突然置于温度为20℃且对流换热系数为 100W/M2℃的流体中,左端置于温度为500℃ 的温度场,试计算:
严选内容
QUST
29
定义密度
GUI:Main Menu > Preprocessor > Material Props > Thermal > Density
在弹出密度定义对话框中的DENS栏键入 “5000”。

ANSYS流体与热分析第10章热分析典型工程实例

ANSYS流体与热分析第10章热分析典型工程实例

第10 章热分析典型工程实例本章要点拉伸特征旋转特征扫掠特征混合特征孔特征壳特征本章案例某型号手机电池的散热分析冷库复合隔热板热量流动分析电子元器件散热装置温度分析10.1 工程实例1——某型号手机电池的散热分析该算例为某型手机电池的散热分析,如图10-1为某型号手机背面的照片,图中可见手机的电池的位置。

在手机工作时,电池可向外传递热量。

使用手机的读者应该都体会过手机电池发热的现象,特别是在长时间接打电话时,这种现象尤为明显。

本实例对某型号手机进行分析,电池的标准电压为3.7V,电池容量为750mAh。

试求手机开机状态下外壳的温度分布。

手机的各部分材料性能参数如表10.1所示。

图10-1 手机背面照片在计算分析过程中我们将手机看做三个组成部分:塑料外壳、手机内部材料和手机电池。

忽略手机内部线路和芯片,可以将手机电池看做唯一热源。

简化后的手机模型如图10-2所示,图中单位均为cm。

本实例拟采用Solid Tet 10node 87单元进行分析。

由于电池功率和环境温度均可视为恒定不变,因此分析类型为稳态。

图10-2 简化后的手机模型由电池的电压和电流可以算得电池的功率:==⨯=P UI 3.70.75 2.775W电池的体积为:3=⨯⨯=V0.040.010.050.00002m电池的发热量:3==Q P/V138750W/m——附带光盘“Ch10\实例10-1_start”——附带光盘“Ch10\实例10-1_end”——附带光盘“A VI\Ch10\10-1.avi”1、定义分析文件名1、选择Utility Menu>File>Change Jobname,在弹出的单元增添对话框中输入Example10-1,然后点击OK按钮。

2、选择Main Menu>Preferences,弹出Preferences for GUI Filtering对话框,点选Thermal复选框,单击OK按钮关闭该对话框。

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程和实例ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:前处理:建模、材料和⽹格分析求解:施加载荷计算后处理:查看结果1、建模①、确定jobname、title、unit;②、进⼊PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,⼀般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建⼏何模型并划分⽹格,请参阅《ANSYS Modeling and Meshing Guide》。

2、施加载荷计算①、定义分析类型●如果进⾏新的热分析:Command: ANTYPE, STATIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上⼀次分析,⽐如增加边界条件等:Command: ANTYPE, STATIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件) :a、恒定的温度通常作为⾃由度约束施加于温度已知的边界上。

Command Family: DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperatureb、热流率热流率作为节点集中载荷,主要⽤于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输⼊的值为正,代表热流流⼊节点,即单元获取热量。

如果温度与热流率同时施加在⼀节点上则ANSYS读取温度值进⾏计算。

注意:如果在实体单元的某⼀节点上施加热流率,则此节点周围的单元要密⼀些,在两种导热系数差别很⼤的两个单元的公共节点上施加热流率时,尤其要注意。

此外,尽可能使⽤热⽣成或热流密度边界条件,这样结果会更精确些。

稳态热分析案例(ANSYS 15.0版)

稳态热分析案例(ANSYS 15.0版)

本例题的主要部分为一个圆筒形罐,其上沿径向有一材料一样的接管(如图????所所示),罐内流动着450°F(232°C)的高温流体,接管内流动着100°F(38 °C)的低温流体,两个流体区域由薄壁管隔离。

罐的对流换热系数为250Btu/hr-ft2-o F(1420watts/m2-°K),接管的对流换热系数随管壁温度而变,它的热物理性能如表???所示。

要求计算罐与接管的温度分布。

表????6.5.1 预处理Step 1: 确定分析标题起动ANSYS后,开始一个分析,需要输入一个标题,按下面方法进行操作:1.选择Utility Menu> File> Change Title,弹出相应对话框2.输入 Steady-state thermal analysis of pipe junction。

