数论中的一些公式【整理】
初中数学必背公式全集打印版
初中数学必背公式全集打印版1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
初中数学必背公式大全因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
初中数学解方程所有公式行程问题:(1)基本公式:路程=速度×时间速度=路程÷时间时间=路程÷速度(2)相遇问题:快路程+慢路程=原距离速度和×时间=路程(3)追及问题:快路程-慢路程=原距离(快车先跑又折返遇到慢车时候用)速度差×时间=路程(4)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺水(风)路程=顺水(风)速度×顺水(风)时间逆水(风)路程=顺水(风)速度×顺水(风)时间水(风)速=(顺水(风)速度-逆风(水)速度)÷2(5)列车过桥问题:(桥长+列车长)÷速度=过桥时间工程问题中的:(1)工作效率:单位时间完成的工作量(2)工程问题的基本关系:工作量=工作效率×工作时间(3)总工作量在未知的情况下可以看作“1”(4)合作的效率:各效率之和(5)各部分工作量之和=工作总量调配问题(配套问题):(1)例如课本中:1个螺钉要配2个螺母,即螺钉/螺母=1/2 得到:1×螺母=2×螺钉(2)例如甲乙两种零件分别取3个、2个才能配成一套。
初数数学中的数论公式解析
初数数学中的数论公式解析数论作为数学的一个重要分支,研究整数的性质和相互关系。
在初等数论中,有许多重要的数论公式,它们能够帮助我们解决一些关于整数的问题。
本文将对一些常见的数论公式进行解析,帮助读者更好地理解和掌握数论知识。
一、欧拉函数公式欧拉函数是一个十分重要的数论函数,通常表示为φ(n),表示小于等于n且与n互质的正整数的个数。
欧拉函数有一个重要的性质,即对于任意的正整数n,都有以下公式成立:φ(n) = n × (1 - 1/p₁) × (1 - 1/p₂) × ... × (1 - 1/pₙ)其中p₁, p₂, ..., pₙ是n的所有不同的素因子。
这个公式的解析非常简单明了:首先我们将n进行素因数分解,得到n的所有不同的素因子。
然后,对于每个素因子p,将1减去1/p的值,再将这些结果相乘,最后再乘以n,即可得到欧拉函数的值φ(n)。
二、费马小定理费马小定理是一个重要的数论定理,它表明如果p是一个素数,a 是一个整数且不被p整除,那么a的p-1次方除以p的余数等于1:a^(p-1) ≡ 1 (mod p)这个公式的解析也比较简单:根据费马小定理,我们可以利用这个公式来进行模幂运算。
首先,将指数p-1进行二进制拆分,然后利用模运算的性质求取每一位的幂运算结果,最后再将这些结果相乘,再进行一次模运算,即可得到最终结果。
三、威尔逊定理威尔逊定理是另一个与素数相关的重要数论定理,它表明如果p是一个素数,那么(p-1)!除以p的余数等于p-1:(p-1)! ≡ -1 (mod p)这个公式的解析稍微复杂一些。
首先,我们可以利用质数的定义以及基本的数论知识来证明威尔逊定理。
然后,我们可以通过数学归纳法来证明(p-1)! ≡ -1 (mod p)成立。
最后,利用模运算的性质,我们可以证明(p-1)!除以p的余数等于p-1。
四、高斯二项式定理高斯二项式定理是一个经典的数论定理,它可以用于计算组合数的模运算结果。
(完整版)数论知识点总结
(完整版)数论知识点总结1. 整数与整除性质整数是数的基本单位,整除是整数相除所得到的商是整数的关系。
- 整数运算:加法、减法、乘法、除法。
- 整数性质:正整数、负整数、零。
- 整数除法:被除数、除数、商、余数。
2. 质数和合数质数是只能被1和自身整除的正整数,合数是除了1和本身外还能被其他正整数整除的正整数。
- 判断质数:试除法、素数筛法。
- 质因数分解:将一个合数分解成质因数的乘积。
3. 最大公约数和最小公倍数最大公约数是一组数的最大公因数,最小公倍数是一组数的最小公倍数。
- 欧几里得算法:用辗转相除法求最大公约数。
- 求最小公倍数:将数分解成质因数,再取每个质因数的最高次幂相乘。
4. 同余定理同余定理是描述整数之间关系的定理。
- 同余关系:如果两个整数对于同一个模数的除法所得的余数相等,则它们对于这个模数是同余的。
- 同余定理:如果a与b对于模数m同余,那么它们的和、差、积也对于模数m同余。
5. 欧拉函数欧拉函数是比给定正整数小且与它互质的正整数的个数。
- 欧拉函数公式:对于正整数n,欧拉函数的值等于n与所有小于n且与n互质的正整数的个数。
6. 莫比乌斯函数莫比乌斯函数是一个常用于数论的函数。
- 莫比乌斯函数的定义:对于任何正整数n,莫比乌斯函数的值分为三种情况,分别是μ(n) = 1,μ(n) = -1,μ(n) = 0。
7. 勒让德符号勒让德符号是用来判断一个整数是否是二次剩余的符号。
- 勒让德符号的定义:对于正整数a和奇素数p,勒让德符号的值是一个取值为-1、0或1的函数。
- 勒让德判别定理:如果勒让德符号等于1,则a是模p的二次剩余;如果勒让德符号等于-1,则a不是模p的二次剩余。
8. 素数定理和费马小定理素数定理和费马小定理是数论中的重要定理。
- 素数定理:对于足够大的正整数n,小于等于n的素数的个数约为n/(ln(n)-1)。
- 费马小定理:如果p是素数,a是不是p的倍数的正整数,则a^(p-1)与模p同余。
数学公式大全 全套
数学公式大全全套
很抱歉,但由于数学公式实在太多,无法一一列举。
数学公式的
种类繁多,涵盖了代数、几何、微积分、概率统计、数论等多个领域。
以下将针对一些常见的数学公式进行简单的介绍:
1.代数方面的公式:
-二次方程的求根公式:对于二次方程ax^2 + bx + c = 0,解为
x = (-b ± √(b^2 - 4ac)) / (2a)。
-四则运算公式:加法a + b、减法a - b、乘法a * b、除法a / b。
-指数和对数公式:例如指数函数a^x和自然对数函数ln(x)。
2.几何方面的公式:
-三角函数公式:例如正弦、余弦、正切函数等。
-勾股定理:对于直角三角形,a^2 + b^2 = c^2,其中c表示斜边,a和b表示两条边的长度。
-各种图形的面积和周长公式:例如矩形、三角形、圆等。
3.微积分方面的公式:
-导数和微分公式:例如常见函数的导数求法和微分规则。
-积分公式:例如不定积分和定积分的计算方法,包括牛顿—莱布尼兹公式等。
4.概率统计方面的公式:
-概率公式:例如基本概率公式、条件概率、贝叶斯公式等。
-统计量的计算公式:例如均值、方差、标准差等。
5.数论方面的公式:
-质数相关公式:例如素数定理、埃拉托色尼筛法等。
-数字分解定理:任何一个大于1的正整数,都可以唯一地分解成质数的乘积。
以上只是数学公式的部分示例。
在实际应用中,会有更多的数学公式被用于解决各种问题。
如果有具体的数学公式需要了解,可以提供具体的公式名称,我可以为您提供相应的详细解答。
初中数学代数公式归纳
初中数学代数公式归纳在初中数学的学习中,代数是一个重要的部分,而掌握代数公式则是学好代数的关键。
下面就为大家归纳一下初中数学中常见的代数公式。
