2018年七年级数学下册 二元一次方程组应用题 培优练习(含答案)
(word完整版)《二元一次方程组》培优学生版附答案
《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 3.二元一次方程3x +2y =15的正整数解为_______________. 4.2x -3y =4x -y =5的解为_______________.5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________. 6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A)8 (B )9 (C)10 (D )1110.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或1011.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C)y =2x +1 (D )y =-2x +1 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1) (C )1∶(-2)∶1 (D )1∶2∶(-1) 13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )015.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,216.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C)2 (D )-1(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.《二元一次方程组》提升练习(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次"两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________. 【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x 4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65.7.已知2a=3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a c b a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k的值.【答案】a =61,b =41,c =31.【点评】设“比例系数"是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D)11 【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D)-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C . 【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A)y =2x +3 (B )y =2x -3 (C)y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程.【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A)1∶2∶1 (B)1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A)a +4c =2 (B)4a +c =2 (C)a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值.【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B)3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B)1 (C)2 (D)-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a+b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A B A ,进而求得x ,y .【答案】⎩⎨⎧-==.11y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k ,y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错.【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行. 26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x 【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
(完整版)七年级数学下册二元一次方程组考试题及答案培优试题
一、选择题1.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生( )人.A .38B .40C .42D .452.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩3.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( ) A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩ C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩4.已知关于x ,y 的方程组451x y ax by -=-⎧⎨+=-⎩和393418x y ax by +=-⎧⎨+=⎩a b +平方根是( ) A .0B .2±C 2D .25.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对. 正确的有几个( ) A .1B .2C .3D .46.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .60B .52C .70D .667.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足x +y =2021,则k 等于( )A .2019B .2020C .2021D .20228.在解方程组2574x y x y -=⎧⎨-=⎩●★时,小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩.小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩,则原方程组的正确解是( ) A .11x y =⎧⎨=⎩B .11x y =-⎧⎨=⎩C .11x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩9.若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,通过计算,鸡和兔的数量分别为( ) A .23和12B .12和23C .24和12D .12和24二、填空题11.某景区游船码头派车原定于8点整准时到达景区入口接工作人员,由于汽车在路上因故障导致8:10时车还未到达景区入口,于是工作人员步行前往码头.