3.点击OK。

Step 2: 设置分析单位系统You need to specify units of measurement for the analysis. For this pipe junction example, measurements use the U. S. Customary system of units (based on inches).To specify this, type the command /UNITS,BIN in the ANSYS Input window and press ENTER.在分析之前,需要为分析系统设定单位系统,Step 3: Define the Element TypeThe example analysis uses a thermal solid element. To define it, do the following:1.Choose Main Menu> Preprocessor> Element Type> Add/Edit/Delete. TheElement Types dialog box appears.2.Click on Add. The Library of Element Types dialog box appears.3.In the list on the left, scroll down and pick (highlight) "Thermal Solid." In thelist on the right, pick "Brick20node 90."4.Click on OK.5.Click on Close to close the Element Types dialog box.Step 4: Define Material PropertiesTo define material properties for the analysis, perform these steps:1.Choose Main Menu> Preprocessor> Material Props> Material Models.The Define Material Model Behavior dialog box appears.2.In the Material Models Available window, double-click on the followingoptions: Thermal, Density. A dialog box appears.3.Enter .285 for DENS (Density), and click on OK. Material Model Number 1appears in the Material Models Defined window on the left.4.In the Material Models Available window, double-click on the followingoptions: Conductivity, Isotropic. A dialog box appears.5.Click on the Add Temperature button four times. Four columns are added.6.In the T1 through T5 fields, enter the following temperature values: 70, 200,300, 400, and 500. Select the row of temperatures by dragging the cursoracross the text fields. Then copy the temperatures by pressing Ctrl-c.7.In the KXX (Thermal Conductivity) fields, enter the following values, in order,for each of the temperatures, then click on OK. Note that to keep the unitsconsistent, each of the given values of KXX must be divided by 12. You canjust input the fractions and have ANSYS perform the calculations.8.35/128.90/129.35/129.80/1210.23/128.In the Material Models Available window, double-click on Specific Heat. Adialog box appears.9.Click on the Add Temperature button four times. Four columns are added.10.With the cursor positioned in the T1 field, paste the five temperatures bypressing Ctrl-v.11.In the C (Specific Heat) fields, enter the following values, in order, for each ofthe temperatures, then click on OK..113.117.119.122.12512.Choose menu path Material> New Model, then enter 2 for the new MaterialID. Click on OK. Material Model Number 2 appears in the Material ModelsDefined window on the left.13.In the Material Models Available window, double-click on Convection orFilm Coef. A dialog box appears.14.Click on the Add Temperature button four times. Four columns are added.15.With the cursor positioned in the T1 field, paste the five temperatures bypressing Ctrl-v.16.In the HF (Film Coefficient) fields, enter the following values, in order, foreach of the temperatures. To keep the units consistent, each value of HF must be divided by 144. As in step 7, you can input the data as fractions and letANSYS perform the calculations.426/144405/144352/144275/144221/14417.Click on the Graph button to view a graph of Film Coefficients vs.temperature, then click on OK.18.Choose menu path Material> Exit to remove the Define Material ModelBehavior dialog box.19.Click on SAVE_DB on the ANSYS Toolbar.Step 5: Define Parameters for Modeling1.Choose Utility Menu> Parameters> Scalar Parameters. The ScalarParameters window appears.2.In the window's Selection field, enter the values shown below. (Do not enterthe text in parentheses.) Press ENTER after typing in each value. If you makea mistake, simply retype the line containing the error.RI1=1.3 (Inside radius of the cylindrical tank)RO1=1.5 (Outside radius of the tank)Z1=2 (Length of the tank)RI2=.4 (Inside radius of the pipe)RO2=.5 (Outside radius of the pipe)Z2=2 (Length of the pipe)3.Click on Close to close the window.Step 6: Create the Tank and Pipe Geometry1.Choose Main Menu> Preprocessor> Modeling> Create> Volumes>Cylinder> By Dimensions. The Create Cylinder by Dimensions dialog boxappears.2.Set the "Outer radius" field to RO1, the "Optional inner radius" field to RI1,the "Z coordinates" fields to 0 and Z1 respectively, and the "Ending angle"field to 90.3.Click on OK.4.Choose Utility Menu>WorkPlane> Offset WP by Increments. The OffsetWP dialog box appears.5.Set the "XY, YZ, ZX Angles" field to 0,-90.6.Click on OK.7.Choose Main Menu> Preprocessor> Modeling> Create> Volumes>Cylinder> By Dimensions. The Create Cylinder by Dimensions dialog boxappears.8.Set the "Outer radius" field to RO2, the "Optional inner radius" field to RI2,the "Z coordinates" fields to 0 and Z2 respectively. Set the "Starting angle"field to -90 and the "Ending Angle" to 0.9.Click on OK.10.Choose Utility Menu>WorkPlane> Align WP with> Global Cartesian. Step 7: Overlap the Cylinders1.Choose Main Menu> Preprocessor> Modeling> Operate> Booleans>Overlap> Volumes. The Overlap Volumes picking menu appears.2.Click on Pick All.Step 8: Review the Resulting ModelBefore you continue with the analysis, quickly review your model. To do so, follow these steps:1.Choose Utility Menu>PlotCtrls> Numbering. The Plot Numbering Controlsdialog box appears.2.Click the Volume numbers radio button to On, then click on OK.3.Choose Utility Menu>PlotCtrls> View Settings> Viewing Direction. Adialog box appears.4.Set the "Coords of view point" fields to (-3,-1,1), then click on OK.5.Review the resulting model.6.Click on SAVE_DB on the ANSYS Toolbar.Step 9: Trim Off Excess VolumesIn this step, delete the overlapping edges of the tank and the lower portion of the pipe.1.Choose Main Menu> Preprocessor> Modeling> Delete> Volume andBelow. The Delete Volume and Below picking menu appears.2.In the picking menu, type 3,4 and press the ENTER key. Then click on OK inthe Delete Volume and Below picking menu.Step 10: Create Component AREMOTEIn this step, you select the areas at the remote Y and Z edges of the tank and save them as a component called AREMOTE. To do so, perform these tasks:1.Choose Utility Menu> Select> Entities. The Select Entities dialog boxappears.2.In the top drop down menu, select Areas. In the second drop down menu,select By Location. Click on the Z Coordinates radio button.3.Set the "Min,Max" field to Z1.4.Click on Apply.5.Click on the Y Coordinates and Also Sele radio buttons.6.Set the "Min,Max" field to 0.7.Click on OK.8.Choose Utility Menu> Select> Comp/Assembly> Create Component. TheCreate Component dialog box appears.9.Set the "Component name" field to AREMOTE. In the "Component is madeof" menu, select Areas.10.Click on OK.Step 11: Overlay Lines on Top of AreasDo the following:1.Choose Utility Menu>PlotCtrls> Numbering. The Plot Numbering Controlsdialog box appears.2.Click the Area and Line number radio boxes to On and click on OK.3.Choose Utility Menu> Plot> Areas.4.Choose Utility Menu>PlotCtrls> Erase Options.5.Set "Erase between Plots" radio button to Off.6.Choose Utility Menu> Plot> Lines.7.Choose Utility Menu>PlotCtrls> Erase Options.8.Set "Erase between Plots" radio button to On.Step 12: Concatenate Areas and LinesIn this step, you concatenate areas and lines at the remote edges of the tank for mapped meshing. To do so, follow these steps:1.Choose Main Menu> Preprocessor> Meshing> Mesh> Volumes> Mapped>Concatenate> Areas. The Concatenate Areas picking menu appears.2.Click on Pick All.3.Choose Main Menu> Preprocessor> Meshing> Mesh> Volumes> Mapped>Concatenate> Lines. A picking menu appears.4.Pick (click on) lines 12 and 7 (or enter in the picker).5.Click on Apply.6.Pick lines 10 and 5 (or enter in picker).7.Click on OK.Step 13: Set Meshing Density Along