二次函数中三角形面积最大值综合题
二次函数中三角形面积问题
二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。
解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。
二次函数求三角形面积最大值的典型题目
二次函数求三角形面积最大值的典型题目篇一:哎呀呀,说到二次函数求三角形面积最大值的题目,这可真是让我头疼了好一阵子呢!就比如说有这么一道题:在平面直角坐标系中,有一个二次函数图像,然后给了一堆点的坐标,让咱们求由这些点构成的三角形面积的最大值。
这可咋整?我一开始看到这题,那真是脑袋都大了!心里就想:“这啥呀?怎么这么难!”我瞪大眼睛,死死地盯着题目,手里的笔都快被我捏出汗来了。
我同桌小明呢,他倒是挺自信,还跟我说:“这有啥难的,看我的!”我心里暗暗不服气,哼,你就吹吧!然后老师开始讲题啦,老师说:“同学们,咱们得先找到这个二次函数的顶点坐标,这就好比是找到宝藏的钥匙!”我一听,宝藏?这比喻还挺有意思的。
老师接着说:“然后再看看那些给定的点,能不能通过一些巧妙的方法把三角形的面积表示出来。
”我就在那拼命点头,好像听懂了,其实心里还是有点迷糊。
我扭头看看后面的学霸小红,她一脸轻松,好像这题对她来说就是小菜一碟。
我忍不住问她:“小红,你咋这么厉害,这题你都懂啦?”小红笑了笑说:“多做几道类似的题,你也能懂!”我又埋头苦想,想着要是能像玩游戏一样,一下子就找到解题的秘诀该多好啊!经过一番折腾,我终于有点明白了。
原来求这个三角形面积最大值,就像是爬山,得找到那个最高的山峰,而我们要找的就是能让面积最大的那个点或者那条线。
你说,数学咋就这么难呢?但我就不信我搞不定它!我一定要把这些难题都攻克下来,让数学成为我的强项!总之,我觉得做这种二次函数求三角形面积最大值的题目,虽然过程很艰难,但只要我们不放弃,多思考,多练习,就一定能找到解题的窍门,取得胜利!篇二:哎呀!说起二次函数求三角形面积最大值的题目,这可真是让我又爱又恨呀!有一次上课,数学老师在黑板上出了一道这样的题:已知一个二次函数图像,还有三角形的三个顶点坐标都在这个函数图像上,让我们求三角形面积的最大值。
当时我一看,脑袋就嗡嗡响,这啥呀?我就开始在草稿纸上乱画,心里想着:“这咋这么难呢?”同桌小明凑过来,瞅了瞅我的草稿纸,说:“你这算的啥呀,思路都不对!”我瞪了他一眼,回道:“那你行你上啊!”然后我俩就你一句我一句地争论起来。
二次函数与三角形的综合-中考数学函数考点全突破
二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。
二次函数中三角形问题(含问题详解)
二次函数中的三角形一.与三角形面积例1:如图,已知在同一坐标系中,直线22k y kx =+-与y 轴交于点P ,抛物线k x k x y 4)1(22++-=与x 轴交于)0,(),0,(21x B x A 两点。
C 是抛物线的顶点。
(1)求二次函数的最小值(用含k 的代数式表示); (2)若点A 在点B 的左侧,且021<⋅x x 。
①当k 取何值时,直线通过点B ;②是否存在实数k ,使ABC ABP S S ∆∆=?如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由。
例2:已知抛物线)1(3)4(2-+---=m x m x y 与x 轴交于A 、B 两点,与y 轴交于C 点, (1)求m 的取值范围;(2)若0<m ,直线1-=kx y 经过点A ,与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式; (3)若A 点在B 点左边,在第一象限内,(2)中所得的抛物线上是否存在一点P ,使直线P A 平分ACD ∆的面积?若存在,求出P 点的坐标;若不存在,请说明理由。
例3.已知矩形ABCD 中,AB =2,AD =4,以AB 的垂直平分线为x 轴,AB 所在的直线为y 轴,建立平面直角坐标系(如图)。
(1)写出A 、B 、C 、D 及AD 的中点E 的坐标;(2)求以E 为顶点、对称轴平行于y 轴,并且经过点B 、C 的抛物线的解析式; (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。
A BC DO E x y(第25题图)例4.如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.二.与三角形形状例5. 如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.图2图1例 6.如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.x 图①x 图②x 图③例7. 已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.例8.如图,在直角坐标系中,点A 的坐标为(-2,0),连接OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方, 那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)(第25题图)三.二次函数与三角形相似 例9:已知一次函数1243--=x y 的图象分别交x 轴、y 轴于A 、C 两点, (1)求出A 、C 两点的坐标;(2)在x 轴上找出点B ,使ACB ∆∽AOC ∆,若抛物线过A 、B 、C 三点,求出此抛物线的解析式; (3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同速度沿AC 、BA 向C 、A 运动,连结PQ ,使m AP =,是否存在m 的值,使以A 、P 、Q 为顶点的三角形与ABC ∆相似,若存在,求出所有m 的值;若不存在,请说明理由。
【经典压轴题】三角形面积最值问题30题含详细答案
试卷第1页,总14页………外…………○…………订…………○……学:___________考号:___________………内…………○…………订…………○……三角形面积最值问题30题含详细答案1.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.2.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.3.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.试卷第2页,总14页……订…………○……※※内※※答※※题※※……订…………○……①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值. ③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.4.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.试卷第3页,总14页…○…………外………………订…………………线…………○……___________考号:______…○…………内………………订…………………线…………○……5.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.6.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点. (1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标: (3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.7.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x试卷第4页,总14页装…………○……………○…………线※要※※在※※装※※订※答※※题※※装…………○……………○…………线轴的另一交点为E ,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.8.如图,四边形ABCD 是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB 、BA (或它们的延长线)于点E 、F ,∠EDF=60°,当CE=AF 时,如图1小芳同学得出的结论是DE=DF .(1)继续旋转三角形纸片,当CE≠AF 时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E 、F 分别在CB 、BA 的延长线上时,如图3请直接写出DE 与DF 的数量关系;(3)连EF ,若△DEF 的面积为y ,CE=x ,求y 与x 的关系式,并指出当x 为何值时,y 有最小值,最小值是多少?9.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)试卷第5页,总14页…………○………………○………………○…………………○……学校:____:___________班级:____:___________…………○………………○………………○…………………○……(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.试卷第6页,总14页…○…………外………订…………○………………○……※内※※答※※题※※…○…………内………订…………○………………○……10.如图,在平面直角坐标系xOy 中,反比例函数(0)m y x x =>的图像经过点34,2A ⎛⎫⎪⎝⎭,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =________,点C 的坐标为________;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图像于点E ,求ODE 面积的最大值.11.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?12.(问题提出)试卷第7页,总14页……○…………外装…………○……姓名:___________班级:____……○…………内装…………○……(1)如图①,在等腰Rt ABC 中,斜边4AC =,点D 为AC 上一点,连接BD ,则BD 的最小值为 .(问题探究)(2)如图2,在ABC 中,5AB AC ==,6BC =,点M 是BC 上一点,且4BM =,点P 是边AB 上一动点,连接PM ,将BPM △沿PM 翻折得到DPM △,点D 与点B 对应,连接AD ,求AD 的最小值.(问题解决)(3)如图③,四边形ABCD 是规划中的休闲广场示意图,其中135BAD ADC ∠=∠=︒,30DCB ∠=︒,AD =,3AB km =,点M 是BC 上一点,4MC km =.现计划在四边形ABCD 内选取一点P ,把DCP 建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP 、MP ,从实用和美观的角度,要求满足PMB ABP ∠=∠,且景观绿化区面积足够大,即DCP 区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P ?若存在,请求出DCP 面积的最小值;若不存在,请说明理由.13.在平面直角坐标系中,点O 是原点,四边形AOBC 是矩形,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O B C ,,的对应点分别为D E F ,,.(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .求点H 的坐标; (3)记K 为矩形AOBC 对角线的交点,S 为KDE 的面积,求S 的取值范围(直接写出结果即可).试卷第8页,总14页……外…………○……………订…………○…※※请※※线※※内※※答※※题※※……内…………○……………订…………○…14.(1)如图1,四边形ABCD 中,//AD BC ,点E 为DC 边的中点,连接AE 并延长交BC 的延长线于点F ,求证:ABF ABCD S S ∆=四边形.(S 表示面积)(2)如图2,在ABC ∆中,过AC 边的中点P 任意作直线EF ,交BC 边于点F ,交BA 的延长线于点E ,试比较EBF ∆与ABC ∆的面积,并说明理由.(3)如图3,在平面直角坐标系中,已知一次函数y kx b =+的图像过点()2,4P 且分别于x 轴正半轴,y 轴正半轴交于点A 、B ,请问AOB ∆的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.15.△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论; (3)连接BN .在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.16.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.试卷第9页,总14页…外…………○………………○…………订………○……学校:_____名:___________班级:___________考号…内…………○………………○…………订………○……(1)求x 的取值范围; (2)求ABC 面积的最大值.17.在平面直角坐标系中,抛物线265y x mx =-+与y 轴的交点为A ,与x 轴的正半轴分别交于点B (b ,0),C (c ,0).(1)当b =1时,求抛物线相应的函数表达式;(2)当b =1时,如图,E (t ,0)是线段BC 上的一动点,过点E 作平行于y 轴的直线l 与抛物线的交点为P .求△APC 面积的最大值;(3)当c =b + n .时,且n 为正整数.线段BC (包括端点)上有且只有五个点的横坐标是整数,求b 的值.18.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式; (2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P试卷第10页,总14页…外…………○…※…内…………○…的坐标;若不存在,请说明理由. 19.综合与实践问题情境:在综合与实践课上,老师让同学们以“两个大小不等的等腰直角三角板的直角顶点重合,并让一个三角板固定,另一个绕直角顶点旋转”为主题开展数学活动,如图1,三角板ABC 和三角板CDE 都是等腰直角三角形,90C ∠=︒,点D ,E 分别在边BC ,AC 上,连接AD ,点M ,P ,N 分别为DE ,AD ,AB 的中点.试判断线段PM 与PN 的数量关系和位置关系.探究展示:勤奋小组发现,PM PN =,PM PN ⊥.并展示了如下的证明方法:∵点P ,N 分别是AD ,AB 的中点,∴PNBD ,12PN BD =. ∵点P ,M 分别是AD ,DE 的中点,∴PM AE ∥,12PM AE =.(依据1)∵CA CB =,CD CE =,∴BD AE =,∴PM PN =. ∵PNBD ,∴DPN ADC ∠=∠.∵PM AE ∥,∴DPM DAC ∠=∠.∵90BCA ∠=︒,∴90ADC CAD ∠+∠=︒.