一、整式运算公式1、同底数幂的乘法:$a^m \times a^n = a^{m+n}$(其中$m$、$n$都是正整数)同底数幂相乘,底数不变,指数相加。
例如:$2^3 \times 2^4 = 2^{3+4} = 2^7 = 128$2、幂的乘方:$(a^m)^n = a^{mn}$(其中$m$、$n$都是正整数)幂的乘方,底数不变,指数相乘。
例如:$(3^2)^3 = 3^{2×3} = 3^6 = 729$3、积的乘方:$(ab)^n = a^n b^n$(其中$n$是正整数)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
例如:$(2×3)^2 = 2^2 × 3^2 = 4×9 = 36$4、同底数幂的除法:$a^m ÷a^n =a^{mn}$($a≠0$,$m$、$n$都是正整数,且$m>n$)同底数幂相除,底数不变,指数相减。
例如:$5^5 ÷ 5^3 = 5^{5-3} = 5^2 = 25$5、单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
例如:$2x^2y × 3xy^2 =(2×3)×(x^2×x)×(y×y^2) = 6x^3y^3$6、单项式乘以多项式:用单项式乘以多项式的每一项,再把所得的积相加。
例如:$2x(3x^2 4x + 5) = 2x×3x^2 2x×4x + 2x×5 = 6x^3 8x^2 + 10x$7、多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
例如:$(x + 2)(x 3) = x×x 3×x + 2×x 2×3 = x^2 x 6$8、平方差公式:$(a + b)(a b) = a^2 b^2$两个数的和与这两个数的差的积,等于这两个数的平方差。
高中数学必背公式大全-
乘法与因式分解a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) • a^3-b^3=(a-b(a^2+ab+b^2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a注:韦达定理判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式 tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB;某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 - 2+4+6+8+10+12+14+…+(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h'正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h;定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n 边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形;77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L ×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕ ?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数理化公式大全
数理化公式大全数理化公式大全三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
常用数学公式
常用数学公式数学是一门基础学科,它涉及到了很多的公式和定理。
在数学的各个分支中,有一些公式是非常常用的,几乎在每个数学问题中都会用到。
下面是一些常用的数学公式:1. 二次方程的根:对于二次方程ax²+bx+c=0,它的根可以通过求根公式来得到。
对于实数根,公式为:x=(-b±√(b²-4ac))/2a。
对于复数根,公式为:x=(-b±i√(4ac-b²))/2a。
2. 同余定理:如果两个整数a和b除以正整数m得到的余数相同,那么称a与b关于模m同余,记作a ≡ b (mod m)。
同余定理包括加法同余定理、乘法同余定理和幂同余定理。
3.欧拉公式:对于任何一个凸多面体,它的面数F、顶点数V和边数E之间有着如下关系:F+V=E+2、这个公式被称为欧拉公式,是立体几何中非常重要的公式。
4.边界值定理:对于连续函数f(x)和定义在[a,b]上的连续函数g(x),如果在(a,b)内f(x)≤g(x),那么必然存在一些点c∈(a,b),使得f(c)=g(c)。
5.泰勒展开:如果函数f(x)在x=a处存在各阶导数,则对于任意整数n,函数f(x)在x=a处的n阶泰勒展开式为:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+...+f⁽ⁿ⁾(a)(x-a)ⁿ/n!+R⁽ⁿ⁺¹⁾(x),其中R⁽ⁿ⁺¹⁾(x)为余项。
6. 复数的欧拉公式:对于任意一个复数z,它可以表示为z=r(cosθ+isinθ),其中r为模长,θ为幅角。
这个公式被称为复数的欧拉公式。
7.向量叉乘的模长:对于二维向量a=(a₁,a₂)和b=(b₁,b₂),它们的叉乘的模长为,a×b,=,a₁b₂-a₂b₁。
8. 三角函数的和差公式:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb∓sinasinb,tan(a±b)=(tana±tanb)/(1∓tana*tanb)。
数论知识点
数论知识点(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除进制1.十进制: 我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.4.k 进位制数可以写成不同计数单位的数之和的形式 1110110n n n n k n n a a a a a k a k a k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数. 5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
初中数学常用公式和定理大全
初中数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定。
小学奥数数论十大公式
小学奥数数论十大公式小学奥数数论十大公式,经常被用来帮助小学生学习数论,在数论的学习过程中,这些公式可以帮助小学生更好地理解数论的知识点,从而更好地掌握数论的知识。
那么,小学奥数数论十大公式是什么呢?一、抽象公式:1. 抽象公式:抽象公式指的是用数字来代表一个抽象的概念,它可以帮助小学生把一个复杂的概念归结为一个简单的公式,从而更好地理解数论的概念。
2. 抽象公式:抽象公式指的是用数字和符号来表示一个抽象的概念,它可以帮助小学生把一个复杂的概念归结为一个简单的公式,从而更好地理解数论的概念。