Lines1.Choose Main Menu> Preprocessor> Meshing> SizeCntrls>ManualSize>Lines> Picked Lines. The Element Size on PickedLines picking menu appears.2.Pick lines 6 and 20 (or enter in the picker) .3.Click on OK. The Element Sizes on Picked Lines dialog box appears.4.Set the "No. of element divisions" field to 4.5.Click on OK.6.Choose Main Menu> Preprocessor> Meshing> Size Cntrls>ManualSize>Lines> Picked Lines. A picking menu appears.7.Pick line 40 (or enter in the picker).8.Click on OK. The Element Sizes on Picked Lines dialog box appears.9.Set the "No. of element divisions" field to 6.10.Click on OK.Step 14: Mesh the ModelIn this sequence of steps, you set the global element size, set mapped meshing, then mesh the volumes.1.Choose Utility Menu> Select> Everything.2.Choose Main Menu> Preprocessor> Meshing> Size Cntrls>ManualSize>Global> Size. The Global Element Sizes dialog box appears.3.Set the "Element edge length" field to 0.4 and click on OK.4.Choose Main Menu> Preprocessor> Meshing>Mesher Opts. The MesherOptions dialog box appears.5.Set the Mesher Type radio button to Mapped and click on OK. The SetElement Shape dialog box appears.6.In the 2-D shape key drop down menu, select Quad and click on OK.7.Click on the SAVE_DB button on the Toolbar.8.Choose Main Menu> Preprocessor> Meshing> Mesh> Volumes> Mapped>4 to 6 sided. The Mesh Volumes picking menu appears. Click on Pick All. Inthe Graphics window, ANSYS builds the meshed model. If a shape testingwarning message appears, review it and click Close.Step 15: Turn Off Numbering and Display Elements1.Choose Utility Menu>PlotCtrls> Numbering. The Plot Numbering Controlsdialog box appears.2.Set the Line, Area, and Volume numbering radio buttons to Off.3.Click on OK.Step 16: Define the Solution Type and OptionsIn this step, you tell ANSYS that you want a steady-state solution that uses a program-chosen Newton-Raphson option.1.Choose Main Menu> Solution> Analysis Type> New Analysis. The NewAnalysis dialog box appears.2.Click on OK to choose the default analysis type (Steady-state).3.Choose Main Menu> Solution> Analysis Type> Analysis Options. TheStatic or Steady-State dialog box appears.4.Click on OK to accept the default (“Program-chosen”) for "Newton-Raphsonoption."Step 17: Set Uniform Starting TemperatureIn a thermal analysis, set a starting temperature.1.Choose Main Menu> Solution> Define Loads> Apply> Thermal>Temperature> Uniform Temp. A dialog box appears.2.Enter 450 for "Uniform temperature." Click on OK.Step 18: Apply Convection LoadsThis step applies convection loads to the nodes on the inner surface of the tank.1.Choose Utility Menu>WorkPlane> Change Active CS to> GlobalCylindrical.2.Choose Utility Menu> Select> Entities. The Select Entities dialog boxappears.3.Select Nodes and By Location, and click on the X Coordinates and From Fullradio buttons.4.Set the "Min,Max" field to RI1 and click on OK.5.Choose Main Menu> Solution> Define Loads> Apply> Thermal>Convection> On Nodes. The Apply CONV on Nodes picking menu appears.6.Click on Pick All. The Apply CONV on Nodes dialog box appears.7.Set the "Film coefficient" field to 250/144.8.Set the "Bulk temperature" field to 450.9.Click on OK.Step 19: Apply Temperature Constraints to AREMOTE Component1.Choose Utility Menu> Select> Comp/Assembly> Select Comp/Assembly.A dialog box appears.2.Click on OK to select component AREMOTE.3.Choose Utility Menu> Select> Entities. The Select Entities dialog boxappears.4.Select Nodes and Attached To, and click on the Areas,All radio button. Clickon OK.5.Choose Main Menu> Solution> Define Loads> Apply> Thermal>Temperature> On Nodes. The Apply TEMP on Nodes picking menuappears.6.Click on Pick All. A dialog box appears.7.Set the "Load TEMP value" field to 450.8.Click on OK.9.Click on SAVE_DB on the ANSYS Toolbar.Step 20: Apply Temperature-Dependent ConvectionIn this step, apply a temperature-dependent convection load on the inner surface of the pipe.1.Choose Utility Menu>WorkPlane> Offset WP by Increments. A dialog boxappears.2.Set the "XY,YZ,ZX Angles" field to 0,-90, then click on OK.3.Choose Utility Menu>WorkPlane> Local Coordinate Systems> CreateLocal CS> At WP Origin. The Create Local CS at WP Origin dialog boxappears.4.On the "Type of coordinate system" menu, select "Cylindrical 1" and click onOK.5.Choose Utility Menu> Select> Entities. The Select Entities dialog boxappears.6.Select Nodes, and By Location, and click on the X Coordinates radio button.7.Set the "Min,Max" field to RI2.8.Click on OK.9.Choose Main Menu> Solution> Define Loads> Apply> Thermal>Convection> On Nodes. The Apply CONV on Nodes picking menu appears.10.Click on Pick All. A dialog box appears.11.Set the "Film coefficient" field to -2.12.Set the "Bulk temperature" field to 100.13.Click on OK.14.Choose Utility Menu> Select> Everything.15.Choose Utility Menu>PlotCtrls> Symbols. The Symbols dialog box appears.16.On the "Show pres and convect as" menu, select Arrows, then click on OK.17.Choose Utility Menu> Plot> Nodes. The display in the Graphics Windowchanges to show you a plot of nodes.Step 21: Reset the Working Plane and Coordinates1.To reset the working plane and default Cartesian coordinate system,choose Utility Menu>WorkPlane> Change Active CS to> GlobalCartesian.2.Choose Utility Menu>WorkPlane> Align WP With> Global Cartesian. Step 22: Set Load Step OptionsFor this example analysis, you need to specify 50 substeps with automatic time stepping.1.Choose Main Menu> Solution> Load Step Options> Time/Frequenc>Time and Substps. The Time and Substep Options dialog box appears.2.Set the "Number of substeps" field to 50.3.Set "Automatic time stepping" radio button to On.4.Click on OK.Step 23: Solve the Model1.Choose Main Menu> Solution> Solve> Current LS. The ANSYS programdisplays a summary of the solution options in a /STAT command window.2.Review the summary.3.Choose Close to close the /STAT command window.4.Click on OK in the Solve Current Load Step dialog box.5.Click Yes in the Verify message window.6.The solution runs. When the Solution is done! window appears, click onClose.Step 24: Review the Nodal Temperature Results1.Choose Utility Menu>PlotCtrls> Style> Edge Options. The Edge Optionsdialog box appears.2.Set the "Element outlines" field to "Edge only" for contour plots and click onOK.3.Choose Main Menu> General Postproc> Plot Results> Contour Plot>Nodal Solu. The Contour Nodal Solution Data dialog box appears.4.For "Item to be contoured," pick "DOF solution" from the list on the left, thenpick "Temperature TEMP" from the list on the right.5.Click on OK. The Graphics window displays a contour plot of the temperatureresults.Step 25: Plot Thermal Flux VectorsIn this step, you plot the thermal flux vectors at the intersection of the pipe and tank.1.Choose Utility Menu>WorkPlane> Change Active CS to> Specified CoordSys. A dialog box appears.2.Set the "Coordinate system number" field to 11.3.Click on OK.4.Choose Utility Menu> Select> Entities. The Select Entities dialog boxappears.5.Select Nodes and By Location, and click the X Coordinates radio button.6.Set the "Min,Max" field to RO2.7.Click on Apply.8.Select Elements and Attached To, and click the Nodes radio button.9.Click on Apply.10.Select Nodes and Attached To, then click on OK.11.Choose Main Menu> General Postproc> Plot Results> Vector Plot>Predefined. A dialog box appears.12.For "Vector item to be plotted," choose "Flux & gradient" from the list on theleft and choose "Thermal flux TF" from the list on the right.13.Click on OK. The Graphics Window displays a plot of thermal flux vectors. Step 26: Exit from ANSYSTo leave the ANSYS program, click on the QUIT button in the Toolbar. Choose an exit option and click on OK.。