(依据2)∴90MPN DPM DPN CAD ADC ∠=∠+∠=∠+∠=︒.∴PM PN ⊥. 反思交流:(1)①上述证明过程中的“依据1”,“依据2”分别是指什么? ②试判断图1中,MN 与AB 的位置关系,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,把CDE △绕点C 逆时针方向旋转到如图2的位置,发现PMN 是等腰直角三角形,请你给出证明;(3)缜密小组的同学继续探究,把CDE △绕点C 在平面内自由旋转,当4CD =,10CB =时,求PMN 面积的最大值.20.如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M 、N (点 M 在点 N 的上方).○…………外…………订………………○……级:___________考号:__○…………内…………订………………○……(1)求 A 、B 两点的坐标;(2)设 OMN 的面积为 S ,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.21.如图,抛物线y=ax 2+bx+c 经过点A (﹣1,0),C (0,3),抛物线的顶点在直线1x =上.(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设△PBC 的面积为S ,求S 的最大值并求出此时点P 的坐标; 22.综合与探究如图,已知抛物线()20y ax bx c a =++≠与x 轴交于A 、()20B ,两点,与y 轴交于点C ,顶点坐标为点1924D ⎛⎫⎪⎝⎭,. (1)求此抛物线的解析式;(2)点P 为抛物线对称轴上一点,当PA PC +最小时,求点P 坐标;(3)在第一象限的抛物线上有一点M ,当BCM ∆面积最大时,求点M 坐标; (4)在x 轴下方抛物线上有一点H ,ABH ∆面积为6,请直接写出点H 的坐标.○…………装………○…………线…………※※请※※不※※要※※在※※○…………装………○…………线…………23.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.二、填空题24.如图,直线AB 交坐标轴于A(-2,0),B(0,-4),点P 在抛物线1(2)(4)2y x x =--上,则△ABP 面积的最小值为__________.25.如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.………○…………装………………订……………线…………○……学校:___________姓名:_级:___________考号:………○…………装………………订……………线…………○……26.如图,30AOB ∠=,C 是BO 上的一点,4CO =,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC PD +的最小值为 ________,当PC PD +的值取最小值时,则OPC ∆的面积为________.27.如图,已知直线433y x =-与x 轴、y 轴分别交于A ,B 两点,P 是以(0,1)C 为圆心,1为半径的圆上一动点,连接PA ,PB ,当PAB ∆的面积最大时,点P 的坐标为__________.28.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.…………装…………○…订…………○……线…………○……※请※※不※※要※※在※※装※※订内※※答※※题※※…………装…………○…订…………○……线…………○……29.如图,在△ABC 中,∠ACB =120°,AC =BC =2,D 是AB 边上的动点,连接CD ,将△BCD 绕点C 沿顺时针旋转至△ACE ,连接DE ,则△ADE 面积的最大值=_____.30.如图,∠AOB=45°,点M 、N 分别在射线OA 、OB 上,MN=7,△OMN 的面积为14,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为_____参考答案1.(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛-+- ⎝⎭或⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解; (2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+, ()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =AC = 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =,∴CH 则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:x =故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛-+- ⎝⎭或13,22⎛-+ ⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.2.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或33(22+-+.(3)当32m =时,PAB∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】 【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=,得到m 的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =--, ∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,∴303k b b +=⎧⎨=-⎩,解得:k 1b 3=⎧⎨=-⎩,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-, ∵//CE y 轴, ∴(1,2)E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --,∴223(23)3MN a a a a a =----=-+, ∴232a a -+=,解得:2a =,1a =(舍去), ∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,∴2223(3)3MN a a a a a =----=-, ∴232a a -=,解得:a =,a =(舍去),∴M ,综合可得M 点的坐标为(2,1)-或33(22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -, ∴223(23)3PG m m m m m =----=-+, ∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+, ∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-.【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.3.①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为;③点N 的横坐标为:4或52+或52.【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC的距离d =N 作x轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得152m +=,252m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =.【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B(﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h 为sin 45)2BP t ︒=-,∴211(4)2(2)2222PBE S BE h t t t ∆=⋅=⨯-⨯=-+当2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即NQ PQ ==∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得152m =,252m =, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴m =,Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=,解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴52m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或52或52-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.4.(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫ ⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭. 【解析】【分析】(1)将点A (-1,0),B (3,0)代入y=ax 2+bx+2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD=BD ,即可求y 的值; (3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE 是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,-103)或M (-2,-103); 【详解】 解:(1)将点()()1,0,3,0A B -代入22y ax bx =++, 可得24,33a b =-=, 224233y x x ∴=-++; ∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+,∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠CD BD ∴=,22CD BD ∴=()22214y y ∴-+=+14y ∴=, 11,4D ⎛⎫∴ ⎪⎝⎭;(3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=,∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--矩形,()()(),,0,2,1,1E x y C F ,111•222CEF SEQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅- ()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯--- 224233y x x =-++, 21736CEF S x x ∆∴=-+ ∴当74x =时,面积有最大值是4948, 此时755,424E ⎛⎫ ⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x += 2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭ ②四边形CNBM 时平行四边形时,3122x += 2x ∴=,()2,2M ∴;③四边形CNNB 时平行四边形时,1322x +=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭; 综上所述:()2,2M 或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.5.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大.方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.6.(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DF DO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得; (3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG•MN 列出关于k 的等式求解可得.【详解】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2;(2)由(1)知点D 坐标为(1,0),设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0),则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°,∵∠BDC =90°,∴∠BDO+∠CDF =90°,∴∠BDO =∠DCF ,∴△BDO ∽△DCF , ∴BO DF DO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1,∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N ,由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0.∴x 1+x 2=2+k ,x 1•x 2=k .∴MN =|x 1﹣x 2|=|2﹣k|.则过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,1),所以DG=1,∴S△PDQ=12DG•MN=12×1×|x1﹣x2|=12|2﹣k|,∴当k=0时,S△PDQ取得最小值1.【点睛】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.7.(1)y=﹣x2+2x+3;(2)t=32时,△PAE的面积最大,最大值是278;(3)t的值为1.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线的对称性可求得E点坐标,从而可求得直线EA的解析式,作PM∥y轴,交直线AE于点M,则可用t表示出PM的长,从而可表示出△PAE的面积,再利用二次函数的性质可求得其最大值即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.【详解】解:(1)由题意得:0 4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,∴t=32时,△PAE的面积最大,最大值是278.