二、代数公式:1. 二次公式:二次公式是一个二元一次方程,它可以帮助小学生计算二元一次方程的解,并且可以帮助小学生更好地理解方程的概念。
2. 三次公式:三次公式是一个三元一次方程,它可以帮助小学生计算三元一次方程的解,并且可以帮助小学生更好地理解方程的概念。
三、几何公式:1. 三角形公式:三角形公式可以帮助小学生计算三角形的面积,周长,以及内角和外角等等,并且可以帮助小学生更好地理解几何的概念。
2. 圆形公式:圆形公式可以帮助小学生计算圆形的面积,周长,以及圆心角等等,并且可以帮助小学生更好地理解几何的概念。
四、数列公式:1. 等差数列公式:等差数列公式可以帮助小学生计算等差数列的前n项和,并且可以帮助小学生更好地理解数列的概念。
2. 等比数列公式:等比数列公式可以帮助小学生计算等比数列的前n项和,并且可以帮助小学生更好地理解数列的概念。
五、概率公式:1. 概率公式:概率公式可以帮助小学生计算概率,并且可以帮助小学生更好地理解概率的概念。
2. 条件概率公式:条件概率公式可以帮助小学生计算条件概率,并且可以帮助小学生更好地理解条件概率的概念。
六、函数公式:1. 一元函数公式:一元函数公式可以帮助小学生计算一元函数的值,并且可以帮助小学生更好地理解函数的概念。
2. 二元函数公式:二元函数公式可以帮助小学生计算二元函数的值,并且可以帮助小学生更好地理解函数的概念。
高中数学公式大全数论与整数
高中数学公式大全数论与整数高中数学公式大全:数论与整数一、整数的定义与性质整数,即正整数、负整数与零的集合。
在数论中,我们研究整数的性质和规律,灵活运用各种数论定理和公式解决问题。
1. 整数的定义整数由正整数、负整数及零组成,并用Z表示。
2. 整数的性质(1)整数集合Z是一个无穷集。
(2)整数集合Z中的元素可以做加法、减法和乘法运算,并保持封闭性。
(3)加法运算满足交换律、结合律和存在单位元素0。
(4)减法不满足交换律和结合律,但存在多个单位元素,分别是0和-0。
(5)乘法满足交换律、结合律和存在单位元素1。
(6)整数集合Z中的乘法分解定理:对于任意的整数a和b,若a 能整除b,则存在唯一的整数c使得b=ac。
二、数论基本概念与定理1. 整除与除尽(1)整除:如果a能被b整除,即a/b的余数为0,则称a能整除b,记作a|b。
(2)除尽:如果a能被b整除,且a的绝对值小于b的绝对值,则称a能除尽b。
(3)除法算法:对于任意整数a和正整数b,存在唯一的整数q和r使得a = bq + r,其中0 ≤ r < b。
2. 质数与合数(1)质数:大于1的整数,除了1和自身之外没有其他正因数,称为质数。
(2)合数:大于1的整数,除了1和自身之外还有其他正因数,称为合数。
(3)整数的唯一因数分解定理:每个大于1的整数都可以表示为一系列质数的乘积,并且这个分解是唯一的。
3. 素数与互质(1)素数:大于1的整数,除了1和自身之外没有其他正因数的质数称为素数。
(2)互质:若两个整数a和b的最大公因数为1,则称a和b互质。
4. 最大公因数与最小公倍数(1)最大公因数:对于整数a和b,能同时整除a和b的最大正整数,称为a和b的最大公因数,记作gcd(a, b)。
(2)最小公倍数:对于整数a和b,能同时被a和b整除的最小正整数,称为a和b的最小公倍数,记作lcm(a, b)。
三、整除性质与定理1. 整除性质(1)若a|b且a|c,则a|(b ± c)。
公式知识点
公式知识点在数学和科学领域中,公式是表达特定关系或计算过程的符号表示。
公式的使用使得我们能够更好地理解和解决复杂的问题。
本文将介绍一些常见的公式知识点,以及它们在不同领域中的应用。
一、牛顿第二定律牛顿第二定律是经典力学中的一个基本定律,用来描述物体的运动状态。
它的数学表达式为:F = ma,其中F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
根据这个公式,我们可以计算物体在给定力下的加速度,或者根据已知的加速度和质量来计算物体所受的力。
牛顿第二定律在物理学中有着广泛的应用,例如在机械工程中用于设计弹簧和减震器,以及计算物体的速度和位移等。
二、欧拉公式欧拉公式是数学中一条重要的等式,连接了五个基本数学常数:e(自然对数的底数)、π(圆周率)、i(虚数单位)、1(单位向量)和0(零向量)。
欧拉公式的数学表达式为:e^iπ + 1 = 0。
欧拉公式在数学分析、复变函数等领域中有着重要的应用,它将三个看似不相关的数学常数联系在一起,为研究复数和指数函数提供了基础。
三、波恩公式波恩公式是数论中的一个重要公式,它描述了素数的分布规律。
波恩公式的数学表达式为:π(x) ≈ x / ln(x),其中π(x)表示不超过x的素数个数,ln(x)表示x的自然对数。
波恩公式在数论研究中发挥着重要的作用,它提供了估计素数个数的近似方法,并且对于素数分布的研究具有深远的影响。
四、费马大定理费马大定理是数论中的一个著名定理,由法国数学家费马在17世纪提出。
它的数学表达式为:对于任何大于2的整数n,方程x^n + y^n = z^n没有正整数解。
费马大定理是数论领域最具挑战性和深远影响的问题之一,它的证明经历了几个世纪的艰辛努力,直到1994年才由安德鲁·怀尔斯(Andrew Wiles)给出了完整的证明。
五、高斯公式高斯公式是微积分中的一个重要公式,用于计算曲线上某一区域的面积。
高斯公式的数学表达式为:∮C Pdx + Qdy = ∬D (Qx’ - Py’)dA,其中C表示闭合曲线,P和Q表示与曲线相切的两个向量函数,D表示曲线所围成的区域,x’和y’表示该区域内点的坐标。
高中数学公式大全[最全面,最详细]
高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数论中的欧拉公式
数论中的欧拉公式
欧拉公式是数论中的重要定理之一,它将指数函数和三角函数联系起来,具有广泛的应用。
欧拉公式的表述为:对于任意实数x,有e^(ix) = cos(x) +
i*sin(x),其中i为虚数单位。
这个公式包含了两个基本的三角函数cos和sin,以及自然常数e和虚数单位i。
欧拉公式可以用来证明一些数学上的恒等式,如欧拉恒等式(cos(x))^2 + (sin(x))^2 = 1,以及三角函数的和角公式等。
此外,欧拉公式还可以用来求解复杂的微积分问题,如复数函数的导数和积分等。
欧拉公式的证明是通过泰勒级数展开得到的。
通过使用欧拉公式,我们可以将指数函数转换成三角函数,从而简化计算。
欧拉公式在数学、物理、工程等领域都有着广泛的应用,是数学中的经典定理之一。
- 1 -。
经典的数学公式
经典的数学公式经典的数学公式是数学领域中的重要工具,用于描述和解决各种问题。
下面列举了一些常见的数学公式,介绍其含义和应用。
一、勾股定理勾股定理是数学中最著名的公式之一,表达了直角三角形的边长关系。
公式为:a^2 + b^2 = c^2。
其中,a、b为直角三角形的两条直角边的长度,c为斜边的长度。
二、欧拉公式欧拉公式是数学分析中一个重要的公式,描述了复数的指数表示和三角函数之间的关系。
公式为:e^(iπ) + 1 = 0。
其中,e是自然对数的底数,i是虚数单位,π是圆周率。
三、费马小定理费马小定理是数论中的重要定理,用于判断一个数是否为素数。