Ansys作业——瞬态热分析

Ansys作业——瞬态热分析

Ansys作业——瞬态热分析Ansys作业—瞬态热分析问题描述瞬态热分析实例1⏹长方形的板,几何参数及其边界条件如图3-6 所示。

板的宽度为5cm,其中间有一个半径为1cm 的圆孔。

板的初始温度为20℃,将其右侧突然置于温度为20℃且对流换热系数为100W/M2℃的流体中,左端置于温度为500℃的温度场,试计算:⏹(1)第1s 和第50s板内的温度分布情况。

⏹(2)整个板在前50s内的温度变化过程。

⏹(3)圆孔边缘A点处温度随时间变化曲线。

1.建立有限元模型首先建立瞬态传热分析所需的有限元模型,选择单元。

(1) 选择热分析单元,操作如下:GUI:Main Menu > Preprocessor > Element Type > Add/Edit/Delete在弹出的对话框中,单击Add。

在单元类型库对话框中选择Plane55单元。

单击OK。

命令:ET,1,PLANE55(2) 定义材料属性首先进入Define Material Model Behavior 对话框,操作如下:GUI:Main Menu > Preprocessor > Material Props下面定义瞬态热分析所需的材料参数,如热传导率、比热容及材料密度:定义热传导GUI:Main Menu > Preprocessor > Material Props > Thermal > Conductivity > Isotropic 在弹出的定义材料热传导率对话框中的KXX 栏键入“5”。

命令:MPDATA,KXX,1,,5定义比热容GUI:Main Menu > Preprocessor > Material Props > Thermal > Specific Heat在弹出的定义比热容对话框中的C栏键入“200”。

命令:MPDATA,C,1,,200定义密度GUI:Main Menu > Preprocessor > Material Props > Thermal > Density在弹出密度定义对话框中的DENS栏键入“5000”。

Ansys电机热(Fluent)分析设置

Ansys电机热(Fluent)分析设置

软件操作流程
单击添加项标题
打开nsys Fluent软件
单击添加项标题
导入CD模型
单击添加项标题
设置边界条件
单击添加项标题
运行仿真
单击添加项标题
创建新的项目
单击添加项标题
设置材料属性
单击添加项标题
设置求解器
单击添加项标题
查看结果并分析
03
电机热分析基本原理
热传导基本概念
热传导:热量从高温物体向低温物体传递的过程 热传导系数:衡量材料导热能力的物理量 热传导方程:描述热传导现象的数学模型 热传导方式:传导、对流、辐射三种方式
06
电机热分析常见问题及解决方法
求解不收敛问题及解决方法
问题描述:求解 过程中出现不收 敛现象导致计算 无法进行
原因分析:可能 由于网格划分不 合理、材料属性 设置不当、边界 条件设置错误等 原因导致
解决方法:重新 划分网格调整材 料属性检查并修 正边界条件必要 时可以尝试改变 求解器设置或增 加迭代次数
热辐射:物体通过电磁波形式向外辐射热量的过程 热辐射原理:物体温度越高辐射能量越大辐射波长越短 热辐射类型:红外辐射、可见光辐射、紫外辐射等 热辐射应用:热成像、太阳能利用、热处理等
热分析基本步骤
确定分析对 象:选择需 要分析的电
机部件
建立模型: 使用nsys软 件建立电机
模型
设置材料属 性:为模型 中的材料设 置热传导、 热对流等属
05
电机热分析案例展示
案例一:单相异步电机热分析
电机类型:单相异步电机 热分析软件:nsys 热分析步骤:建立模型、设置材料属性、设置边界条件、求解、后处理 结果分析:温度异步电机热分析
电机类型:三相异步电机 热分析软件:nsys 热分析步骤:建立模型、设置材料属性、施加边界条件、求解、后处理 结果分析:温度分布、热流密度、热应力等

四个ANSYS热分析经典例子

四个ANSYS热分析经典例子

实例1:某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。

几何参数:筒外径30 feet总壁厚2 inch不锈钢层壁厚0.75inch玻纤层壁厚1 inch铝层壁厚0.25inch筒长200 feet导热系数不锈钢8.27BTU/hr.ft.o F玻纤0.028 BTU/hr.ft.o F铝117.4 BTU/hr.ft.o F边界条件空气温度70 o F海水温度44.5 o F空气对流系数2.5 BTU/hr.ft2.o F海水对流系数80 BTU/hr.ft2.o F沿垂直于圆筒轴线作横截面,得到一圆环,取其中1 度进行分析,如图示。