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t =﹣t 2+2t+3﹣3,即﹣t 2+t =0,解得t =1或t =0(舍去), ②当∠APE =90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK =﹣t 2+2t+3,AQ =t ,KE =3﹣t ,PQ =﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE =∠APQ+∠PAQ =90°, ∴∠PAQ =∠KPE ,且∠PKE =∠PQA , ∴△PKE ∽△AQP , ∴PK KEAQ PQ=, ∴222332t t t t t t-++-=-+,即t 2﹣t ﹣1=0,解得:t 或t 0(舍去),综上可知存在满足条件的点P ,t 的值为1或12+. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与几何面积最值问题以及二次函数与特殊三角形的问题,解题的关键是灵活运用二次函数的性质及几何知识.8.(1)成立,证明见解析;(2)DF=DE .(3)当x=0时,y 最小值 【分析】(1)如图1,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE (ASA ),得DF=DE ;(2)如图2,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE(ASA ),得DF=DE ;(3)根据(2)中的△ADF ≌△BDE 得到:S △ADF =S △BDE ,AF=BE .所以△DEF 的面积转化为:y=S △BEF +S △ABD .据此列出y 关于x 的二次函数,通过求二次函数的最值来求y 的最小值. 【详解】(1)DF=DE .理由如下: 如图1,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(2)DF=DE .理由如下: 如图2,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(3)由(2)知,△ADF ≌△BDE .则S △ADF =S △BDE ,AF=BE=x . 依题意得:y=S △BEF +S △ABD =12(2+x )xsin60°+12×2×2sin60°x+1)2.即x+1)20, ∴该抛物线的开口方向向上, ∴当x=0即点E 、B 重合时,y 最小值=29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【分析】(1)由DE ∥BC ,得到DB ECAB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可. 【详解】[初步感知](1)∵DE ∥BC , ∴DB ECAB AC=, ∵AB=AC , ∴DB=EC , 故答案为:=, (2)成立.理由:由旋转性质可知∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形, ∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ,∠ABD=∠ACE , ∵∠BOD=∠AOC , ∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形, ∴∠AED=45°, ∴∠AEC=135°, 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴∠ADB=∠AEC=135°,BD=CE , ∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高, ∴AM=EM=MD , ∴AM+BD=CM ;故答案为:90°,AM+BD=CM ; 【拓展提升】 (5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变, △ADE 与△ADC 面积的和达到最大, ∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变, ∴要△ADC 面积最大, ∴点D 到AC 的距离最大, ∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7. 【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.10.(1)m=6,()2,0;(2)当a=1时,ODE 面积的最大值为278【分析】(1)将点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数解析式求出m ,根据坐标中点公式求出点C 的横坐标即可;(2)由AC 两点坐标求出直线AB 的解析式为3342y x =-,设D 坐标为33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭,则6,E a a ⎛⎫⎪⎝⎭,进而得到2327(1)88ODESa =--+,即可解答【详解】解:(1)把点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数(0)m y x x=>,得:324m =,解得:m=6,∵A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为:4022+=, 故答案为:6,(2,0);(2)设直线AB 对应的函数表达式为y kx b =+.将34,2A ⎛⎫ ⎪⎝⎭,(2,0)C 代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解得3432k b ⎧=⎪⎪⎨⎪=-⎪⎩. 所以直线AB 对应的函数表达式为3342y x =-. 因为点D 在线段AB 上,可设33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭, 因为//DE y 轴,交反比例函数图像于点E .所以6,E a a ⎛⎫ ⎪⎝⎭. 所以221633333273(1)2428488ODESa a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭. 所以当a =1时,ODE 面积的最大值为278. 【点睛】本题考查了函数与几何综合,涉及了待定系数法求函数解析式、三角形面积、坐标中点求法、二次函数的应用等知识点,解题关键是用函数解析式表示三角形面积.11.(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M在整个运动过程中用时最少是3秒. 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;。
二次函数中面积的最值问题(六大题型)学生版-2024年中考数学压轴题专项训练
二次函数中面积的最值问题(六大题型)通用的解题思路:二次函数中的面积最值问题通常有以下3种解题方法:1)当所求图形的面积没有办法直接求出时,通常采用分割或补全图形的方法表示所求图形的面积,如下:一般步骤为:①设出要求的点的坐标;②通过割补将要求的图形转化成通过条件可以表示的图形面积和或差;③列出关系式求解;④检验是否每个坐标都符合题意.2)用铅垂定理巧求斜三角形面积的计算公式:三角形面积等于水平宽和铅锤高乘积的一半.3)利用平行线间的距离处处相等,根据同底等高,将所求图形的面积转移到另一个图形中,如图所示:一般步骤为:①设出直线解析式,两条平行直线k值相等;②通过已知点的坐标,求出直线解析式;③求出题意中要求点的坐标;④检验是否每个坐标都符合题意.题型01三角形面积最值问题1(2024·宁夏银川·一模)如图,二次函数y =-x 2+6x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,5 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,且在直线AB 上方,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②设△PAB 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.2(2024·新疆克孜勒苏·二模)如图,抛物线y =x ²+bx +c (b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A 2,0 ,AB =6,点P 为线段AB 上的动点,过P 作PQ ∥BC 交AC 于点Q .(1)求抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标.3(23-24九年级下·湖北武汉·开学考试)如图,抛物线y =ax 2-4ax +3a 交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴正半轴于点C ,OB =OC ,点P 在抛物线上.(1)求抛物线的解析式;(2)若tan∠ACP=2,求点P的横坐标.(3)平面上有两点M m,-m-3,求△PMN的面积的最小值.,N m+2,-m-54(23-24九年级下·辽宁沈阳·阶段练习)△ABC中,∠BAC=90°,AB=2,AC=4,点P从点C出发,沿射线CA方向运动,速度为每秒1个单位长度,同时点Q以相同的速度从点B出发,沿射线BA方向运动.设运动时间为x(x≠2且x≠4)秒,△APQ的面积为S.(1)当0<x<2时,如图①,求S与x的函数关系式;(2)当2<x<4时,如图②,求S的最大值;(3)若在运动过程中,存在两个时刻x1,x2,对应的点P和点Q分别记为P1,P2和Q1,Q2,对应的△AP1Q1和△AP2Q2的面积分别记为S1和S2,且当CP1=P1P2时,S1=S2,请求出x1的值.5(2023·山东聊城·二模)如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),点A 的坐标为-1,0,直线CD:y=2x-3与x轴交于点D.动点M在抛物线上运动, ,与y轴交于点C0,-3过点M作MP⊥x轴,垂足为点P,交直线CD于点N.(1)求抛物线的表达式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点M在运动过程中,能否使以C,N,M为顶点的三角形是以NM为腰的等腰直角三角形?若存在,请直接写出点M的坐标.6(2024·浙江宁波·模拟预测)如图,一次函数y=33x+3的图象与坐标轴交于点A、B,抛物线y=-33x2+bx+c的图象经过A、B两点.(1)求二次函数的表达式;(2)若点P为抛物线上一动点,在直线AB上方是否存在点P使△PAB的面积最大?若存在,请求出△PAB 面积的最大值及点P的坐标,请说明理由.7(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy中,已知直线y=-x-3与x轴交于点A,与y轴交于点C,过A,C两点的抛物线y=ax2+bx+c与x轴交于另一点B1,0,抛物线对称轴为直线l.(1)求抛物线的解析式;(2)点M为直线AC下方抛物线上一点,当△MAC的面积最大时,求点M的坐标;(3)点P是抛物线上一点,过点P作l的垂线,垂足为D,E是l上一点.要使得以P,D,E为顶点的三角形与△BOC全等,请直接写出点P的坐标.8(2024·江苏盐城·模拟预测)已知抛物线y=x2+bx-3与x轴交于A,B(点A在点B的左侧),与y轴交于点C,且OB=OC.(1)求抛物线的解析式和点A的坐标;(2)如图1,点P为直线BC下方抛物线上一点,求△PBC的最大面积;(3)如图2,M、N是抛物线上异于B,C的两个动点,若直线BN与直线CM的交点始终在直线y=2x-9上,求证:直线MN必经过一个定点,并求该定点坐标.9(2024·四川广元·二模)如图,在平面直角坐标系中,抛物线y1=-x2+bx+c与x轴交于点B,A(-3, 0),与y轴交于点C(0,3).(1)求直线AC和抛物线的解析式.(2)若点M是抛物线对称轴上的一点,是否存在点M,使得以M,A,C三点为顶点的三角形是以AC为底的等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.(3)若点P是第二象限内抛物线上的一个动点,求△PAC面积的最大值.10(2024·安徽安庆·一模)如图,抛物线y=ax2+bx+3与x轴交于点A1,0两点,与y轴交于、B3,0点C.(1)求此抛物线对应的函数表达式;(2)点E为直线BC上的任意一点,过点E作x轴的垂线与此抛物线交于点F.①若点E在第一象限,连接CF、BF,求△CFB面积的最大值;②此抛物线对称轴与直线BC交于点D,连接DF,若△DEF为直角三角形,请直接写出E点坐标.11(2024·安徽合肥·一模)如图,直线y=x-3与x轴交于点B,与y轴交于点C,抛物线y=x2+bx+c 经过B、C两点,抛物线与x轴负半轴交于点A.(1)求抛物线的函数表达式;(2)直接写出当x-3>x2+bx+c时,x的取值范围;(3)点P是位于直线BC下方抛物线上的一个动点,过点P作PE⊥BC于点E,连接OE.求△BOE面积的最大值及此时点P的坐标.12(2024·天津西青·一模)已知抛物线y=-x2-4ax-12a(a<0)与x轴交于A,B两点(点A在点B左边),与y轴交于点C.(1)若点D4,12在抛物线上.①求抛物线的解析式及点A的坐标;②连接AD,若点P是直线AD上方的抛物线上一点,连接PA,PD,当△PAD面积最大时,求点P的坐标及△PAD面积的最大值;(2)已知点Q的坐标为-2a,-8a,连接QC,将线段QC绕点Q顺时针旋转90°,点C的对应点M恰好落在抛物线上,求抛物线的解析式.13(2024·山东临沂·二模)如图,抛物线y=ax2+32x+c与x轴交于点A和点B4,0,与y轴交于点C0,2,连接BC,点D在抛物线上.(1)求抛物线的解析式;(2)小明探究点D位置时发现:如图1,点D在第一象限内的抛物线上,连接BD,CD,△BCD面积存在最大值,请帮助小明求出△BCD面积的最大值;(3)小明进一步探究点D位置时发现:如图2,点D在抛物线上移动,连接CD,存在∠DCB=∠ABC,请帮助小明求出∠DCB=∠ABC时点D的坐标.14(2024·广东深圳·二模)如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与轴交于A,B 点,与y轴交于点C0,3,点B的坐标为3,0,点P是抛物线上一个动点.(1)求二次函数解析式;(2)若P点在第一象限运动,当P运动到什么位置时,△BPC的面积最大?请求出点P的坐标和△BPC面积的最大值;(3)连接PO,PC,并把△POC沿CO翻折,那么是否存在点P,使四边形POP C为菱形;若不存在,请说明理由.15(2024·湖北·模拟预测)如图,抛物线y=x-12+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C0,-3.设P点在抛物线上运动,横坐标为m.(1)求此抛物线的解析式;(2)当P点位于第四象限时,求△BCP面积的最大值,并求出此时P点坐标;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.① 求h关于m的函数解析式,并写出自变量m的取值范围;② 根据h的不同取值,试探索点P的个数情况.16(22-23九年级下·重庆·阶段练习)抛物线y=ax²+bx+5经过点A1,0和点B5,0.