公式为:a^(p-1) ≡ 1 (mod p)。
其中,a是整数,p是素数。
四、斐波那契数列斐波那契数列是一个经典的数列,每个数都是前两个数的和。
数列的递推公式为:F(n) = F(n-1) + F(n-2)。
其中,F(n)表示第n个斐波那契数。
五、调和级数调和级数是数学分析中的一个级数,表达了正整数的倒数之和。
级数的公式为:1 + 1/2 + 1/3 + 1/4 + ... + 1/n。
调和级数是一个发散的级数。
六、泰勒级数泰勒级数是数学分析中的一个重要工具,用于将函数表示为无穷级数的形式。
泰勒级数的公式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... 。
其中,f(x)是函数在点x处的值,a是近似点,f'(a)、f''(a)等表示函数在点a处的导数。
七、二项式定理二项式定理是代数中的一个重要定理,描述了二项式的展开形式。
二项式定理的公式为:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n)b^n。
其中,a、b为实数,n为非负整数,C(n,m)表示组合数。
八、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分中的一个重要公式,用于计算定积分。
数论基础知识
一些基本的数论知识:1、整除与同余a∣b,b∣a⇒a=bp∣a⇔a≡0(mod p)带余除法a=bp+r(0≤r<b)⇔a≡r(mod p)2、完全平方数(以下a∈Z+)a2≡0or1(mod4)a2≡0or1or4(mod8)a2≡0or1(mod3)a2≡0or±1(mod5)3、完全立方数a3≡0or±1(mod7)a3≡0or±1(mod9)整数集合可以按模n的余数来分类,每一个这样的类称为模n的同余类,若该同余类中的数与n互素,则称这样的同余类为模n的缩同余类。
4、完全剩余系在n个同余类中各任取一个数作为代表,这样的n个数称为模n 的一个完全剩余系(完系)c1,c2,…,cn是模n的一个完系⇔c1,c2,…,cn模n互不同余若c1,c2,…,cn是模n的一个完系,(a,n)=1,b∈Z,则ac1+b,ac2+b,…,acn+b也是模n的一个完系5、欧拉函数φ(n)表示小于n且与n互素的正整数的个数(a,b)=1⇒φ(ab)=φ(a)φ(b)(积性函数)p为素数⇒φ(pl)=pl−pl−16、简约剩余系在模n的φ(n)个缩同余类中各任取一个数作为代表,这样的φ(n)个数称为模n的一个简约剩余系(缩系)c1,c2,…,cφ(n)是模n的一个缩系⇔c1,c2,…,cφ(n)模n互不同余且均与n互素若c1,c2,…,cφ(n)是模n的一个缩系,(a,n)=1,则ac1,ac2,…,ac φ(n)也是模n的一个缩系7、最大公约数与最小公倍数(a,b)[a,b]=ab(a,b)=d⇒(ad,bd)=1(将非互素情况转为互素情况)d∣a,d∣b⇒d∣(a,b)d∣ab,(d,b)=1⇒d∣a8、裴蜀定理:a,b不全为0,则存在整数x,y,使得ax+by=(a,b)a,b互素⇔存在整数x,y,使得ax+by=19、唯一分解定理每个大于1的正整数n可唯一表示成n=p1α1p2α2…pkαk,其中p1,p2,…,pk是互不相同的素数,α1,α2…,αk是正整数,这称为n的标准分解正约数个数τ(n)=(α1+1)(α2+1)…(αk+1)正约数之和σ(n)=1−p1α1+11−p1⋅1−p2α2+11−p2⋅ (1)pkαk+11−pkn的标准分解中p的幂次vp(n)=∑l=1∞[npl]=[np]+[np2]+…10、升幂定理(LTE引理)(1)n为正整数,x,y为整数,p为奇素数,且p∤x,p∤y,p∣x−y,则vp(xn−yn)=vp(x−y)+vp(n)(2)n为正奇数,x,y为整数,p为奇素数,且p∤x,p∤y,p∣x+y,则vp(xn+yn)=vp(x+y)+vp(n)(3)n为正整数,x,y为奇整数,4∣x−y,则v2(xn−yn)=v2(x−y)+v2(n)(4)n为正偶数,x,y为奇整数,则v2(xn−yn)=v2(x−y)+v2(x+y)+v2(n)−111、威尔逊定理:p为素数⇔(p−1)!≡−1(mod p)12、欧拉定理:设n>1为整数,a是与n互素的任一整数,则aφ(n)≡1(mod n)13、费马小定理:设p是素数,a是与p互素的任一整数,则ap−1≡1(mod p)14、中国剩余定理:设m1,m2,…,mk是k个两两互素的正整数,b1,b2,…,bk为任意整数,则同余方程组{x≡b1(mod m1)x≡b2(mod m2)……x≡bk(mod mk)在模m1m2…mk意义下有唯一解x。
数论的几个重要定理(精选、)
11 数论的几个重要定理欧拉定理、费马小定理、威尔逊定理及中国剩余定理是数论的四大定理,它们是解决数论问题的重要工具。
下面介绍这几个定理在竞赛数学中的应用方法。
1. 基本原理定理1(欧拉定理) 设m 为大于1的整数,(,)1a m =,()m ϕ为欧拉函数,则()1(mod )m a m ϕ≡.证 设{}12(),,,m r r r ϕ…为模m 的一个简化剩余系,因为(,)1a m =,所以 {}12(),,,m ar ar ar ϕ…也是模m 的一个简化剩余系,从而有 12()12()()()()(mod )m m ar ar ar r r r m ϕϕ≡……,即 ()12()12()()(mod )m m m a rr r rr r m ϕϕϕ≡ (1)因为12()(,)1m r r r m ϕ=… ,所以由(1)得 ()1(mod )m a m ϕ≡.定理2(费马小定理) 设p 是素数,(,)1a p =,则11(mod )p a p -≡.证 因为p 是素数,所以()1p p ϕ=-,由欧拉定理知()1(mod )p a p ϕ≡,∴ 11(mod )p a p -≡.推论 设p 为素数,a 为整数,则(mod )p a a p ≡ (2)证 当p a 时,(2)式显然成立.当p 不能整除a 时,因为p 为素数,所以(,)1a p =.由定理2得 11(mod )p ap -≡, ∴ (mod )p a a p ≡.定理3(威尔逊定理) 若p 为素数,则(1)!1(mod )p p -≡-.证 {}2,3,,2a p ∀∈-…,因为(,)1a p =,所以{},2,,(1)a a p a -…也是模p 的简化剩余系,故存在唯一的{}1,2,,1b p ∈-…,使得1(mod )ba p ≡ (1)∵ {}2,3,,2a p ∈-…,∴ 1b ≠,1b p ≠-.若b a =,则21(mod )a p ≡∴ (1)(1)0(mod )a a p -+≡.∴ 11(mod )a p ≡-或,这与{}2,3,,2a p ∈-…矛盾.综上即知{}2,3,,2b p ∈-…且b a ≠.将{}2,3,,2p -…中的数按(1)式两两配对,得234(2)1(mod )p p ⨯⨯⨯⨯-≡…,∴ (1)!1(mod )p p -≡-.