/filename,Steady1/title,Steady-state thermal analysis of submarine/units,BFTRo=15 !外径(ft)Rss=15-(0.75/12) !不锈钢层内径ft)Rins=15-(1.75/12) !玻璃纤维层内径(ft)Ral=15-(2/12) !铝层内径(ft)Tair=70 !潜水艇内空气温度Tsea=44.5 !海水温度Kss=8.27 !不锈钢的导热系数(BTU/hr.ft.oF)Kins=0.028 !玻璃纤维的导热系数(BTU/hr.ft.oF)Kal=117.4 !铝的导热系数(BTU/hr.ft.oF)Hair=2.5 !空气的对流系数(BTU/hr.ft2.oF)Hsea=80 !海水的对流系数(BTU/hr.ft2.oF)prep7et,1,plane55 !定义二维热单元mp,kxx,1,Kss !设定不锈钢的导热系数mp,kxx,2,Kins !设定玻璃纤维的导热系数mp,kxx,3,Kal !设定铝的导热系数pcirc,Ro,Rss,-0.5,0.5 !创建几何模型pcirc,Rss,Rins,-0.5,0.5pcirc,Rins,Ral,-0.5,0.5aglue,allnumcmp,arealesize,1,,,16 !设定划分网格密度lesize,4,,,4lesize,14,,,5lesize,16,,,2Mshape,2 !设定为映射网格划分mat,1amesh,1mat,2amesh,2mat,3amesh,3/SOLUSFL,11,CONV,HAIR,,TAIR !施加空气对流边界SFL,1,CONV,HSEA,,TSEA !施加海水对流边界SOLVE/POST1PLNSOL !输出温度彩色云图finish实例2一圆筒形的罐有一接管,罐外径为3 英尺,壁厚为0.2 英尺,接管外径为0.5 英尺,壁厚为0.1英尺,罐与接管的轴线垂直且接管远离罐的端部。

ANSYS热分析教程及命令流算例

ANSYS热分析教程及命令流算例

=====【热力耦合分析单元简介】======SOLID5-三维耦合场实体具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。