该抛物线与直线y=12x+5相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.(1)求该抛物线所对应的函数解析式;(2)连接PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连接PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.17(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴分别相交于A、B两点,与y轴相交于点C,已知点A的坐标为(-1,0),点B的坐标为(3,0).(1)求出这条抛物线的函数表达式;(2)如图2,点D是第一象限内该抛物线上一动点,过点D作直线l∥y轴,直线l与△ABD的外接圆相交于点E.①仅用无刻度直尺找出图2中△ABD外接圆的圆心P.②连接BC、CE,BC与直线DE的交点记为Q,如图3,设△CQE的面积为S,在点D运动的过程中,S是否存在最大值?如果存在,请求出S的最大值;如果不存在,请说明理由.18(2024·新疆乌鲁木齐·一模)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C,点P与直线m同时停止运动,设运动时间为t秒t>0.(1)AH=,EF=(用含t的式子表示).(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.19(2024·重庆·模拟预测)如图,在平面直角坐标系中,抛物线y=ax2+bx+c过点(3,-4),交x轴于点A(-1,0),B两点,交y轴于点C(0,2).(1)求抛物线的表达式;(2)连接AC ,BC ,M 为线段AB 上一动点,过点M 作MD ∥BC 交直线AC 于点D ,连接MC ,求△MDC 面积的最大值及此时M 点的坐标;(3)在(2)中△MDC 面积取得最大值的条件下,将该抛物线沿射线BC 方向平移2个单位长度,P 是平移后的抛物线上一动点,连接CP ,当∠PCM 与△OBC 的一个内角相等时,请直接写出所有符合条件的点P 的坐标.20(2024·湖南衡阳·一模)如图,已知抛物线y =ax 2+bx +c 经过A 1,0 ,B -3,0 ,C 0,3 三点.(1)求抛物线的解析式;(2)若点D 为第二象限内抛物线上一动点,求△BCD 面积的最大值;(3)设点P 为抛物线的对称轴上的一个动点,求使△BPC 为直角三角形的点P 的坐标.21(2024·甘肃天水·一模)如图,在平面直角坐标系中,开口向下的抛物线与x 轴交于A ,B 两点,D 是抛物线的顶点.O 为坐标原点.A ,B 两点的横坐标分别是方程x 2-4x -12=0的两根,且cos ∠DAB =22.(1)求抛物线的函数解析式;(2)作AC ⊥AD ,AC 交抛物线于点C ,求点C 的坐标及直线AC 的函数解析式;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在一点P ,使△APC 的面积最大?如果存在,请求出点P 的坐标和△APC 的最大面积;如果不存在,请说明理由.22(2024·山东聊城·一模)在平面直角坐标系中,抛物线y =ax 2+bx -3与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C .(1)求抛物线的解析式及顶点坐标;(2)若点P 为第四象限内抛物线上一点,当△PBC 面积最大时,求点P 的坐标;(3)若点P 为抛物线上一点,点Q 是线段BC 上一点(点Q 不与两端点重合),是否存在以P 、Q 、O 为顶点的三角形是等腰直角三角形,若存在,请直接写出满足条件的点P 的坐标;若不存在,请说明理由.23(2024·吉林长春·一模)如图,在平面直角坐标系中,直线y =x +2分别交x 轴、y 轴于A 、B 两点,过点C 2,2 作x 轴垂线,垂足为D ,连接BC .现有动点P 、Q 同时从A 点出发,分别沿AB 、AD 向终点B 和终点D 运动,若点P 的运动速度为每秒2个单位长度,点Q 的运动速度为每秒2个单位长度.设运动的时间为t 秒.(1)求A、B两点的坐标;(2)当CQ∥AB时,t=;(3)设△CPQ的面积为y,写出y与t的函数关系式,并求△CPQ面积的最大值;(4)当△CPQ为轴对称图形时,直接写出t的值.24(2023·湖南娄底·中考真题)如图,抛物线y=x2+bx+c过点A-1,0,交y轴于点C.、点B5,0(1)求b,c的值.(2)点P x0,y0是抛物线上的动点0<x0<5①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25(2024·河南安阳·模拟预测)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与抛物线y=-x2+x-1的形状相同,且与x轴交于点-1,0.直线y=kx+2分别与x轴、y轴交于点A,B,和4,0与y=ax2+bx+c于点C,D(点C在点D的左侧).(1)求抛物线的解析式;(2)点P是直线y=kx+2上方抛物线上的任意一点,当k=2时,求△PCD面积的最大值;(3)若抛物线y=ax2+bx+c与线段AB有公共点,结合函数图象请直接写出k的取值范围.26(2024·湖南长沙·一模)如图,抛物线y=x2-bx+c与x轴交于A-1,0两点,与y轴交于,B m,0点C0,-3,顶点为D,直线BD交y轴于点E.(1)求抛物线的解析式.(2)设点P为线段BD上一点(点P不与B,D两点重合),过点P作x轴的垂线与抛物线交于点F,连接DF,BF,求△BDF面积的最大值.(3)连接CD,在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.27(2024·江西萍乡·一模)如图,已知抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A3,0,连接AC,BC.,C0,3(1)求抛物线的函数解析式;(2)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OBC相似,求出点P的坐标;(3)若点M是抛物线上的一个动点,且位于第一象限内,连接MC,MA.设△ACM的面积为S,试求S的最大值.28(2024·四川广元·二模)如图1,抛物线y=ax²+bx+c与x轴交于A,B两点,且点B的坐标为5,0,与y轴交于点C,该抛物线的顶点坐标为(3,-4).(1)求抛物线和直线BC的解析式.(2)在抛物线上是否存在点M,使得△BCM是以BC为底边的等腰三角形?若存在,求出所有点M的坐标;若不存在,请说明理由.(3)如图2,以点B 为圆心,画半径为2的圆,点P 为⊙B 上的一个动点,连接AC ,求△ACP 面积的最大值.29(2023·山东青岛·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AB =10cm ,BD =45cm .动点P 从点A 出发,沿AB 方向匀速运动,速度为1cm/s ;同时,动点Q 从点A 出发,沿AD 方向匀速运动,速度为2cm/s .以AP ,AQ 为邻边的平行四边形APMQ 的边PM 与AC 交于点E .设运动时间为t s 0<t ≤5 ,解答下列问题:(1)当点M 在BD 上时,求t 的值;(2)连接BE .设△PEB 的面积为S cm 2 ,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在∠PEC 的平分线上?若存在,求出t 的值;若不存在,请说明理由.30(2023·湖南怀化·中考真题)如图一所示,在平面直角坐标系中,抛物线y =ax 2+bx -8与x 轴交于A (-4,0)、B (2,0)两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P 为第三象限内抛物线上一点,作直线AC ,连接PA 、PC ,求△PAC 面积的最大值及此时点P 的坐标;(3)设直线l 1:y =kx +k -354交抛物线于点M 、N ,求证:无论k 为何值,平行于x 轴的直线l 2:y =-374上总存在一点E ,使得∠MEN 为直角.31(2024·海南省直辖县级单位·一模)如图,已知抛物线y =ax 2+2x +c a ≠0 ,与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C ,E 为抛物线的顶点.图1图2(1)求该抛物线的函数表达式;(2)如图1,点P 是第一象限内抛物线上一动点,连接PC 、PB 、BC ,设点P 的横坐标为t .①当t 为何值时,△PBC 的面积最大?并求出最大面积;②当t 为何值时,△PBC 是直角三角形?(3)如图2,过E 作EF ⊥x 轴于F ,若M m ,0 是x 轴上一动点,N 是线段EF 上一点,若∠MNC =90°,请直接写出实数m 的取值范围.32(2024·四川成都·一模)如图,直线y =-x -4分别交x 轴,y 轴于A ,C 两点,点B 在x 轴正半轴上.抛物线y =15x 2+bx +c 过A ,B ,C 三点.(1)求抛物线的解析式;(2)过点B 作BD ∥AC 交y 轴于点D ,交抛物线于点F .若点P 为直线AC 下方抛物线上的一动点,连接PD 交AC 于点E ,连接EB ,求S △PEB 的最大值及最大值时点P 的坐标;(3)如图2,将原抛物线进行平移,使其顶点为原点,进而得到新抛物线,直线y =-2x 与新抛物线交于O ,G 两点,点H 是线段OG 的中点,过H 作直线RQ (不与OG 重合)与新抛物线交于R ,Q 两点,点R 在点Q 左侧.直线GR 与直线OQ 交于点T ,点T 是否在某条定直线上?若是,请求出该定直线的解析式,若不是,请说明理由.33(2024·江苏苏州·一模)如图,在平面直角坐标系中,抛物线y =ax 2-8ax +10a -1a <0 与x 轴的交点分别为A x 1,0 ,B x 2,0 ,其中(0<x 2<x 1),且AB =4,与y 轴的交点为C ,直线CD ∥x 轴,在x 轴上有一动点E t ,0 ,过点E 作直线l ⊥x 轴,与抛物线、直线CD 的交点分别为P 、Q .(1)求抛物线的解析式;(2)当0<t ≤8时,求△APC 面积的最大值;(3)当t >2时,是否存在点P ,使以C 、P 、Q 为顶点的三角形与△OBC 相似?若存在,求出此时t 的值;若不存在,请说明理由.题型02四边形面积最值问题1(2024·安徽阜阳·一模)如图,抛物线y =ax 2+bx +3与x 轴交于A -1,0 ,B 3,0 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点P ,使△PAC 的周长最小,求△PAC 的周长的最小值及此时点P 的坐标;(3)若M 为抛物线在第一象限内的一动点,求出四边形OCMB 的面积的最大值及此时点M 的坐标.2(2024·山东临沂·一模)如图,在平面直角坐标系中,抛物线y =-14x 2+bx +c 与x 轴交于点A (-2,0)和点B ,与y 轴交于点C (0,4),点P 是直线BC 上方的抛物线上一点(点P 不与点B ,C 重合),过点P 作PD ∥y 轴交直线BC 于点D .(1)求抛物线的函数表达式;(2)求线段PD 长的最大值;(3)连接CP ,BP ,请直接写出四边形ABPC 的面积最大值为.3(2024·山西运城·一模)综合与探究如图,抛物线y=ax2+bx-3a≠0与x轴交于A-1,0、B两点,与y轴交于点C,点D-2,9 2在抛物线上,点P是抛物线在第四象限内的一个动点,过点P作PQ∥y轴交直线BD于点Q,连接PA、PB、QA,设点P的横坐标为m.(1)求抛物线的函数表达式;(2)求四边形PAQB面积的最大值及此时点P的坐标;(3)若点M是抛物线上任意一点,是否存在点M,使得∠MAB=2∠ACO,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.4(2024·安徽合肥·一模)在平面直角坐标系中,点O是坐标原点.抛物线y=ax2+bx-3a≠0与x轴交于A,B两点,直线l:y=kx+2与抛物线交于A,C两点,且A-1,0,B3,0.(1)求a,b,k的值;(2)点M是线段OB上的动点,点N在x轴上,MN=2,且点N在M的左边.过点M作MP⊥x轴,交抛物线于点P.过点N作x轴的垂线,交抛物线于点Q,交直线l于点R.①当以P,Q,R,M为顶点的四边形是平行四边形时,求点M的坐标.②记以P,Q,R,M为顶点的四边形面积为S,求S的最大值.5(2024·安徽蚌埠·一模)如图1,已知直线y=-x+5与坐标轴相交于A、B,点C坐标是-1,0,抛物线经过A、B、C三点.点P是抛物线上的一点,过点P作y轴的平行线,与直线AB交于点D,与x轴相交于点F.(1)求抛物线的解析式;(2)当点P在第一象限时,连接CP交OA于点E,连接EF,如图2所示;①求AE+DF的值;②设四边形AEFB的面积为S,则点P在运动过程中是否存在面积S的最大值,若存在,请求出此时点P的坐标;若不存在,请说明理由.6(2024·安徽马鞍山·一模)如图,过原点的二次函数y=ax2+bx的图象与x轴正半轴交于点A,经过点A的直线与该函数交于B1,-3,与y轴交于点C0,-4.(1)分别求此二次函数与直线AB的解析式.(2)点P是第四象限内二次函数图象上的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,设点P的横坐标为t.①当PD=12OC时,求t的值;②当点P在直线AB下方时,连接OP,过点B作BQ⊥x轴于点Q,BQ与OP交于点F,连接DF,求四边形FQED面积的最大值.7(2024·山东济南·一模)如图,直线y=-12x+3交y轴于点A,交x轴于点C,抛物线y=-14x2+bx+c经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P m,0顺时针旋转90°得到线段O A ,若线段O A 与抛物线只有一个公共点,请结合函数图象,求m的取值范围.8(2024·四川广元·二模)如图,二次函数y=ax2+bx+c的图象与x轴交于原点O和点A4,0,经过点A的直线与该函数图象交于另一点B1,3,与y轴交于点C.(1)求直线AB的函数解析式及点C的坐标.(2)点P是抛物线上位于直线AB上方的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,过点B作BF⊥x轴于点F,连接OP,与BF交于点G,连接DG.求四边形GDEF面积的最大值.(3)抛物线上是否存在这样的点Q,使得∠BOQ=45°?若存在,请求出点Q的坐标;若不存在,请说明理由.9(2024·广东珠海·一模)如图,抛物线y=-x2+3x+4和直线y=x+1交于A-1,0点,点B,B3,4在直线x=3上,直线x=3与x轴交于点C.(1)求∠BAC的度数.(2)点P从点A出发,以每秒2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒t>0.以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.10(2024·安徽宿州·二模)如图1,抛物线y=ax2+bx-3(a,b是常数且a>0)与x轴交于点A-1,0和点B(点B在点A的右侧),点D是抛物线的顶点,CD是抛物线的对称轴且交x轴于点C1,0.(1)求a,b的值;(2)点P是抛物线上一点且位于点A和点D之间.