定理4(中国剩余定理) 设12,,,k m m m …是k 个两两互质的正整数,12k m m m m =…,i im M m =,1,2,,i k =…,则同余式组 1122(mod )(mod )(mod )kk x a m x a m x a m ≡⎧⎪≡⎪⎨⎪⎪≡⎩…… (1)有唯一解 111222(mod )k k k x M M a M M a M M a m '''=+++ (2)其中1(mod )i i i M M m '≡,1,2,,i k =….证 容易验证(2)是(1)的解.又若x ',x ''均是(1)的解,则对于1,2,,i k =…,有(mod )i i x a m '≡(mod )i i x a m ''≡,从而有 0(mod )i x x m '''-≡,又因为12,,,k m m m …两两互质,从而有0(mod )x x m '''-≡,即 (mod )x x m '''≡,所以x '与x ''是同余式组(1)的相同解.设1m >,(,)1a m =,则由欧拉定理知()1(mod )m a m ϕ≡,我们把满足条件1(mod )r a m ≡的最小正整数r 称为a 对模m 的阶,或称为a 对模m 的指数.关于a 对模m 的阶,我们有如下结论.定理5 设1m >,(,)1a m =,a 对模m 的阶为0n ,n 为正整数.若1(mod )na m ≡,则0n n .证 由带余除法知,存在非负整数q 及r ,使得 0n qn r =+,00r n ≤<.所以 001()(mod )qn r n n q r r a a a a a m +===≡,由于0r n <,由0n 的最小性知0r =,所以0n n .2. 方法解读用上述定理解题,除应掌握数论解题的基本方法外,还应对这几个定理的用途有一定的 认识.一般说来,欧拉定理与费马小定理提供了降幂与归1的工具.威尔逊定理提供了处理连续整数的积的方法.中国剩余定理提供了某些存在性问题的构造方法.定理5提供了由方幂的指数导出整除关系的途径.例1 求使21n -为7的倍数的所有正整数n ..解 ∵ 122(mod 7)≡,224(mod 7)≡,321(mod 7)≡,所以2对模7的阶为3.又因为21(mod 7)n ≡,所以由定理5知 3n ,即3()n k k N +=∈.例2 设整数a ,b ,c 满足0a b c ++=,记201120112011d ab c =++,求证d 不是素 数.证 ∵ 2(mod 2)a a ≡,∴ 2011(mod 2)aa ≡ 同理知 2011(mod 2)b b ≡,2011(mod 2)c c ≡, ∴ 2011201120110(mod 2)a b c a b c ++≡++≡, ∴ 2d .又由费马小定理知,3(mod 3)a a ≡,word. ∴ 201120103670670669232232()a a a a a a a a a a a ⨯≡≡≡≡≡223222478262793(mod 3)a a a a a a a a a a a a ≡≡≡≡≡≡≡≡,同理可证 2011(mod 3)bb ≡,2011(mod 3)c c ≡, ∴ 2011201120110(mod3)a b c a b c ++≡++≡,∴ 3d . 又∵ (2,3)1=,∴ 6d ,所以d 不是素数.例3 证明:数列1,19,119,1119,11119,…中有无穷多个合数.证 因为19是素数,(10,19)1=,由费马小定理知 18101(mod19)≡,所以对于任 意的正整数n ,有 18101(mod19)n ≡,∴ 181010(mod19)n -≡,∴ 18191110(mod19)n ⨯≡个…,∵ (199)1=,, ∴ 18119111n 个…,∴ 1811911119n 个…,即 1811911119n 个….由于正整数n 有无穷多个,所以数列中有无穷多项被19整除,故数列中有无穷多项为合数.例4(第47界IMO 预选题) 已知(0,1)x ∈,令(0,1)y ∈,且y 的小数点后第n 位数字是x 的小数点后第2n 位数字.证明:若x 为有理数,则y 也为有理数.证 设120.n x x x x =……, 120.n y y y y =……,则对于1,2,n =…,有2n n y x =.因为x 为有理数,所以数列{}n x 从某项开始为周期数列,为了说话方便,不妨设{}n x 为周期数列,d 为它的一个周期,02nd v =,其中0n 为非负整数,v 为大于1的奇数(这是可以办到的,因为若T 为数列的周期,则3T 也为周期).现令()v ωϕ=,由欧拉定理知,()221(mod )v v ωϕ=≡,从而有00022(mod(2))n n n v ω+≡⋅, 即 0022(mod )n n d ω+≡,所以对于任意的正整数0n n >,有 00002222(mod )n n n n n n d ω+--⋅≡, 即 22(mod )n n d ω+≡.∵ d 是{}n x 的周期,从而有 22n n x x ω+=, 即n n y y ω+=.综上知,对于任意的0n n >,都有n n y y ω+=,所以{}n y 从第01n +项开始为周期数列,因此y 为有理数.例5设1000(5x =+,求[]x 的末三位数.解 令1000(5y =-.∵ 10000(51<-<,∴ 01y <<.又因为 10001000(5(5x y +=++-100099839963224100010002(55(23)5(23)C C =+⋅⋅⋅+⋅⋅⋅ 23449350099810005(23)(23))C ++⋅⋅⋅+⋅…(1) 所以 []1x x y =+-.由(1)式知10003500252(23)(mod1000)x y +≡⨯+⋅⋅(2) ∵ 3100058=⨯,1000350(mod 5)≡ (3)10005005005(25)11(mod8)=≡= (4)由(3)得 1000355t =,代入(4)得351(mod8)t ≡,即 51(mod8)t ≡,∴ 5(mod8)t ≡.85t k ≡+,所以 100033555(85)625(mod1000)t k ==+≡,∴ 1000252625250(mod1000)⨯≡⨯≡.又∵ 15ϕ(125)=125(1-)=100,由欧拉定理知 3100(23)1(mod125)⋅≡,∴ 3500(23)1(mod125)⋅≡ (5)又 3500(23)0(mod8)⋅≡ (6)由(5)得 3500(23)1251t ⋅≡+,代入(6)得12510(mod8)t +≡,即 510(mod8)t +≡,∴ 3(mod8)t ≡.∴ 83t k =+,代入得 3500(23)125(83)1376(mod1000)k ⋅=++≡, ∴ 35002(23)2376752(mod1000)⋅⋅≡⨯=.综上知,10003500252(23)2507522(mod1000)x y +≡⋅+⋅⋅≡+≡,所以 11(mod1000)x y +-≡,故[]x 的末三位数为001.例6求具有如下性质的素数p 的最大值:存在1,2,,p …的两个排列(这两个排列可 以相同)1212,,,,,,p p a a a b b b …与…,使得1122,,,p p a b a b a b …被p 除所得的余数互不相同.解 不妨设 121,2,,p a a a p ===….