本单元由8个节点定义,每个节点有6个自由度。

在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。

在结构和压电分析中,具有大变形的应力钢化功能。

与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。

INFIN9-二维无限边界用于模拟一个二维无界问题的开放边界。

具有两个节点,每个节点上带有磁向量势或温度自由度。

所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。

使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。

使用热自由度时,只能进行线性稳态分析。

PLANE13-二维耦合场实体具有二维磁场、温度场、电场和结构场之间有限耦合的功能。

由4个节点定义,每个节点可达到4个自由度。

具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。

具有大变形和应力钢化功能。

当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。

LINK31-辐射线单元用于模拟空间两点间辐射热流率的单轴单元。

每个节点有一个自由度。

可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。

允许形状因子和面积分别乘以温度的经验公式是有效的。

发射率可与温度相关。

如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。

LINK32-二维传导杆用于两节点间热传导的单轴单元。

该单元每个节点只有一个温度自由度。

可用于二维(平面或轴对称)稳态或瞬态的热分析问题。

如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。

LINK33-三维传导杆用于节点间热传导的单轴单元。

该单元每个节点只有一个温度自由度。

ansys 温度荷载实例分析命令流

ansys 温度荷载实例分析命令流

!XXXXXXXXXXXXXXXXXX!定义单元类型!XXXXXXXXXXXXXXXXXXFINI/CLE/TITLE,QSHang Pylon Test/UNITS,SICSYS,0!*afun,deg/PREP7/triad,on/view,1,1,1,1 !定义ISO查看/NERR,1000000et,1,plane55 !定义二维热单元et,2,surf153mp,kxx,1,3.3mp,kyy,1,3.3 !设定砼的导热系数mp,kzz,1,3.3!mp,dens,1,2400 !定义砼的密度mp,c,1,925 !定义砼的比热mp,prxy,1,0.2 !泊松比C50mp,ex,1,3.45e10 !混凝土的弹性模量C50 mp,alpx,1,1e-5!mptemp,1,0,2643,2750,2875 !定义铸钢的热性能!mpdata,kxx,2,1.44,1.54,1.22,1.22!mpdata,enth,2,0,128.1,163.8,174.2!mpplot,kxx,2!mpplot,enth,2!XXXXXXXXXXXXXXXXXXX!建立混凝土几何模型!XXXXXXXXXXXXXXXXXXX!************plane1K,1,0,0,0k,2,0,3.5,0k,3,6.885,3.5k,4,6.885,4k,5,21.2,4k,6,23.7,0l,1,2l,2,3l,3,4l,4,5local,11,1,21.2,0,0,,,,4/2.5,1 l,5,6CSYS,0k,7,18.9,0k,8,18.9,2k,9,19.4,2.5k,10,21,2.5k,11,22.2,0l,1,7l,7,8l,8,9l,9,10local,12,1,21,0,0,,,,2.5/1.2,1 l,10,11CSYS,0l,11,6al,all!************plane2 asel,nonelsel,nonek,12,0.8,0.25k,13,0.3,0.75k,14,0.3,2k,15,0.8,2.5k,16,5.2,2.5k,17,5.7,2k,18,5.7,0.75k,19,5.2,0.25a,12,13,14,15,16,17,18,19k,20,6.8,0.25k,21,6.3,0.75k,22,6.3,2k,23,6.8,2.5k,24,11.2,2.5k,25,11.7,2k,26,11.7,0.75k,27,11.2,0.25a,20,21,22,23,24,25,26,27k,28,12.8,0.25k,29,12.3,0.75k,30,12.3,2k,31,12.8,2.5k,32,15.3,2.5k,33,15.8,2k,34,15.8,0.75k,35,15.3,0.25a,28,29,30,31,32,33,34,35asel,scm,plane,areaallsasba,1,plane!************画网格aatt,1,1,AESIZE,all,0.02 !将所有面网格划分时的单元尺寸设置为0.02m MSHAPE,0,2D !利用四边形单元进行网格划分MSHKEY,2 !采用映射网格划分单元AMESH,ALL !对所有网格进行划分单元allscm,area1,areaarsym,x,area1,,,,0,0allsarsym,y,all,,,,0,0asel,allaglue,all!Nummrg,elem!Nummrg,node!Nummrg,kpnummrg,allnumcmp,all!**************定义组件allslsel,s,length,,6.885lsel,a,length,,0.5lsel,a,length,,14.32lsel,r,loc,y,0,100cm,Eligne,linensll,scm,Enode,nodeTYPE,2ESURFallslsel,s,length,,6.885lsel,a,length,,0.5lsel,a,length,,14.32lsel,r,loc,y,-100,0cm,Wligne,linensll,scm,Wnode,nodeTYPE,2ESURFallslsel,s,length,,5.173lsel,r,loc,x,0,100cm,Sligne,linensll,scm,Snode,nodeTYPE,2ESURFallslsel,s,length,,5.173lsel,r,loc,x,-100,0cm,Nligne,linensll,scm,Nnode,nodeALLSTYPE,2ESURF!**************计算日照时间内,即14个小时内的空气的温度值*DIM,t_outdoor,,13 !定义室外空气温度数组为t_outdoor*DO,t,6,18 !给室外空气温度数组t_outdoor赋值*SET,t_outdoor(t-5),31.5+5.5*sin(3.1415926535898*(t-9)/12)*ENDDO!**************日照强度*DIM,E_insolation,,13 !东边日照*DIM,S_insolation,,13 !东边日照*DIM,W_insolation,,13 !西边日照*DIM,N_insolation,,13 !北边日照E_insolation(1) =240 $S_insolation(1) =33 $ W_insolation(1) = 28 $ N_insolation(1) =89E_insolation(2) =521 $S_insolation(2) =80 $W_insolation(2) =69 $ N_insolation(2) = 160E_insolation(3) =629 $S_insolation(3) = 115 $W_insolation(3) =99 $ N_insolation(3) = 166E_insolation(4) =640 $S_insolation(4) =148 $W_insolation(4) = 127 $ N_insolation(4) = 152E_insolation(5) =536 $S_insolation(5) =184 $W_insolation(5) = 142 $ N_insolation(5) = 142E_insolation(6) =374 $S_insolation(6) =229 $W_insolation(6) = 153 $ N_insolation(6) = 153E_insolation(7) =178 $S_insolation(7) =240 $W_insolation(7) = 153 $ N_insolation(7) = 153E_insolation(8) =178 $S_insolation(8) =229 $W_insolation(8) = 322 $ N_insolation(8) = 153E_insolation(9) =165 $S_insolation(9) =184 $W_insolation(9) = 461 $ N_insolation(9) = 142E_insolation(10) =148 $S_insolation(10) =148 $W_insolation(10) =550 $ N_insolation(10) = 152E_insolation(11)=115 $S_insolation(11)=115 $W_insolation(11) =541 $ N_insolation(11) =166E_insolation(12)=80 $S_insolation(12)=80 $W_insolation(12)= 448 $ N_insolation(12) = 160E_insolation(13)=33 $S_insolation(13)=33 $W_insolation(13)= 206 $ N_insolation(13) = 89!**************综合换热系数h=12.47+3.33*1.5!**************综合大气温度*DIM,Et_synthetiser,,13*DIM,St_synthetiser,,13*DIM,Wt_synthetiser,,13*DIM,Nt_synthetiser,,13*DO,x,1,13,1*SET,Et_synthetiser(x),t_outdoor(x)+(E_insolation(x)/17.465)*0.65*SET,St_synthetiser(x),t_outdoor(x)+(S_insolation(x)/17.465)*0.65*SET,Wt_synthetiser(x),t_outdoor(x)+(W_insolation(x)/17.465)*0.65*SET,Nt_synthetiser(x),t_outdoor(x)+(N_insolation(x)/17.465)*0.65*ENDDO!