(i)如图2,连接AP,DP,BD,求四边形ABDP面积的最大值;(ii)如图3,连接AP并延长交CD延长线于点Q,连接BP交CD于点E,求CE+CQ的值.11(2024·安徽·二模)如图1,在平面直角坐标系中,抛物线y=ax2+bx-4交x轴于点A-1,0,B4,0,交y轴于点C,点M在该抛物线上,横坐标为m,将该抛物线M,C两点之间(包括M,C两点)的部分记为图象W.(1)求抛物线的解析式;(2)图象W的最大值与最小值的差为4时,求m的值;(3)如图2,若点M位于BC下方,过点A作AE∥BC交拋物线于点E,点D为直线AE上一动点,连接CM, CD,BM,BD,求四边形CDBM面积的最大值及此时点M的坐标.12(2024·四川广安·二模)如图,抛物线y=-x2+bx+c交x轴于A-4,0.,B两点,交y轴于点C0,4(1)求抛物线的函数解析式.(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P,连接AP、CP,求四边形AOCP的面积的最大值.(3)在抛物线的对称轴上是否存在点M,使得以点A、C、M为顶点的三角形是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.13(23-24九年级上·重庆渝北·期末)二次函数y=ax2+bx+4经过点A-1,0,点C,点D,点B4,0分别二次函数与y轴的交点和顶点,点M为二次函数图象上第一象限内的一个动点.(1)求二次函数的解析式;(2)如图1,连接BC ,过点A 作BC 的平行线交二次函数于点E ,连接CM ,BM ,BE ,CE .求四边形CMBE 面积的最大值以及此时点M 的坐标;(3)如图2,过点M 作MN ∥y 轴,交BC 于点N (点M 不与点D 重合),过点D 作DH ∥y 轴,交BC 于点H ,当DM =HN 时,直接写出点M 的坐标.题型03面积比最值问题14(2024·安徽合肥·一模)在平面直角坐标系xOy 中,已知抛物线y =a x +1 x -4 与x 轴交于A 、 B 两点,与y 轴交于点C 0,-2 .(1)求a 的值;(2)点D 为第四象限抛物线上一点①求△BCD 的面积最大值②连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;15(2023·四川遂宁·中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.16(2024·湖北省直辖县级单位·一模)抛物线y =x 2-4x 与直线y =x 交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)求出点B 和点D 的坐标;(2)如图①,连接OD ,P 为x 轴的负半轴上的一点,当tan ∠PDO =12时,求点P 的坐标;(3)如图②,M 是点B 关于抛物线的对称轴的对称点,Q 是抛物线上的动点,它的横坐标为m 0<m <5 ,连接MQ ,BQ ,MQ 与直线OB 交于点E ,设△BEQ 和△BEM 的面积分别为S 1和S 2,求S1S 2的最大值.17(2023·湖南永州·中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.18(2024·四川南充·一模)抛物线y =-38x 2+bx +c b >0 与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C 0,3 ,抛物线对称轴为x =1,点P 是抛物线在第一象限上动点,连接CB ,PB .(1)求抛物线和直线BC 的解析式;(2)如图,连接PA ,交BC 于点M ,设△ABM 的面积为S 1,△PBM 的面积为S 2,求S 1S 2的最小值及此时点P的坐标.19(2024·湖北孝感·一模)如图1,已知抛物线y=ax2+bx+3与x轴交于点A-1,0,B3,0,与y轴交于点C,连接BC.(1)求a,b的值及直线BC的解析式;(2)如图1,点P是抛物线上位于直线BC上方的一点,连接AP交BC于点E,过P作PF⊥x轴于点F,交BC于点G,(ⅰ)若EP=EG,求点P的坐标,(ⅱ)连接CP,CA,记△PCE的面积为S1,△ACE的面积为S2,求S1S2的最大值;(3)如图2,将抛物线位于x轴下方面的部分不变,位于x轴上方面的部分关于x轴对称,得到新的图形,将直线BC向下平移n个单位,得到直线l,若直线l与新的图形有四个不同交点,请直接写出n的取值范围.题型04面积和最值问题1(2024·吉林长春·一模)在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于点A(-1,0)、B(3,0),交y轴于点C,连结AC、BC.点D在该抛物线上,过点D作DE∥AC,交直线BC于点E,连结AD、AE、BD.设点D横坐标为m(m>0),△DAE的面积为S1,△DBE的面积为S2.(1)求a,b的值;(2)设抛物线上D、B两个点和它们之间的部分为图象G,当图象G的最高点的纵坐标与m无关时,求m的取值范围;(3)当点D在第一象限时,求S1+S2的最大值;(4)当S1:S2=2:1时,直接写出m的值.题型05面积差最值问题1(2024·安徽合肥·一模)如图1,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=。
二次函数中常见的几种综合题型
二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。
1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。
2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。
1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。
①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。
二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。
1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
13 三角形面积求最大值问题——铅垂法-【初中数学】120个题型大招!冲刺满分秘籍!
铅垂法求三角形面积最值问题求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S CD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似:【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高,=2ABC ABD BCD S S S ⨯-= 水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.方法突破例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.【分析】(1)265y x x =++,(2)取BC 两点之间的水平距离为水平宽,过点P 作PQ ⊥x 轴交直线BC 于点Q ,则PQ 即为铅垂高.根据B 、C 两点坐标得B 、C 水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1),得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.【分析】(1)抛物线解析式:21322y x x =--;一次函数解析式:1122y x =+.(2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫ ⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了,对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y ,按铅垂法思路,可得:12233121321312ABC S x y x y x y x y x y x y =++--- 如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.专项训练1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -.(1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.【分析】(1)把直线和曲线经过的点代入得到方程组,求解即可得到答案;(2)分两种情况:①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D ,分别根据三角形面积公式得到关系式,利用函数式表示三角形PAC 的面积,配方可得答案.【解答】解:(1) 二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,一次函数y mx n =+的图象经过点(0,1)C -,∴301m n n -+=⎧⎨=-⎩,∴131m n ⎧=-⎪⎨⎪=-⎩,二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,二次函数2y x bx c =-++的图象经过点(0,3)B ,∴9303b c c --+=⎧⎨=⎩,∴23b c =-⎧⎨=⎩.(2)由(1)知一次函数与二次函数的解析式分别为:113y x =--或223y x x =--+,①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,则13|3|22PAC S PD PD ∆=⨯⨯-=,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D,则13|3|22PAC S PD x x PD ∆=⨯⨯+-=, 点P 在抛物线上,设2(,23)P x x x --+,则1(,1)3D x x --,2215231433PD x x x x x ∴=--+++=--+,233535169(4)(2232624PAC S PD x x x ∆∴==-++=-++,即当56x =-时,PAC S ∆最大16924=.【点评】本题考查的是二次函数综合运用,涉及一次函数、图形面积的计算等,掌握其性质及运算是解决此题关键,2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、B 、C 的坐标代入抛物线表达式,即可求解;(2)由PBC ∆的面积PHB PHC S S ∆∆=+,即可求解;(3)分AC 是边、AC 是对角线两种情况,利用平移的性质和中点公式即可求解.【解答】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得42016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得38343a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,故抛物线的表达式为233384y x x =--;(2)设直线BC 的表达式为y mx n =+,则043m n n =+⎧⎨=-⎩,解得343m n ⎧=⎪⎨⎪=-⎩,故直线BC 的表达式为334y x =-,过点P 作y 轴的平行线交BC 于点H ,设点P 的坐标为233(,3)84x x x --,则点3(,3)4H x x -,则PBC ∆的面积221133334(33)3224844PHB PHC S S PH OB x x x x x ∆∆=+=⋅=⨯⨯--++=-+,304-< ,故该抛物线开口向下,PBC ∆的面积存在最大值,此时2x =,则点P 的坐标为(2,3)-;(3)存在,理由:设点N 的坐标为(,)m n ,则233384n m m =--①,①当AC 是边时,点A 向下平移3个单位得到点C ,则点()M N 向下平移3个单位得到点()N M ,则03n -=或03n +=②,联立①②并解得23m n =⎧⎨=-⎩或13m n ⎧=-⎪⎨=⎪⎩(不合题意的值已舍去);②当AC 是对角线时,则由中点公式得:11(03)(0)22n -=+③,联立①③并解得23m n =⎧⎨=-⎩(不合题意的值已舍去);综上,点N 的坐标为(2,3)-或(1-3)或(1--3).【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)将A 、B 、C 坐标代入即可求解析式;(2)设P 坐标,表示出PBC ∆的面积,再求出最大面积和面积最大时P 的坐标;(3)两个直角顶点是对应点,而AOC ∆两直角边的比为14,只需BOQ ∆两直角边比也为14,两个三角形就相似,分两种情况列出比例式即可.【解答】解:(1)设二次函数的解析式为12()()y a x x x x =--,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -,11x ∴=-,23x =,124()()a x x x x -=--,解得11x =-,23x =,43a =,∴二次函数的解析式为2448(1)(3)4333y x x x x =+-=--,故答案为:2448(1)(3)4333y x x x x =+-=--;(2)设直线BC 解析式为y kx b =+,将(3,0)B ,(0,4)C -代入得034k b b =+⎧⎨-=⎩,解得43b =,4c =-,BC ∴解析式是443y x =-,如答图1,过P 作//PD y 轴,交BC 于D ,点(,)P m n 是直线BC 下方抛物线上的一个动点,03m ∴<<,248433n m m =--,4(,4)3D m m -,224484(4)(4)43333PD m m m m m ∴=----=-+,22211439()(4)(30)262()22322PBC B C S PD x x m m m m m ∆∴=⋅-=-+⋅-=-+=--+,3032<< ,32m ∴=时,PBC S ∆最大为92,此时224843834()45333232n m m =--=⨯-⨯-=-,3(2P ∴,5)-,故答案为:3(2P ,5)-,PBC S ∆最大为92;(3(1,0)A - ,(0,4)C -,(3,0)B ,∴14OA OC =,3OB =, 点Q 在y 轴上,90BOQ AOC ∴∠=∠=︒,若以O ,B ,Q 为顶点的三角形与AOC ∆相似,则BOQ ∠与AOC ∠对应,分两种情况:①如答图2,AOC QOB∆∆∽,则14OQ OAOB OC==即134OQ=,解得34OQ=,13(0,4Q∴或23 (0,)4Q-;②AOC BOQ∆∆∽,则14OB OAOQ OC==即314OQ=,解得12OQ=,3(0,12)Q∴或4(0,12)Q-,综上所述,存在y轴上的点Q,使以O,B,Q为顶点的三角形与AOC∆相似,这样的点一共4个:13 (0, 4Q或23 (0,)4Q-,3(0,12)Q或4(0,12)Q-,故答案为:存在这样的点Q,坐标分别是:13 (0, 4Q或23 (0,)4Q-,3(0,12)Q或4(0,12)Q-,【点评】本题是二次函数、相似三角形、面积等问题的综合题,主要考查坐标、线段的转化,面积的表示,涉及方程思想,分类思想等,难度适中.4.