若p b p ≠,则存在 {}1,2,,1i p ∈-…,使得 i b p =,从而有 0(mod )i i a b p ≡,0(mod )p p a b p ≡,从而有 (mod )i i p p a b a b p ≡,这与题设矛盾,因此有 p b p =.因为 0(mod )p p a b p ≡,又1122,,,p p a b a b a b …被p 除所得的余数互不相同,所以 112211,,,p p a b a b a b --…被p 除的余数构成的集合为{}1,2,,1p -…,由有威尔逊定理,得112211()()()123(1)(1)!1(mod )p p a b a b a b p p p --≡⋅⋅-=-≡-…….又 112211()()()p p a b a b a b --…121121()()p p a a a b b b --=……(1)!(1)!(1)(1)1(mod )p p p =--≡--=,∴ 11(mod )p -≡,∴ 20(mod )p ≡,∴ 2p .由于p 为素数,所以2p =.容易验证2p =满足要求.故所求的最大值为2.例7设整数n ,q 满足5n ≥,2q n ≤≤且q 不为某个质数的平方,试证:(1)!(1)n q q ⎡⎤--⎢⎥⎣⎦(1) 这里[]x 表示x 的这个数部分.证 若q 为合数,因为q 不为质数的平方,所以存在大于1的整数a ,b ,a b ≠,使得q ab =.因为q n ≤,所以1a n ≤-,1b n ≤-,从而有(1)!q n -,因此(1)!(1)!n n q q ⎡⎤--=⎢⎥⎣⎦. ∵ (1)(1)!q n --,(1)!q n -,(1,)1q q -=,∴ (1)(1)!q q n --,∴ (1)!(1)!(1)n n q q q ⎡⎤---=⎢⎥⎣⎦,故结论成立. 若q 为质数,当q n <,易知(1)!q n -,从而有(1)!(1)!n n q q ⎡⎤--=⎢⎥⎣⎦. 又因为 (1)(1)!q n --,(1,)1q q -=,所以 (1)(1)!q q n --,∴ (1)!(1)!(1)n n q q q ⎡⎤---=⎢⎥⎣⎦,结论成立. 当q n =时,因为q 为质数,由威尔逊定理知 (1)!(1)!1(mod )n q q -=-≡-,所以(1)!10(mod )n q -+≡,∴ (1)!1q n -+,所以 (1)!(1)!1(1)!(1)1n n n q q q q ⎡⎤--+---=-=⎢⎥⎣⎦. 又因为 (1)(1)!(1)q n q ----,(1,)1q q -=,所以 ()(1)(1)!(1)q q n q ----, ∴ (1)!(1)(1)!1n q n q q q ⎡⎤-----=⎢⎥⎣⎦(),故结论成立. 例8 若一个正整数的标准分解式中,每个素约数的幂次都大于1,则称这个数为幂数. 证明:对于任意的正整数n (2)n ≥,存在n 个连续的正整数,其中每一个数都不是幂数.证 选取n 个互不相同的素数12,,,n p p p ….由中国剩余定理知,同余式组2112222(mod )1(mod )(1)(mod )n n x p p x p p x n p p ⎧≡⎪≡-+⎪⎨⎪⎪≡--+⎩…………(1)有解.设222012(mod )n x x p p p ≡… 0(0)x >是(1)的唯一解,则对于0,1,2,,1i n =-…,有2i p 不整除0x i +且0i p x i +,故 0x i +不是幂数.因此,n 个连续正整数0000,1,2,,(1)x x x x n +++-…满足要求.例9 设1n >,21n n +,证明3n .证 设p 是n 的最小素因子,2对模p 的阶为r .∵ 21n n +, ∴ 21n p +,∴ 210(mod )n p +≡,∴ 21(mod )n p ≡-,221(mod )n p ≡ (1) 又因为p 为奇素数,所以 (2,)1p =.由费马小定理知121(mod )p p -= (2)由(1),(2)及定理5知,2r n ,1r p -,故1(2,1)2(,)2p r n p n --=.设1(,)2p d n -=,则 d n ,12p d -.因为n 为奇数,所以d 为奇数.又112p d p p -≤<-<,从而由p 的最小性知1d =,所以 (2,1)2n p -=,从而有 2r .又显然有1r >,所以2r =,即2对模p 的阶为2,从而知3p =,即3n .习 题111.已知 17x =,当1n >时,17n x n x -=,求n x 的末两位数.2.证明数列37,337,3337,33337,……中有无穷多个合数.3.证明有无穷多个正整数n ,使得2100(2)n n +.最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。
数论中的一些公式【整理】
数论中的一些公式【整理】以下等式或者不等式均可以用数学归纳法予以证明!1 + 3 + 5 + ... + (2n - 1) = n^21*2 + 2*3 + 3*4 + ... + n*(n + 1) = n*(n + 1)*(n + 2) / 31*1! + 2*2! + 3*3! + ... + n*n! = (n + 1)! - 11^2 + 2^2 + 3^2 + ... + n^2 = n*(n + 1)*(2n + 1) / 61^2 - 2^2 + 3^2 -... + (-1)^n * n^2 = (-1)^(n + 1) * n * (n + 1) / 22^2 + 4^2 + ... + (2n)^2 = 2n*(n+1)*(2n+1) / 31/2! + 2/3! + ... + n/(n+1)! = 1 - 1/(n+1)!2^(n + 1) < 1 + (n + 1)2^n1^3 + 2^3 + 3^3 + ... + n^3 = (n*(n + 1) / 2)^21/(2*4)+1*3/(2*4*6)+1*3*5/(2*4*6*8)+...+(1*3*5*...*(2n-1))/(2*4*6*... *(2n+2)) = 1/2 - (1*3*5*...*(2n+1))/(2*4*6*...*(2n+2))1/(2^2-1) + 1/(3^2-1) + .. + 1 / ((n+1)^2 - 1) = 3/4 - 1/(2*(n+1)) - 1/(2*(n+2))1/2n <= 1*3*5*...*(2n-1) / (2*4*6*...*2n) <= 1 / sqrt(n+1) n=1,2...2^n >= n^2 , n=4, 5,...2^n >= 2n + 1, n=3,4,...r^0 + r^1 + ... + r^n < 1 / (1 - r), n>=0, 0<r<11*r^1 + 2*r^2 + ... + n*r^n < r / (1-r)^2, n>=1, 0<r<11/2^1 + 2/2^2 + 3/2^3 + ... + n /2^n < 2, n>=1(a(1)*a(2)*...