**************求解/soluantype,trans !设置求解类型瞬态热分析trnopt,full ! 指定瞬态分析的求解方法为完全法timint,on ! 打开时间积分效应tunif,27.6 !设置构件的初始温度为20摄氏度!tref,20outres,all ! 将除SV AR和LOCI以外的所有计算数据写入数据库和文件中!antype,4!autots,on!trnopt,full!lnsrch,on!outres,basic,last!outpr,basic,lastl=0*do,m,1,13,1*do,r,3600,3600,3600time,(m-1)*3600+rl=l+1nsubst,1,100,1 !设置每个荷载的子步数数为1,最大值为100,最小值为1 autots,on ! 打开自动时间步长跟踪eqslv,JCG !指定方程求解器为JCGkbc,0 !使用递增方式加载线性荷载!施加对流荷载!alls!nsel,s,,,Enode!d,all,temp,Et_synthetiser(m)!alls!nsel,s,,,Wnode!d,ALL,temp,Wt_synthetiser(m)!alls!nsel,s,,,Snode!d,ALL,temp,St_synthetiser(m)!alls!nsel,s,,,Nnode!d,ALL,temp,Nt_synthetiser(m)!bf,Enode,hgen,E_insolation(m)!bf,Wnode,hgen,W_insolation(m)!bf,Snode,hgen,S_insolation(m)!bf,Nnode,hgen,N_insolation(m)allsSFl,Eligne,conv,17.456,,Et_synthetiser(m) SFL,Wligne,conv,17.456,,Wt_synthetiser(m) SFL,Sligne,conv,17.456,,St_synthetiser(m) SFL,Nligne,conv,17.456,,Nt_synthetiser(m)allslsel,s,,,Eligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*E_insolation(m)allslsel,s,,,Wligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*W_insolation(m)allslsel,s,,,Sligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*S_insolation(m)allslsel,s,,,Nligneesll,sesel,r,type,,1sfe,all,,HFLUX,,0.65*N_insolation(m)!alls!nsel,s,,,Enode!esln,s!esel,r,type,,1!sfe,all,,conv,,0.65*E_insolation(m)!alls!nsel,s,,,Wnode!esln,s!esel,r,type,,2!sfe,all,,conv,,0.65*W_insolation(m)!alls!nsel,s,,,Snode!esln,s!esel,r,type,,2!sfe,all,,conv,,0.65*S_insolation(m)!alls!nsel,s,,,Nnode!esln,s!esel,r,type,,2!sfe,all,,conv,,0.65*N_insolation(m)!sfa,5,,conv,10,t_outdoor(m) !给面5定义当前荷载步的对流换热系数及周围环境温度!sfa,21,,conv,10,t_outdoor(m) !给面21定义当前荷载步的对流换热系数及周围环境温度!sfa,18,,conv,10,t_outdoor(m) !给面18定义当前荷载步的对流换热系数及周围环境温度!sfa,10,,conv,10,t_outdoor(m) !给面10定义当前荷载步的对流换热系数及周围环境温度!施加太阳辐射荷载!bfv,1,HGEN,heat_eq(1,m)+long_wave(1) !给体1施加当前荷载步的等效生热率!bfv,4,HGEN,heat_eq(2,m)+long_wave(2) !给体4施加当前荷载步的等效生热率!bfv,3,HGEN,heat_eq(3,m)+long_wave(3) !给体3施加当前荷载步的等效生热率!bfv,2,HGEN,heat_eq(4,m)+long_wave(4) !给体2施加当前荷载步的等效生热率!bfe,all,hgen,1,1e10allssolve*enddo*enddo!*************************进入热应力求解/PREP7ETCHG,TTS !热到结构分析转换/SOLantype,4 !瞬态timint,1,struct !Turns on transient effectstimint,0,thermtimint,0,magtimint,0,elecautots,on !打开自动时间步长,有利于非线性收敛tref,20trnopt,full !完全瞬态nropt,full !设置牛顿-拉普森选项kbc,0 !渐变荷载nlgeom,on !打开大变形效应LUMPM,0PSTRES,ONNROPT,FULL, ,on!定义热应力计算参考温度TREF,20,!*************************边界条件DSYM,SYMM,Z,0csys,0LSEL,ALLDL,ALL,,UX,0DL,ALL,,UY,0DL,ALL,,UZ,0*DO,I,1,1355LDREAD,TEMP,,,1*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,1*iDELTIM,1,1,1SOLVE*ENDDO*DO,I,1,500LDREAD,TEMP,,,1355+10*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,1355+10*iDELTIM,10,10,10SOLVE*ENDDO*DO,I,1,300LDREAD,TEMP,,,6355+50*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,6355+50*iDELTIM,50,50,50SOLVE*ENDDO*DO,I,1,300LDREAD,TEMP,,,21355+100*i, ,'model_BD1','rth',' ' !读入热分析的计算结果OUTRES,ALL,ALL,TIME,21355+100*iDELTIM,100,100,100 SOLVE*ENDDOSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,0,0,0.17PPA TH,2,,0,0.7,0.17 PDEF,,S,xPLPATH,Sx/IMAGE,SA VE,zpath1,BMPSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,-1.72,0.4,0.17 PPA TH,2,,1,0.4,0.17 PDEF,,S,xPLPATH,Sx/IMAGE,SA VE,zpath2,BMPSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,0,0.7,0PPA TH,2,,0,0.7,0.35 PDEF,,S,zPLPATH,Sz/IMAGE,SA VE,zpath3,BMPSET,LASTCSYS,0PATH,zdirec,2,50PPA TH,1,,-1.72,0.7,0.17 PPA TH,2,,1,0.7,0.17 PDEF,,S,zPLPATH,Sz/IMAGE,SA VE,zpath4,BMPvsel,s,,,1 !选择编号为1的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(1),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(1))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(1))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(1,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,4 !选择编号为4的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(2),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(2))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(2))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(2,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,3 !选择编号为3的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(3),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(3))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(3))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(3,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,2 !选择编号为2的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(4),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(4))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(4))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(4,l),value_4/0.03 !计算长波辐射净强度的等效生热率allsel*enddo*enddo。