如图1,抛物线2y x bx c=-++与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC ∆的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求解析式;(2)过点P 作PH x ⊥轴于H ,交BC 于点G ,先求出BC 的解析式,设点2(,23)P m m m -++,则点(,3)G m m -+,由三角形面积公式可得221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,由二次函数的性质可求解;(3)设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,先求出点A ,点M 坐标,可求MC 解析式,可得4DE MD ==,由等腰直角三角形的性质可得MQ NQ ==,由两点距离公式可列222(|4|)42n n -=+,即可求解.【解答】解:(1) 点(3,0)B ,点(0,3)C 在抛物线2y x bx c =-++图象上,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线解析式为:223y x x =-++;(2) 点(3,0)B ,点(0,3)C ,∴直线BC 解析式为:3y x =-+,如图,过点P 作PH x ⊥轴于H ,交BC 于点G ,设点2(,23)P m m m -++,则点(,3)G m m -+,22(23)(3)3PG m m m m m ∴=-++--+=-+,221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+ ,∴当32m =时,PBC S ∆有最大值,∴点3(2P ,154;(3)存在N 满足条件,理由如下: 抛物线223y x x =-++与x 轴交于A 、B 两点,∴点(1,0)A -,2223(1)4y x x x =-++=--+ ,∴顶点M 为(1,4),点M 为(1,4),点(0,3)C ,∴直线MC 的解析式为:3y x =+,如图,设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,∴点(3,0)E -,4DE MD ∴==,45NMQ ∴∠=︒,NQ MC ⊥ ,45NMQ MNQ ∴∠=∠=︒,MQ NQ ∴=,22MQ NQ ∴==,设点(1,)N n ,点N 到直线MC 的距离等于点N 到点A 的距离,NQ AN ∴=,22NQ AN ∴=,222()2MN AN ∴=,222(|4|)42n n ∴-=+,2880n n ∴+-=,46n ∴=-±,∴存在点N 满足要求,点N 坐标为(1,426)-+或(1,426)--.【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,一次函数的性质,两点距离公式,等腰直角三角形的性质等知识,利用参数列方程是本题的关键.5.如图,抛物线过点(0,1)A 和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为3,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB ∆面积最大时,求点P 的坐标及PAB ∆面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为13y x =-+,求出F 点的坐标,由平行四边形的性质得出1613181(33a a a -+=-+--,求出a 的值,则可得出答案;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,得出2PP n '=-+,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C ,4)3-,设Q ,)m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,(0,1)A ,B ,0),设直线AB 的解析式为y kx m =+,∴01m m +==⎪⎩,解得31k m ⎧=⎪⎨⎪=⎩,∴直线AB的解析式为13y x =+, 点FF ∴点纵坐标为113=-,F ∴点的坐标为,1)3-,又 点A 在抛物线上,1c ∴=,对称轴为:2b x a=-=,b ∴=-,∴解析式化为:21y ax =-+,四边形DBFE 为平行四边形.BD EF ∴=,1613181(33a a a ∴-+=-+--,解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则3(,1)3P n '+,2733PP n n '∴=-+,2213737493)32222624ABP S OB PP n n ∆'==-+=--+ ,∴当736n =ABP ∆49324,此时7(36P 47)12.(3) 231231y y x x ⎧=+⎪⎨⎪=-++⎩,0x ∴=或733x =7(33C ∴,43-,设(3Q ,)m ,①当AQ 为对角线时,47(3,)33R m ∴+,R 在抛物线2(3)4y x =--+上,274(33)433m ∴+=--+,解得443m =-,44(3,3Q ∴-,437(3,33R -;②当AR 为对角线时,107(3,33R m ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=--+,解得10m =-,Q ∴10)-,37)3R -.综上所述,443Q -,37(3R -;或Q ,10)-,37)3R -.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.6.在平面直角坐标系xOy 中,等腰直角ABC ∆的直角顶点C 在y 轴上,另两个顶点A ,B 在x 轴上,且4AB =,抛物线经过A ,B ,C 三点,如图1所示.(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l 交抛物线于M ,N 两点,如图2所示.①求CMN ∆面积的最小值.②已知3(1,2Q -是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l 对称,若存在,求出点P 的坐标及直线l 的一次函数表达式;若不存在,请说明理由.【分析】(1)先根据等腰直角三角形的性质求得OA 、OB 、OC ,进而得A 、B 、C 三点的坐标,再用待定系数法求得抛物线的解析式;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,联立方程组求得12||x x -,再由三角形的面积公式求得结果;②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,由OP OQ =列出方程求得m 的值,再根据题意舍去不合题意的m 值,再求得PQ 的中点坐标,便可求得直线l 的解析式.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,在等腰Rt ABC ∆中,OC 垂直平分AB ,且4AB =,2OA OB OC ∴===,(2,0)A ∴-,(2,0)B ,(0,2)C -,∴4204202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得,1202a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线的解析式为2122y x =-;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,由2122y x y kx ⎧=-⎪⎨⎪=⎩,可得21202x kx --=,122x x k ∴+=,124x x =- ,∴222121212()()4416x x x x x x k -=+-=+,∴12||x x -=∴121||2CMN S OC x x ∆=-= ,∴当0k =时取最小值为4.CMN ∴∆面积的最小值为4.②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,OP OQ ∴==解得,1m 2m =,31m =,41m =-,31m = ,41m =-不合题意,舍去,当1m =1)2P -,线段PQ 的中点为1)-,∴1=-,∴1k =,∴直线l 的表达式为:(1y x =-,当2m =时,点(P 1)2-,线段PQ 的中点为,1)-,∴1=-,∴1k =,∴直线l 的解析式为(1y x =+.综上,点P ,1)2-,直线l 的解析式为(1y x =-或点(P ,1)2-,直线l 的解析式为(1y x =+.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,轴对称的性质,第(2)①题关键是求得M 、N 两点的横坐标之差,第(2)②小题关键是根据轴对称性质列出m 的方程,以及求得PQ 的中点坐标.。
中考数学总复习《二次函数的最值》练习题-附带答案解析
中考数学总复习《二次函数的最值》练习题-附带答案解析一、单选题(共12题;共24分)1.如图,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm。
点P从点A出发,沿AB方向以2cm/s的速度向点B运动,同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ的最大面积是()A.0cm2B.8cm2C.16cm2D.24 cm2 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A.②④⑤⑥⑦B.①②③⑥⑦C.①③④⑤⑦D.①③④⑥⑦3.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时函数值y的最小值为﹣2,则m的值是()A.B.C.或D.- 或4.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣25.二次函数y=−x2+6x−7,当x取值为t≤x≤t+2时有最大值t=2,则t的取值范围为()A.t≤0B.0≤t≤3C.t≥3D.以上都不对6.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.√3cm2B.32√3cm2C.92√3cm2D.272√3cm27.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.x>1时y随x的增大而减小C.顶点坐标是(1,2)D.函数有最大值28.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣7 9.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时函数值y随x值的增大而增大;④当x=﹣1或x=3时函数的最小值是0;⑤当x=1时函数的最大值是4A.4B.3C.2D.110.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√2 11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=-1对称;③当x=-2时函数y的值等于0;④当x=-3或x=1时函数y的值都等于0.其中正确结论的个数是()A.1B.2C.3D.4 12.如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共6题;共6分)13.已知二次函数y=ax2+4ax+a2−1,当−4≤x≤1时y的最大值为5,则实数a的值为.14.函数y=2x2-8x+1的最小值是.15.当-2≤x≤1时二次函数若y=−(x−m)2+m2+1有最大值4,则m的值为.16.如图,在△ABC中△B=90°,AB=12cm,BC=24cm,动点P从点A开始向B点以2cm/s的速度移动(不与点B重合);动点Q从点B开始向点C以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒四边形APQC的面积最小.17.一条抛物线与x轴相交于A,B两点(点A在点B的左侧),若点M,N的坐标分别为(-1,-2),(1,-2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为.18.二次函数y=mx2+2x+m−4m2的图象经过原点,则此抛物线的顶点坐标是三、综合题(共6题;共66分)19.如图,在平面直角坐标系中点A、C的坐标分别为(﹣1,0)、(0,﹣√3),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.20.X市与W市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数n的部分数据如下:车厢节数n4710往返次数m16104b(k,b为常数,k≠0);②y=ax2+bx+c(a,b,c为常数,a≠0)中选取一个合适的函数模型,求出的m关于n的函数关系式是m=(不写n的范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时一天的设计运营人数Q最多(每节车厢载容量设定为常数p).21.在平面直角坐标系xOy中抛物线y=ax2+bx+2(a≠0)经过点A(1,−1),与y轴交于点B.(1)直接写出点B的坐标;(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时n存在最大值N.①若N=2,求抛物线的表达式;②若−9<a<−2,结合函数图象,直接写出N的取值范围.22.一商店销售某种商品,平均每天可售出20件,每件盈利50元,为了扩大销售、增加利润,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时该商店每天销售利润为1600元?(2)当每件商品降价多少元时该商店每天销售利润最大?最大为多少元?23.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?24.如图,已知直线y=﹣12x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y 轴上,M为抛物线的顶点.(1)请直接写出点A的坐标及该抛物线的解析式;(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】A 11.【答案】B 12.【答案】D13.【答案】2−√10 或1 14.【答案】-7 15.【答案】2或- √3 16.【答案】3 17.【答案】-3 18.【答案】(-4,-4)19.【答案】(1)解:设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 为常数)由抛物线的对称性知B 点坐标为(3,0) 依题意得: {a −b +c =09a +3b +c =0c =−√3解得: {a =√33b =−2√33c =−√3∴所求二次函数的解析式为 y =√33x 2−2√33x −√3(2)解:∵P 点的横坐标为m∴P 点的纵坐标为 √33m 2−2√33m −√3设直线BC 的解析式为y=kx+b (k≠0,k 、b 是常数) 依题意,得 {3k +b =0b =−√3∴{k=√33b=−√3故直线BC的解析式为y=√33x−√3∴点F的坐标为(m,√33m−√3)∴PF=−√33m2+√3n(0<m<3)(3)解:∵△PBC的面积S=S△CPF+S△BPF=12PF⋅BO=12×(−√33m2+√3m)×3=−√32(m−32)2+9√38∴当m=32时△PBC的最大面积为9√38把m=32代入y=√33x2−2√33x−√3得y=−5√34∴点P的坐标为(32,−5√3 4)20.【答案】(1)-2n+24(2)解:由题意得:Q=pmn=pn(−2n+24)=−2pn2+24pn ∵−2p<0∴Q有最大值∴当n=−24p2×(−2p)=6时Q有最大值此时答:一列火车每次挂6节车厢,一天往返12次时一天的设计运营人数最多. 21.【答案】(1)(0,2)(2)解:①依题意,当N=2时该抛物线的顶点为(0,2).设抛物线的解析式为y=ax2+2.由抛物线过A(1,−1),得a+2=−1解得a=−3∴抛物线的表达式为y=−3x2+2.②2≤N<322.【答案】(1)解:设每件商品应降价x元,根据题意,得(50-x)(20+2x)=1600 解得:x1=10,x2=30因要求每件盈利不少于25元,故x2=30应舍去……答:每件商品应减价10元,该商店每天销售利润为1600元.(2)解:设每件商品应降价x元,销售利润为W元。