*a(2^n))^(1/2^n) <= (a(1) + a(2) + ... + a(2^n)) / 2^n, n = 1, 2, ... a(i)是正数注:()用来标记下标cos(x) + cos(2x) + ... + cos(nx) = cos((x/2)*(n+1))*sin(nx/2) / sin(x/2), 其中sin(x/2) != 01*sin(x) + 2*sin(2x) + ... + n*sin(nx) = sin((n+1)*x) / (4*sin(x/2)^2) - (n+1)cos((2n + 1)/2 * x) / (2 * sin(x/2))其中sin(x/2) != 05^n - 1能被4整除7^n - 1能被6整除11^n - 6能被5整除6*7^n - 2*3^n能被4整除3^n + 7^n - 2能被8整除n条直线能将平面最多划分为(n^2 + n + 2) / 2个区域定义H(k) = 1 + 1/2 + 1/3 + ... + 1/k则1 + n/2 <=H(2^n) <= 1 + nH(1) + H(2) + ... + H(n) = (n + 1) * H(n) - n1*H(1) + 2*H(2) + ... + n*H(n) = n*(n + 1) / 2 * H(n + 1) - n * (n + 1) / 4欧拉函数的定义:E(k)=([1,n-1]中与n互质的整数个数).因为任意正整数都可以唯一表示成如下形式:k=p1^a1*p2^a2*……*pi^ai;(即分解质因数形式)可以推出:E(k)=(p1-1)(p2-1)……(pi-1)*(p1^(a1-1))(p2^(a2-1))……(pi^(ai-1))=k*(p1-1)(p2-1)……(pi-1)/(p1*p2*……pi);=k*(1-1/p1)*(1-1/p2)....(1-1/pk)在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);若N>2, 欧拉函数E(N)必定是偶数若gcd(a,b) = 1,则有E(a * b) = E(a) * E(b)若一个数N分解成p1^a1 * p2^a2 * ... * pn^an,那么E(N) = p1^(a1 - 1) * (p1 - 1) * ... * pn^(an - 1) * (pn - 1)若N>1,不大于N且与N互素的所有正整数的和是1/2 * N * E(N)因子和: 若 k=p1^a1*p2^a2...*pi^ai F(k) =(p1^0+...+p1^a1)*(p2^0+...+p2^a2)*...*(pi^0 + ... + pi^ai)没有一个平方数是以2,3,7,8结尾的max{a, b, c} - min{a, b, c} = (|a - b| + |b - c| + |a - c|) / 2ac % m = bc % m 可以得到 a % m' = b % m' m' = m / gcd(m, c)如果a % mi = b % mi (i=1,2,...,n) 并且 l = lcm(m1, m2, ..., mn) 则可以得到 a % l = b % lEuler 定理若gcd(a,m)==1, 则a^(phi(m)) % m = 1 % mFermat小定理p为素数,对任意的a有 a^p % p = a % pp为素数,对任意的a(a<p), a^(p-1) % p = 1 % pp为素数,对任意的a,若gcd(p,a)==1, a^(p-1) % p = 1 % p一个奇数a的平方减1都是8的倍数任意4个连续整数的乘积再加上1 一定是完全平方数当a是整数时,a(a-1)(2a-1)是6的倍数当a是奇数时, a(a^2 - 1)是24的倍数n次代数方程 x^n + a1 * x^(n-1) + ... + an-1*x + an = 0 的系数都是a1, a2, ... , an都是整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论中的一些公式【整理】以下等式或者不等式均可以用数学归纳法予以证明!1 + 3 + 5 + ... + (2n - 1) = n^21*2 + 2*3 + 3*4 + ... + n*(n + 1) = n*(n + 1)*(n + 2) / 31*1! + 2*2! + 3*3! + ... + n*n! = (n + 1)! - 11^2 + 2^2 + 3^2 + ... + n^2 = n*(n + 1)*(2n + 1) / 61^2 - 2^2 + 3^2 -... + (-1)^n * n^2 = (-1)^(n + 1) * n * (n + 1) / 22^2 + 4^2 + ... + (2n)^2 = 2n*(n+1)*(2n+1) / 31/2! + 2/3! + ... + n/(n+1)! = 1 - 1/(n+1)!2^(n + 1) < 1 + (n + 1)2^n1^3 + 2^3 + 3^3 + ... + n^3 = (n*(n + 1) / 2)^21/(2*4)+1*3/(2*4*6)+1*3*5/(2*4*6*8)+...+(1*3*5*...*(2n-1))/(2*4*6*... *(2n+2)) = 1/2 - (1*3*5*...*(2n+1))/(2*4*6*...*(2n+2))1/(2^2-1) + 1/(3^2-1) + .. + 1 / ((n+1)^2 - 1) = 3/4 - 1/(2*(n+1)) - 1/(2*(n+2))1/2n <= 1*3*5*...*(2n-1) / (2*4*6*...*2n) <= 1 / sqrt(n+1) n=1,2...2^n >= n^2 , n=4, 5,...2^n >= 2n + 1, n=3,4,...r^0 + r^1 + ... + r^n < 1 / (1 - r), n>=0, 0<r<11*r^1 + 2*r^2 + ... + n*r^n < r / (1-r)^2, n>=1, 0<r<11/2^1 + 2/2^2 + 3/2^3 + ... + n /2^n < 2, n>=1(a(1)*a(2)*...*a(2^n))^(1/2^n) <= (a(1) + a(2) + ... + a(2^n)) / 2^n, n = 1, 2, ... a(i)是正数注:()用来标记下标cos(x) + cos(2x) + ... + cos(nx) = cos((x/2)*(n+1))*sin(nx/2) / sin(x/2), 其中sin(x/2) != 01*sin(x) + 2*sin(2x) + ... + n*sin(nx) = sin((n+1)*x) / (4*sin(x/2)^2) - (n+1)cos((2n + 1)/2 * x) / (2 * sin(x/2))其中sin(x/2) != 05^n - 1能被4整除7^n - 1能被6整除11^n - 6能被5整除6*7^n - 2*3^n能被4整除3^n + 7^n - 2能被8整除n条直线能将平面最多划分为(n^2 + n + 2) / 2个区域定义H(k) = 1 + 1/2 + 1/3 + ... + 1/k则1 + n/2 <=H(2^n) <= 1 + nH(1) + H(2) + ... + H(n) = (n + 1) * H(n) - n1*H(1) + 2*H(2) + ... + n*H(n) = n*(n + 1) / 2 * H(n + 1) - n * (n + 1) / 4欧拉函数的定义:E(k)=([1,n-1]中与n互质的整数个数).