一个经典的ansys热分析实例(流程序)

一个经典的ansys热分析实例(流程序)

/PREP7/TITLE,Steady-state thermal analysis of pipe junction/UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches)! /SHOW, ! Specify graphics driver for interactive runET,1,90 ! Define 20-node, 3-D thermal solid elementMP,DENS,1,.285 ! Density = .285 lbf/in^3MPTEMP,,70,200,300,400,500 ! Create temperature tableMPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12! 指定与温度相对应的数据材料属性;导热系数;Define conductivity valuesMPDATA,C,1,,.113,.117,.119,.122,.125! Define specific heat values(比热)MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144! Define film coefficient;除144是单位问题,上面的除12也是单元问题! Define parameters for model generationRI1=1.3 ! Inside radius of cylindrical tankRO1=1.5 ! Outside radiusZ1=2 ! LengthRI2=.4 ! Inside radius of pipeRO2=.5 ! Outside pipe radiusZ2=2 ! Pipe lengthCYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tankWPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axisCYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipeWPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default settingBOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warningVOVLAP,1,2 ! 交迭体;Overlap the two cylinders/PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on/VIEW,,-3,-1,1/TYPE,,4 ! 精确面的显示;Precise hidden display/TITLE,Volumes used in building pipe/tank junctionVPLOTVDELE,3,4,,1 ! 修剪一些体与体相关的体的因素都删掉;Trim off excess volumes! Meshing 网格划分ASEL,,LOC,Z,Z1 ! Select area at remote Z edge of tankASEL,A,LOC,Y,0 ! Select area at remote Y edge of tankCM,AREMOTE,AREA ! 为面建立数组;Create area component called AREMOTE/PNUM,AREA,1/PNUM,LINE,1/TITLE,Lines showing the portion being modeledAPLOT/NOERASE ! 预防抹去LPLOT ! Overlay line plot on area plot/ERASEACCAT,ALL ! 连接面和线的准备映射;Concatenate areas and lines at remote tank edgesLCCAT,12,7LCCAT,10,5LESIZE,20,,,4 ! 4 divisions through pipe thicknessLESIZE,40,,,6 ! 6 divisions along pipe lengthLESIZE,6,,,4 ! 4 divisions through tank thicknessALLSEL ! Restore full set of entitiesESIZE,.4 ! Set default element size线的默认划分数MSHAPE,0,3D ! Choose mapped brick meshMSHKEY,1 ! 映射网格SAVE ! Save database before meshingVMESH,ALL ! Generate nodes and elements within volumes/PNUM,DEFA ! 重新安排数字规格/TITLE,Elements in portion being modeledEPLOTFINISH/COM, *** Obtain solution ***/SOLUANTYPE,STATIC ! Steady-state analysis typeNROPT,AUTO ! 自动选择牛顿-拉普森Program-chosenNewton-Raphson optionTUNIF,450 ! 给结点统一的温度;Uniform starting temperature at all nodesCSYS,1 ! 1 —Cylindrical with Z as the axis of rotation NSEL,S,LOC,X,RI1 ! Nodes on inner tank surfaceSF,ALL,CONV,250/144,450 ! 为结点指定表面载荷;对流;Convection(对流);load at all nodesCMSEL,,AREMOTE ! 选择子集组合;Select AREMOTE component NSLA,,1 ! Nodes belonging to AREMOTED,ALL,TEMP,450 ! 设定边界温度条件Temperature constraints at those nodesWPROTA,0,-90 ! Rotate working plane to pipe axisCSWPLA,11,1 ! 在工作区声明本地的圆柱体系;Define local cylindrical c.s at working planeNSEL,S,LOC,X,RI2 ! Nodes on inner pipe surfaceSF,ALL,CONV,-2,100 ! 这里的-2表示材料2;;Temperature-dep. convection load at those nodesALLSEL/PBC,TEMP,,1 ! 边界符号的显示Temperature b.c. symbols on/PSF,CONV,,2 ! Convection symbols on 箭头显示/TITLE,Boundary conditionsNPLOTWPSTYL,DEFACSYS,0AUTOTS,ON ! Automatic time steppingNSUBST,50 ! Number of substepsKBC,0 ! Ramped loading (default)OUTPR,NSOL,LAST ! 显示最后一次的结点约束;Optional command for solution printoutSOLVEFINISH/COM, *** Review results ***/POST1/EDGE,,1 ! Displays only the "edges(刀口, 利刃, 锋, 优势, 边缘, 优势, 尖锐)" of an object;Edge display/PLOPTS,INFO,ON ! Legend column on/PLOPTS,LEG1,OFF ! Legend header off 圆柱数列的头部/WINDOW,1,SQUARE ! SQUA, form largest square window within the current graphics area;Redefine window size/TITLE,Temperature contours at pipe/tank junctionPLNSOL,TEMP ! Plot temperature contoursCSYS,11NSEL,,LOC,X,RO2 ! Nodes and elements at outer radius of pipeESLN ! 选择单元NSLE ! 选择结点/SHOW,,,1 ! 向量显示;Vector mode/TITLE,Thermal flux vectors at pipe/tank junctionPLVECT,TF ! Plot thermal flux(热通量)vectorsFINISH。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/PREP7
/TITLE,Steady-state thermal analysis of pipe junction
/UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches)
! /SHOW, ! Specify graphics driver for interactive run
ET,1,90 ! Define 20-node, 3-D thermal solid element
MP,DENS,1,.285 ! Density = .285 lbf/in^3
MPTEMP,,70,200,300,400,500 ! Create temperature table
MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12
! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values
MPDATA,C,1,,.113,.117,.119,.122,.125
! Define specific heat values(比热)
MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144
! Define film coefficient;除144是单位问题,上面的除12也是单元问题
! Define parameters for model generation
RI1=1.3 ! Inside radius of cylindrical tank
RO1=1.5 ! Outside radius
Z1=2 ! Length
RI2=.4 ! Inside radius of pipe
RO2=.5 ! Outside pipe radius
Z2=2 ! Pipe length
CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank
WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis
CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe
WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting
BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning
VOVLAP,1,2 ! 交迭体;Overlap the two cylinders
/PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on
/VIEW,,-3,-1,1
/TYPE,,4 ! 精确面的显示;Precise hidden display
/TITLE,Volumes used in building pipe/tank junction
VPLOT
VDELE,3,4,,1 ! 修剪一些体与体相关的体的因素都删掉;Trim off excess volumes
! Meshing 网格划分
ASEL,,LOC,Z,Z1 ! Select area at remote Z edge of tank
ASEL,A,LOC,Y,0 ! Select area at remote Y edge of tank
CM,AREMOTE,AREA ! 为面建立数组;Create area component called AREMOTE
/PNUM,AREA,1
/PNUM,LINE,1
/TITLE,Lines showing the portion being modeled
APLOT
/NOERASE ! 预防抹去
LPLOT ! Overlay line plot on area plot
/ERASE
ACCAT,ALL ! 连接面和线的准备映射;Concatenate areas and lines at remote tank edges
LCCAT,12,7
LCCAT,10,5
LESIZE,20,,,4 ! 4 divisions through pipe thickness
LESIZE,40,,,6 ! 6 divisions along pipe length
LESIZE,6,,,4 ! 4 divisions through tank thickness
ALLSEL ! Restore full set of entities
ESIZE,.4 ! Set default element size线的默认划分数
MSHAPE,0,3D ! Choose mapped brick mesh
MSHKEY,1 ! 映射网格
SAVE ! Save database before meshing
VMESH,ALL ! Generate nodes and elements within volumes
/PNUM,DEFA ! 重新安排数字规格
/TITLE,Elements in portion being modeled
EPLOT
FINISH
/COM, *** Obtain solution ***
/SOLU
ANTYPE,STATIC ! Steady-state analysis type
NROPT,AUTO ! 自动选择牛顿-拉普森Program-chosen
Newton-Raphson option
TUNIF,450 ! 给结点统一的温度;Uniform starting temperature at all nodes
CSYS,1 ! 1 —Cylindrical with Z as the axis of rotation NSEL,S,LOC,X,RI1 ! Nodes on inner tank surface
SF,ALL,CONV,250/144,450 ! 为结点指定表面载荷;对流;Convection(对流);load at all nodes
CMSEL,,AREMOTE ! 选择子集组合;Select AREMOTE component NSLA,,1 ! Nodes belonging to AREMOTE
D,ALL,TEMP,450 ! 设定边界温度条件Temperature constraints at those nodes
WPROTA,0,-90 ! Rotate working plane to pipe axis
CSWPLA,11,1 ! 在工作区声明本地的圆柱体系;Define local cylindrical c.s at working plane
NSEL,S,LOC,X,RI2 ! Nodes on inner pipe surface
SF,ALL,CONV,-2,100 ! 这里的-2表示材料2;;Temperature-dep. convection load at those nodes
ALLSEL
/PBC,TEMP,,1 ! 边界符号的显示Temperature b.c. symbols on
/PSF,CONV,,2 ! Convection symbols on 箭头显示
/TITLE,Boundary conditions
NPLOT
WPSTYL,DEFA
CSYS,0
AUTOTS,ON ! Automatic time stepping
NSUBST,50 ! Number of substeps
KBC,0 ! Ramped loading (default)
OUTPR,NSOL,LAST ! 显示最后一次的结点约束;Optional command for solution printout
SOLVE
FINISH
/COM, *** Review results ***
/POST1
/EDGE,,1 ! Displays only the "edges(刀口, 利刃, 锋, 优势, 边缘, 优势, 尖锐)" of an object;Edge display
/PLOPTS,INFO,ON ! Legend column on
/PLOPTS,LEG1,OFF ! Legend header off 圆柱数列的头部
/WINDOW,1,SQUARE ! SQUA, form largest square window within the current graphics area;Redefine window size
/TITLE,Temperature contours at pipe/tank junction
PLNSOL,TEMP ! Plot temperature contours
CSYS,11
NSEL,,LOC,X,RO2 ! Nodes and elements at outer radius of pipe
ESLN ! 选择单元
NSLE ! 选择结点
/SHOW,,,1 ! 向量显示;Vector mode
/TITLE,Thermal flux vectors at pipe/tank junction
PLVECT,TF ! Plot thermal flux(热通量)vectors
FINISH。

相关文档
最新文档