二次函数背景下三角形面积最值问题的几种解法
数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。
二次函数之三角形面积最大值专题
432y 2+-=x x 1221y 2++-=x x =max y 21ah S ABC 21=∆专题一:二次函数与面积问题------类型1:三角形面积的最大值一、知识点睛1.点P 是抛物线 上一动点。
若设点P 的横坐标为m ,则点P 的纵坐标可表示为: ,∴点P 的坐标可表示为:2.如右图,AB ∥x 轴,BC ∥y 轴。
则线段BC= ,AB=故:“竖直方向”上的线段长 = —“水平方向”上的线段长 = —3.二次函数的一般式为: ,顶点式为: 例如:将 化为顶点式为: ,开口向 ,顶点坐标: ∴当x= 时,二、铅垂法(割补求面积) 坐标系中三角形面积公式:S= •一点引铅垂线段的长•另两点的水平宽锐角三角形中过点C 引的铅垂线 钝角三角形中过点C 引的铅垂线锐角三角形中过点B 引的铅垂线 ah S ABC 21=∆ 铅垂法的优点: 1.任何一点引铅垂线都可以 2.任何形状的三角形都适用 3.与三角形在第几象限无关 4.与三角形在不在坐标系无关 ah S ABC 21=∆三、典例讲解例1.已知二次函数62343y 2++-=x x 交x 轴于A ,B 两点,交y 轴于点C 。
点P 是第一象限抛物线上一动点。
连结BC ,BP 和CP 。
当△BCP 面积最大时,求P 点坐标。
四、小试牛刀例2.如图,已知抛物线经过两点A(-3,0),B(0,3)且其对称轴为直线x= -1(1)求此抛物线的解析式(2)若点P 是抛物线上点A 与点B 之间的动点(不包括点A 点B )求△PAB 的面积最大值,并求出此时点P 的坐标。
五、能力提升1.如图,在平面直角坐标系中,抛物线34383y 2--=x x 与x 轴交于点A(-2,0),B(4,0),与直线323y -=x 交于点C(0,-3),直线323y -=x 与x 轴交于点D ,点P 是抛物线上第四象限上的一个动点,连接PC ,PD 。
当△PCD 面积最大时,求点P 坐标.2. 如图,已知抛物线c bx ++-=2x y 过(1,4)与(4,-5)两点,且与一直线1x y +=相交于A,C 两点,(1)求该抛物线解析式.(2)求A,C 两点的坐标.(3)若P 是抛物线上位于直线AC.上方的一个动点,求△APC 的面积的最大值.B C A O M N xy3.如图,抛物线经过A (-1,0)、B (3,0)、C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B 、C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB 、MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及最大面积;若不存在,说明理由.4.如图,在直角坐标系中,抛物线经过点A (0, 4), B(1, 0), C(5, 0),其对称轴与x 轴相交于点M.(1)求抛物线的解析式和对称轴.(2)在抛物线的对称轴上是否存在一点P ,使△PAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)连接AC,在直线AC 的下方的抛物线上,是否存在一点N,使△NAC 的面积最大?若存在,请求出点N 的坐标:若不存在,请说明理由.。
二次函数之三角形面积最大-学生版
二次函数之三角形面积最大例1.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M 的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.例2.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.1.如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2.如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)3.已知:如图,直线33+=x y 与x 轴交于C 点,与y 轴交于A 点,B 点在x 轴上,△OAB 是等腰直角三角形.(1)求过A .B .C 三点的抛物线的解析式;(2)若直线CD ∥AB 交抛物线于D 点,求D 点的坐标;(3)若P 点是抛物线上的动点,且在第一象限,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标和△PAB 的最大面积;若没有,请说明理由.4.如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根.(1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD .①当△OPC 为等腰三角形时,求点P 的坐标;②求△BOD 面积的最大值,并写出此时点D 的坐标.5.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,CO:AB=4:5.(1)求过A.C.D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.。
2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简略答案)
(1)求直线 的解析式;
(2)如图1,点 是直线 下方抛物线上的一点,连接 ,当 的面积最大时,连接 ,设 分别是线段 上的点,且 ,求四边形 的面积;
(3)如图2,点 是线段 的中点,将抛物线 沿 轴正方向平移得到新抛物线 , 经过点 , 的顶点为 ,在新抛物线 的对称轴上,是否存在点 ,使得 为等腰三角形?若存在,写出点 的坐标;若不存在,请说明理由.
(3)若点Q是上述抛物线上一点,且满足∠ABQ=2∠ABC,求满足条件的点Q的坐标.
11.如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)在抛物线对称轴上找一点 ,使点 , , 三点构成的图形是直角三角形,求点 的坐标.
(2)当△PBC的面积最大时,求P点的坐标.
(3)在X轴上是否存在点N,使△NBC是等腰三角形,若存在直接写出所有符合条件的点N的坐标,若不存在说明理由
8.如图,直线 交 轴于点 ,交 轴于点B,抛物线 的顶点为 ,且经过点 .
(1)求该抛物线所对应的函数表达式;
(2)点 是抛物线上的点, 是以 为直角边的直角三角形,请直接写出点 的坐标.
13.如图,抛物线 经过 , 两点,且与 轴交于点 ,点 是抛物线的顶点,抛物线的对称轴 交 轴于点 ,连接 .
(1)求经过 三点的抛物线的函数表达式;
(2)点 在该抛物线的对称轴上,若 是以 为直角边的直角三角形,求点 的坐标;
(3)若 为 的中点,过点 作 轴于点 , 为抛物线上一动点, 为 轴上一动点, 为直线 上一动点,当以 、 、 、 为顶点的四边形是正方形时,请求出点 的坐标.
二次函数动点三角形面积最值问题
当点CC在何处时SS△AAAAAA有最大值?1.铅垂高法做CCCC⊥ xx轴且交直线AABB于点D,设点CC坐标为(mm, aamm2+ bbmm+ cc),直线AB的解析式为gg(xx) = kkxx + qq,∴点D坐标为(mm, kkmm + qq),∴CC CC的长度为f(m) − g(m) = aamm2 + bbmm + cc−kkmm−qq, ∴SS△AA AAAA= SS△AAAAAA+ SS△AA AAAA= AAAA×(xx BB−xx AA),将CC CC为aamm2 + bbmm + cc−kkmm−qq代入,令(xx−xx) = ss,可2 AA AA得SS= (aamm2+bbmm+cc−kk mm−qq)×ss= aa ss mm2+(bb−kk)ss mm+ss(cc−qq),当aassmm2+ (bb−△AAAAAA 2 2kk)ssmm + ss(cc−qq)有最大值时,SS△AA AAAA有最大值.当m = −bb= −(bb−kk)ss= −bb−kk时, aassmm2 + (bb−kk)ssmm + ss(cc−qq)有最2aa2aass2aa大值, SS△AAAAAA有最大值.A A � A A A � A作直线l l 平行于直线AABB 且与f(x)只有一个交点C (即直线l 与ff (xx ) = aaxx 2 + bbxx + cc 相切),此时SS △AAAAAA 为最大值.∴ ff ′(xx ) =ff (xx AA ) − ff (xx A A ) = 2aaxx + bb xx AA − xx AA (aaxx 2 + bbxx AA + cc ) − (aaxx 2 + bbxx A A + cc ) ⇒= 2aaxx + bb xx AA − xx AA aa (xx 2 − xx 2) + bb (xx AA − xx A A ) ⇒= 2aaxx + bb xx AA − xx AA aa (xx AA + xx A A )(xx AA − xx A A ) + bb (xx AA − xx A A )⇒ xx AA − xx AA= 2aaxx + bb ⇒ aa (xx AA + x x AA ) + bb = 2aaxx + bb ⇒ xx = xx AA + xx AA 2 ∴当xx = xx BB +xx AA时, SS 有最大值. 2 △AAAAAA。
二次函数面积最值问题的4种解法
微信公众号
从小学数学-------------------------------------------------
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。 设动点 P 的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的 计算公式,得出二次函数,必有最大值。
微信公众号
从小学数学-------------------------------------------------
原 题 :在( 1)中 的 抛 物 线 上 的 第 二 象 限 是 否 存 在 一 点 P,使 △PBC 的 面 积 最 大 ? 若 存 在 , 求出 P 点的坐标及△PBC 的面积最大值,若没有,请说明理由。 考试题型,大多类似于此。求面积最大值的动点坐标,并求出面积最大值。 一般解题思路和步骤是,设动点 P 的坐标,然后用代数式表达各线段的长。通过公式计 算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。方法要点是,把所求图像的面积适当的割补,转化成有利于面 积表达的常规几何图形。请看解题步骤。
微信众号
从小学数学-------------------------------------------------
解 法 二 : 铅 锤 定 理 , 面 积 =铅 锤 高 度 ×水 平 宽 度 ÷2。 这 是 三 角 形 面 积 表 达 方 法 的 一 种 非 常 重要的定理。 铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。因为, 铅 锤 定 理 ,在 很 多 地 方 都 用 的 到 。这 里 ,也 有 铅 锤 定 理 的 简 单 推 导 ,建 议 大 家 认 真 体 会 。
解法四:三角函数法。请大家认真看上面的解题步骤。 总之,从以上的四种解法可以得出一个规律。过点 P 做辅助线,然后利用相关性质,找 出各元素之间的关系。 设动点 P 的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点 式,求出三角形面积的最大值。 对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题 中,求三角形面积最大值问题,就非常简单了。
二次函数与三角形最大面积的3种求法