走了一段时间后遇到了前来接他的汽车,他上车后汽车立即掉头继续前进.到达码头时已经比原计划迟到了20min .已知汽车的速度是工作人员步行速度的6倍,则汽车在路上因故障耽误的时间为____min . 12.学校设置了有关艺术类的甲、乙、丙三个拓展性课程项目,规定甲、乙两项不能兼报,学生选报后作了统计,发现报甲项目的人数与报乙项目的人数之和为报丙项目人数的45;同时兼报甲、丙两项目的人数占报甲项目的人数的13,同时兼报乙、丙两项目的人数占报乙项目的人数的14;兼报甲、丙两项目的人数与兼报乙、丙两项目的人数之和是报丙项目人数的29,则报甲、乙两个项目的人数之比为______. 13.若210x y z ++=,312x y z ++=,则x y z ++=__________. 14.关于x ,y 的二元一次方程2x +3y =12的非负整数解有______组.15.关于x 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,是一元一次方程;关于,x y 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,当m ______时,它是二元一次方程.16.对于有理数,规定新运算:x ※y =ax +by ,其中a 、b 是常数,等式右边是通常的加法和乘法运算.若2※1=5,1※(﹣1)=1,则ab =___.17.已知x ,y 满足方程组22331x y kx y k +=⎧⎨+=-⎩.给出下列结论:①若方程组的解也是23x y +=的解,则2k =;②若方程组的解满足2xy=-,则0k =;③无论k 为何值,282x y ⋅=;④若()()0x y x y +-=,则12k =.正确的是________.(填序号) 18.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.19.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.20.若2a m +2n b 7+a 5b n ﹣2m +2的运算结果是3a 5b 7,则2m 2+3mn +n 2的值是 ___.三、解答题21.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为(),0A a ,(),4B b ,()2,C c ,//BC x 轴,且a 、b 2100a b -+=. (1)则a =______;b =______;c =______;(2)如图1,在y 轴上是否存在点D ,使三角形ABD 的面积等于三角形ABC 的面积?若存在,请求出点D 的坐标;若不存在,请说明理由;(3)如图2,连接OC 交AB 于点M ,点(),0N n 在x 轴上,若三角形BCM 的面积小于三角形BMN 的面积,直接写出n 的取值范围是______.22.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?23.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b的值可能是()A.2019 B.2020 C.2021 D.2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?24.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.25.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,过点B 作BD ⊥AM 于点D ,∠BAD 与∠C 有何数量关系,并说明理由; (2)如图2,在(1)问的条件下,点E ,F 在DM 上,连接BE ,BF ,CF ,若BF 平分∠DBC ,BE 平分∠ABD ,∠FCB+∠NCF =180°,∠BFC =5∠DBE ,求∠ABE 的度数. 26.在平面直角坐标系中,点A ,B 的坐标分别为A(a ,0),B(b ,0),且a ,b 满足|a +b ﹣2|+25a b -+=0,现同时将点A ,B 分别向右平移1个单位,再向上平移2个单位,分别得到点A ,B 的对应点为C ,D . (1)请直接写出A 、B 、C 、D 四点的坐标.(2)点E 在坐标轴上,且S △BCE =S 四边形ABDC ,求满足条件的点E 的坐标.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在线段BD 上移动时(不与B ,D 重合)求:DCP BOPCPO∠+∠∠的值.27.(阅读感悟)一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数x ,y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题的常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.(解决问题)(1)已知二元一次方程组34312x y x y +=⎧⎨+=⎩,则x y -= ,x y += .(2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c =++※,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知1416=※,1521=※,求11※的值. 28.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=,……①,237x y +=,……②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=,这样的解题思想就是通常所说的“整体思想” 解决问题:(1)已知二元一次方程组322233x y x y -=-⎧⎨-=-⎩,则x y -=______,x y +=______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,那么11*=______. 29.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费. 30.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意,分别假设未知数,再根据对话内容列出方程组,即可求解答案.【详解】解:设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:(1)得分不足7分的平均得分为3分,xy+3×2+5×1=3(x+5+3),xy﹣3x=13①,(2)得3分及以上的人平均得分为4.5分,xy+3×7+4×8=4.5(x+3+4),4.5x﹣xy=21.5②,①+②得1.5x=34.5,解得x=2.3,故七(1)班共有学生23+5+3+3+4=38(人).故选:A.【点睛】考查了二元一次方程组的应用,解题的关键是了解题意,根据数量关系列出方程组,即可求出结果.2.C解析:C【详解】分析:由原方程组的解及两方程组的特点知,x+y、x﹣y分别相当于原方程组中的x、y,据此列出方程组,解之可得.详解:由题意知:3{4x yx y+=-=①②,①+②,得:2x=7,x=3.5,①﹣②,得:2y=﹣1,y=﹣0.5,所以方程组的解为3.50.5xy=⎧⎨=-⎩.故选C.