因为任意正整数都可以唯一表示成如下形式:k=p1^a1*p2^a2*……*pi^ai;(即分解质因数形式)可以推出:E(k)=(p1-1)(p2-1)……(pi-1)*(p1^(a1-1))(p2^(a2-1))……(pi^(ai-1))=k*(p1-1)(p2-1)……(pi-1)/(p1*p2*……pi);=k*(1-1/p1)*(1-1/p2)....(1-1/pk)在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);若N>2, 欧拉函数E(N)必定是偶数若gcd(a,b) = 1,则有E(a * b) = E(a) * E(b)若一个数N分解成p1^a1 * p2^a2 * ... * pn^an,那么E(N) = p1^(a1 - 1) * (p1 - 1) * ... * pn^(an - 1) * (pn - 1)若N>1,不大于N且与N互素的所有正整数的和是1/2 * N * E(N)因子和: 若 k=p1^a1*p2^a2...*pi^ai F(k) =(p1^0+...+p1^a1)*(p2^0+...+p2^a2)*...*(pi^0 + ... + pi^ai)没有一个平方数是以2,3,7,8结尾的max{a, b, c} - min{a, b, c} = (|a - b| + |b - c| + |a - c|) / 2ac % m = bc % m 可以得到 a % m' = b % m' m' = m / gcd(m, c)如果a % mi = b % mi (i=1,2,...,n) 并且 l = lcm(m1, m2, ..., mn) 则可以得到 a % l = b % lEuler 定理若gcd(a,m)==1, 则a^(phi(m)) % m = 1 % mFermat小定理p为素数,对任意的a有 a^p % p = a % pp为素数,对任意的a(a<p), a^(p-1) % p = 1 % pp为素数,对任意的a,若gcd(p,a)==1, a^(p-1) % p = 1 % p一个奇数a的平方减1都是8的倍数任意4个连续整数的乘积再加上1 一定是完全平方数当a是整数时,a(a-1)(2a-1)是6的倍数当a是奇数时, a(a^2 - 1)是24的倍数n次代数方程 x^n + a1 * x^(n-1) + ... + an-1*x + an = 0 的系数都是a1, a2, ... , an都是整数。
如果它有有理数的根,证明这个根一定是整数,而且这个数一定是an的因子。
如果不是整数,就一定是无理数。
设a,b都是正整数,a<b而gcd(a,b) = 1 ,如果存在一个素数p,它能够整除b,但是不能够整除10,则a/b一定不能够化成有限小数。
如果b=2^a * 5^b,其中a,b都是非负整数,则a/b能化成有限小数。
设0<a<b, 且gcd(a,b) = 1, 如果a/b能表示成纯循环小数,则我们有gcd(b, 10) = 1。
设0<a<b, 且gcd(a,b) = 1, 令h是一个最小的正整数,使得10^h 与1 关于b 同余,那么a/b可以表示成纯循环小数0.d1d2d3...dh。
设b是一个正整数且gcd(10, b) = 1,令h是一个最小的正整数,能使得10^h 与1 关于b同余,则h能够整除Euler(b)设a, b, b1都是正整数,a < b, gcd(a, b) = 1, b1 > 1, gcd(b1, 10) = 1。
b = 2^c * 5^d * b1, 其中c, d都是非负整数,且不同时为0,令h是一个最小的正整数,使得 10^h 与1 关于b1同余, 则当c>=d时,我们有a/b = 0.a1a2...aca'(c+1)...a'(c + h) ,而当c < d时,我们有a/b =0.a1a2...ada'(d+1)...a'(d + h)设0.a1a2...an...不能换成有限小数,也不能化成循环小数,则它不能化成分数。
设p是一个素数,m是一个正整数且m=na+b其中a是一个非负整数而b是一个不大于n-1的非负整数。
令a=p^m, 当b=0的时候,a的开n次方是一个整数,当1<= b <= n - 1时,a的开n次方不能表示为分数。
设p是一个素数,m是一个正整数且m=na+b其中a是一个非负整数而b是一个不大于n-1的非负整数。
令a=p^m, 当b=0的时候,a的开n次方是一个整数,当1<= b <= n - 1时,a的开n次方=b+c, 其中b是一个正整数而c是一个无限小数但不是循环小数。
设a是一个正整数, 当a的开n次方=b+c中b是一个正整数而0<c<1时,则a的开n次方不能表示成为分数,并且这时c是一个无限小数但不是循环小数。
(4b^3 + 3b) / (4b^2 + 1) <= b + 1 / (2b + 1/2b) <= 根号b平方+1 <= b + 1 / (2b + 1/(2b + 1 / 2b)) = (8b^4 + 8b^2 + 1) / (8b^3 + 4b)b + 1/(2b + 1/(2b + 1/(2b + 1/2b))) <= 根号b平方+1(16b^5 + 20b^3 + 5b) / (16b^4 + 12b^2 + 1) <= 根号b平方+1 <= (8b^4 + 8b^2 + 1) / (8b^3 + 4b)[modified from &豪's blog](1)定理:设x0,x1,x2,...是无穷实数列,xj>0,j>=1,那么,(i)对任意的整数 n>= 1, r>=1有<X0,...,Xn-1,Xn,...,Xn+r> = <X0,...,Xn-1,<Xn,...,Xn+r>> = <X0,...,Xn-1,Xn+1/<Xn+1,...,Xn+r>>.特别地有<X0,...,Xn-1,Xn,Xn+1> = <X0,...,Xn-1,Xn+1/Xn+1> 注:用该定理可以求连分数的值(2)对于连分数数数列 <X0,...Xn> 有递推关系:Pn = XnPn-1+Pn-2;Qn = XnQn-1+Qn-2;定义: P-2 = 0; P-1 = 1; Q-2 = 1; Q-1 = 0;所以: P0 = X0; Q0 = 1; P1 = X1X0+1; Q1 = X1;特别地:当 Xi=1 时, {Pn}, {Qn}为Fbi数列(3)对于连分数数数列 <X0,...Xn>当n>= 1时,我们有PkQk-1 = Pk-1Qk = (-1)^k当n>=2时,我们有PkQk-2 = Pk-2Qk = (-1)^(k - 1) * xk(4) 所有有理数都可以表示成有限连分数(5)pell方程: x^2+ny^2=+-1的解法:若n是平方数,则无解, 否则:先求出sqrt(n)的连分数序列<x0,x1..xn> 其中xn = 2*x0;对于 x^2+ny^2=-1若n为奇数,则 x=Pn-1, y=Qn-1; n为偶数时无解对于 x^2+ny^2=1若n为偶数,则 x=Pn-1, y=Qn-1; n为奇数时x=P2n-1, y=Q2n-1 注:以上说的解均为最小正解。