二次函数与三角形最大面积的3种求法一.解答题(共7小题)1.(2012•广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.2.(2013•茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).(1)求a的值和抛物线的顶点坐标;(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.3.(2011•茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.第1页(共12页)4.(2012•黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴;(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由.5.(2013•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.6.(2009•江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.7.如图,已知二次函数y=ax2+bx+c经过点A(1,0),C(0,3),且对称轴为直线x=﹣1.(1)求二次函数的表达式;(2)在抛物线上是否存在点P,使△PAB得面积为10,请写出所有点P的坐标.二次函数与三角形最大面积的3种求法参考答案与试题解析,解得=1,解得(PN OA(y×(,(=((﹣+时,x=+2x+3=,∴(,,)﹣×﹣﹣﹣﹣﹣(()+∴顶点坐标为(﹣,x x+2,,解得y=y=×y=,解得x﹣于点,x+2﹣×(﹣的坐标为(﹣BC==,y=x x+4=(,==5t﹣﹣t+4,﹣t+4x+4﹣(t﹣﹣NG+NG OC=(﹣t),t=时,,t=,得:y=t+4=,﹣,y=(=﹣x+4=﹣==5t﹣﹣x+4,﹣x+4﹣(t﹣﹣NG+CE=OC=(﹣t),t=时,,t=,得:y=t+4=,﹣5.(2013•新疆),解得,解得联立,﹣x=,﹣=,,﹣,﹣1=×=,=3×,此时,﹣..((解得﹣BE PE+((﹣时,=时,﹣,))根据题意得:AB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中三角形面积最大值综合题Revised by Petrel at 20212017中考数学全国试题汇编------二次函数中三角形面积最大值综合题28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式;(2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM AC ,交AB 于点M ,当AMN ∆面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++,得:424064840a b a b -+=⎧⎨++=⎩,1分解得:14a =-,32b =.∴该二次函数的表达式为213442y x x =-++.3分 (2)设点N 的坐标为(n ,0)(-2<n <8),则2BN n =+,8CN n =-.∵B (-2,0),C (8,0), ∴BC =10.令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴810AM NC nAB BC -==.4分 ∵OA =4,BC =10, ∴114102022ABCSBC OA =⋅=⨯⨯=.5分∴2811(8)(2)(3)51055AMNABNnSS n n n -==-+=--+.6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴12OM AB.=8分 ∵2241625AB OB OA =+=+=,22641645AC OC OA =+=+=,∴12AB AC,=9分∴14OM AC =.10分24(2017海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。
(1)求该抛物线所对应的函数解析式; (2)该抛物线与直线335y x =+相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。
直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。
①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ∆的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。
是否存在点P ,使得CNQ ∆与PBM ∆相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。
【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有=或=两种情况,利用P 点坐标,可分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线C D交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN=PNCE+PNDF=PN=[﹣(t﹣)2+]=﹣(t﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有=或=两种情况,∵CQ⊥PM,垂足为Q,∴Q (t ,3),且C (0,3),N (t ,t +3), ∴CQ=t ,NQ=t +3﹣3=t , ∴=,∵P (t ,t 2﹣t +3),M (t ,0),B (5,0),∴BM=5﹣t ,PM=0﹣(t 2﹣t +3)=﹣t 2+t ﹣3,当=时,则PM=BM ,即﹣t 2+t ﹣3=(5﹣t ),解得t=2或t=5(舍去),此时P (2,); 当=时,则BM=PM ,即5﹣t=(﹣t 2+t ﹣3),解得t=或t=5(舍去),此时P (,﹣);综上可知存在满足条件的点P ,其坐标为(2,)或(,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、二次函数的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P 点坐标表示出△PCD 的面积是解题的关键,在(2)②中利用相似三角形的性质确定出相应线段的比是解题的关键.本题考查知识点较多,综合性较强,难度较大. 24.在平面直角坐标系xoy 中,规定:抛物线()2y a x h k =-+的伴随直线为()y a x h k =-+.例如:抛物线()2213y x =+-的伴随直线为()213y x =+-,即2 1.y x =-(1)在上面规定下,抛物线()214y x =+-的顶点为.伴随直线为;抛物线()214y x =+-与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线()214y m x m =--与其伴随直线相交于点,A B (点A 在点B 的右侧)与x 轴交于点,.C D①若90,CAB ︒∠=求m 的值;②如果点(),P x y 是直线BC 上方抛物线的一个动点,PBC ∆的面积记为S ,当S 取得最大值274时,求m 的值. 【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标; (2)①可先用m 表示出A 、B 、C 、D 的坐标,利用勾股定理可表示出AC 2、AB 2和BC 2,在Rt △ABC 中由勾股定理可得到关于m 的方程,可求得m 的值;②由B 、C 的坐标可求得直线BC 的解析式,过P 作x 轴的垂线交BC 于点Q ,则可用x 表示出PQ 的长,进一步表示出△PBC 的面积,利用二次函数的性质可得到m 的方程,可求得m 的值. 【解答】解:(1)∵y=(x +1)2﹣4, ∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x +1)﹣4,即y=x ﹣3, 联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x ﹣3;(0,﹣3);(﹣1,﹣4); (2)①∵抛物线解析式为y=m (x ﹣1)2﹣4m , ∴其伴随直线为y=m (x ﹣1)﹣4m ,即y=mx ﹣5m , 联立抛物线与伴随直线的解析式可得,解得或,∴A (1,﹣4m ),B (2,﹣3m ),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],∴S△PBC=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.24(2017湖北恩施).如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x,x2+1),而F(0,2),利用两点间的距离公式得到BF2=x2+(x2+1﹣2)2=,再利用配方法可得到BF=x2+1,由于BC=x2+1,所以BF=BC;(3)如图1,利用菱形的性质得到CB=CF=PF,加上CB=FB,则可判断△BCF 为等边三角形,所以∠BCF=60°,则∠OCF=30°,于是可计算出CF=4,所以PF=CF=4,从而得到自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,先解方程组得B(1+,3+),设Q(t,t2+1),则E(t,t+2),则EQ=﹣t2+t+1,则S△QBF=S△EQF+S△EQB=(1+)EQ=(1+))(﹣t2+t+1),然后根据二次函数的性质解决问题.【解答】解:(1)把点(﹣2,2),(4,5)代入y=ax2+c得,解得,所以抛物线解析式为y=x2+1;(2)BF=BC.理由如下:设B(x,x2+1),而F(0,2),∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,∴BF=x2+1,∵BC⊥x轴,∴BC=x2+1,∴BF=BC;(3)如图1,m为自然数,则点P在F点上方,∵以B、C、F、P为顶点的四边形是菱形,∴CB=CF=PF,而CB=FB,∴BC=CF=BF,∴△BCF为等边三角形,∴∠BCF=60°,∴∠OCF=30°,在Rt△OCF中,CF=2OF=4,∴PF=CF=4,∴P(0,6),即自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,当k=1时,一次函数解析式为y=x+2,解方程组得或,则B(1+,3+),设Q(t,t2+1),则E(t,t+2),∴EQ=t+2﹣(t2+1)=﹣t2+t+1,∴S△QBF=S△EQF+S△EQB=(1+)EQ=(1+))(﹣t2+t+1)=﹣(t﹣2)2++1,当t=2时,S△QBF有最大值,最大值为+1,此时Q点坐标为(2,2).25(2017山东东营).如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM 的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.25(2017山东聊城).如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?【考点】HF:二次函数综合题.【分析】(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt △PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.【解答】解:(1)根据题意,把A(0,6),B(6,0)代入抛物线解析式可得,解得,∴抛物线的表达式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴抛物线的顶点坐标为(2,8);(2)如图1,过P作PC⊥y轴于点C,∵OA=OB=6,∴∠OAB=45°,∴当∠PAB=75°时,∠PAC=60°,∴tan∠PAC=,即=,设AC=m,则PC=m,∴P(m,6+m),把P点坐标代入抛物线表达式可得6+m=﹣(m)2+2m+6,解得m=0或m=﹣,经检验,P(0,6)与点A重合,不合题意,舍去,∴所求的P点坐标为(4﹣,+);(3)当两个支点移动t秒时,则P(t,﹣t2+2t+6),M(0,6﹣t),如图2,作PE⊥x轴于点E,交AB于点F,则EF=EB=6﹣t,∴F(t,6﹣t),∴FP=t2+2t+6﹣(6﹣t)=﹣t2+3t,∵点A到PE的距离竽OE,点B到PE的距离等于BE,∴S△PAB=FP?OE+FP?BE=FP(OE+BE)=FP?OB=×(﹣t2+3t)×6=﹣t2+9t,且S△AMB=AM?OB=×t×6=3t,∴S=S四边形PAMB=S△PAB+S△AMB=﹣t2+12t=﹣(t﹣4)2+24,∴当t=4时,S有最大值,最大值为24.24.(2017山东滨州)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(1)求直线y=kx+b的解析式;(2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB 的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.思路分析:(1)将A 、B 两点坐标代入y =kx +b 中,求出k 、b 的值;(2)作出点P 到直线AB 的距离后,由于∠AHC =90°,考虑构造“K 形”相似,得到△MAH 、△OBA 、△NHP 三个三角形两两相似,三边之比都是3∶4∶5.由“345NH CN CH==”可得23(3)(21)4345m x x x m d +--++-==,整理可得d 关于x 的二次函数,配方可求出d 的最小值;(3)如果点C 关于直线x =1的对称点C ′,根据对称性可知,CE =C′E .当C ′F ⊥AB 时,CE +EF 最小.解:(1)∵y =kx +b 经过A (-4,0)、B (0,3), ∴403k b b -+=⎧⎨=⎩,解得k =34,b =3.∴y =34x +3.(2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P作MN 的垂线段,垂足分别为M 、N .C y=kx+b y =- x 2 +2 x +1 P ( x ,y ) H M N AB C O x =1· C′ E F设H (m ,34m +3),则M (-4,34m +3),N (x ,34m +3),P (x ,-x 2+2x +1). ∵PH ⊥AB ,∴∠CHN +∠AHM =90°,∵AM ⊥MN ,∴∠MAH +∠AHM =90°.∴∠MAH =∠CHN ,∵∠AMH =∠CNH =90°,∴△AMH ∽△HNP . ∵MA ∥y 轴,∴△MAH ∽△OBA .∴△OBA ∽△NHP . ∴345NH CN CH==. ∴23(3)(21)4345m x x x m d +--++-==.整理得:24855d x x =-+,所以当x =58,即P (58,11964). (3)作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K .则C ′(2,1)设F (m ,34m +3)∵C ′F ⊥AB ,∠AFJ +∠C ′FK =90°,∵CK ⊥JK ,∴∠C ′+∠C ′FK =90°.∴∠C ′=∠AFJ ,∵∠J =∠K =90°,∴△AFJ ∽△FC ′K .AB C O x =1 ·C′E F J K∴'AJ JF FK C K =,∴33443224m m m m ++=-+,解得m =825或-4(不符合题意). ∴F (825,8125),∵C ′(2,1),∴FC ′=145. ∴CE +EF 的最小值=C′E =145. 22(2017浙江温州).如图,过抛物线y=x 2﹣2x 上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C ,已知点A 的横坐标为﹣2. (1)求抛物线的对称轴和点B 的坐标;(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D ; ①连结BD ,求BD 的最小值;②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.【考点】HA :抛物线与x 轴的交点;H8:待定系数法求二次函数解析式. 【分析】(1)思想确定点A 的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B 坐标;(2)①由题意点D 在以O 为圆心OC 为半径的圆上,推出当O 、D 、B 共线时,BD 的最小值=OB ﹣OD ;②当点D 在对称轴上时,在Rt △OD=OC=5,OE=4,可得DE===3,求出P 、D 的坐标即可解决问题;【解答】解:(1)由题意A (﹣2,5),对称轴x=﹣=4,∵A 、B 关于对称轴对称, ∴B (10,5). (2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.。