点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.3.D解析:D 【详解】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126;又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.4.C解析:C 【分析】根据求解二元一次方程组求出a ,b ,求出a b +计算即可; 【详解】 解:由题意可知:4539x y x y -=-⎧⎨+=-⎩和13418ax by ax by +=-⎧⎨+=⎩有相同的解, 在4539x y x y -=-⎧⎨+=-⎩①②中, ①+②得:2x =-, 将2x =-代入①得:3y =-,∴方程组的解为23x y =-⎧⎨=-⎩,在13418ax by ax by +=-⎧⎨+=⎩①②中, ①×3得:333ax by +=-③, ②-③得:21by =, ∴7b =-, ∴11a =, ∴4a b +=,∴2=,∴故选:C . 【点睛】本题主要考查了二元一次方程组的求解、算术平方根的计算,准确计算是解题的关键.5.C解析:C 【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a +1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x +y =3的自然数解即可得结论. 【详解】解:①将a =1代入原方程组,得233x y x y +=⎧⎨-=⎩ 解得30x y =⎧⎨=⎩,将x =3,y =0,a =1代入方程x +y =2a +1的左右两边, 左边x +y =3,右边2a +1=3,当a =1时,方程组的解也是x +y =2a +1的解;故①正确;②解原方程组,得2122x a y a =+⎧⎨=-⎩,若x ,y 是互为相反数,则x +y =0, 即2a +1+2-2a =0,方程无解.无论a 取何值,x ,y 的值不可能是互为相反数;故②正确; ③∵x +y =2a +1+2-2a =3,∴x 、y 为自然数的解有03x y =⎧⎨=⎩,12x y =⎧⎨=⎩,21x y =⎧⎨=⎩,30x y =⎧⎨=⎩.∴x 、y 为自然数的解有4对,故③正确; 故选:C . 【点睛】本题考查了消元法解二元一次方程组,确定二元一次方程的自然数解,解题关键是用含字母的式子表示方程组的解.6.C解析:C 【分析】设小长方形的长、宽分别为x 、y ,根据周长为34的矩形ABCD ,可以列出方程3x +y =17;根据图示可以列出方程2x =5y ,联立两个方程组成方程组,解方程组就可以求出矩形ABCD 的面积. 【详解】解:设小长方形的长、宽分别为x 、y ,依题意得: 25317x yx y =⎧⎨+=⎩ , 解得:52x y =⎧⎨=⎩,则矩形ABCD 的面积为7×2×5=70. 故选:C . 【点睛】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.7.D解析:D 【分析】以k 为已知数解方程组,将方程组的解代入方程x +y =2021,即可求得k 的值. 【详解】解:32232732x y k x y k --⎧⎨+-⎩=①=② . ①×2-②×3得: -25y =-5k .∴y =15k .将y =15k 代入①得:415x k =-. ∴15415x k y k ⎧=⎪⎪⎨⎪=-⎪⎩.将15415x k y k ⎧=⎪⎪⎨⎪=-⎪⎩代入x +y =2021中得:141202155k k +-=. ∴k =2022. 故选:D . 【点睛】本题主要考查了二元一次方程组的解,二元一次方程的解和二元一次方程组的解法.正确求得二元一次方程组的解是解题的关键.8.C解析:C【分析】通过小明由于粗心把系数●抄错了,得到1107433⎛⎫⎛⎫⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭★,通过小亮把常数★抄错了,得到()()92165⋅--⨯-=●,便可将原方程组复原,再求解即可.【详解】对于方程组2574x y x y -=⎧⎨-=⎩●★, 小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴1107433⎛⎫⎛⎫⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭★ 解得11=★小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩ ∴()()92165⋅--⨯-=●解得3=●∴原方程组为3257411x y x y -=⎧⎨-=⎩,解得11x y =⎧⎨=-⎩ 故答案选:C .【点睛】本题是二元一次方程组错解复原问题.通过错解复原原方程组是本题的关键.9.A解析:A【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.【详解】 解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =, 3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩. 故选:A .【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.10.A解析:A【分析】设鸡有x 只、兔有y 只,由等量关系:鸡兔35只,共有足94足,列方程组,解之即可.【详解】解:设鸡有x 只、兔有y 只,故居题意得:352494x y x y +=⎧⎨+=⎩, 解得:2312x y =⎧⎨=⎩, 答鸡和兔的数量分别为23和12.故选择:A .【点睛】本题考查列方程组解应用题,掌握列方程组解应用题的方法,抓住等量关系:鸡兔35只,共有足94足列方程组是解题关键.二、填空题11.【解析】【分析】正常8:00到景区,出故障后,耽误t 分钟,8点t 分到景区,他在景区等了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车,他走a 分钟的路程,车走分钟就走完,也就是在解析:【解析】【分析】正常8:00到景区,出故障后,耽误t 分钟,8点t 分到景区,他在景区等了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车,他走a 分钟的路程,车走6a 分钟就走完,也就是在8点(t-6a )时遇到了车,得出关系式10+a=t-6a ; 正常时从景区到码头用b 分钟,在他遇到车的地点到景区要(b-6a )分钟,也就是8点(t-6a +b-6a )分钟到景区,已知他是8点(b+20)分到的,得出关系式t-6a +b-6a =b+20;联立方程组求解.【详解】正常8:00准时到达景区入口,汽车在路上因故障,耽误t 分钟,8点t 分到达景区入口, 工作人员步行前往码头.走了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车;工作人员走a 分钟的路程,车走6a 分钟就走完,也就是在8点(t-6a )时遇到了车,有10+a=t-6a , t=10+76a ,-----① 正常时从景区到码头用b 分钟,在他遇到车的地点到景区要(b-6a )分钟, 也就是8点(t-6a +b-6a )分钟到景区, 已知他是8点(b+20)分到的,所以有t-6a +b-6a =b+20, t-3a =20,----② 由①②解得:a=12,t=24.则汽车在路上因故障耽误的时间为24min.故答案为24.【点睛】此题主要考查了二元一次方程的应用,依据题意得出汽车晚到景区的时间具体原因以及汽车所晚的20分钟具体原因得出等量关系是解决问题的关键.12..【分析】设报甲项目的有x 人,报乙项目的有y 人,报丙项目的有z 人,根据题意即可得出关于x ,y ,z 的三元一次方程组,然后进一步化简即可得出答案;【详解】解:设报甲项目的有x 人,报乙项目的有y 人解析:1:2.【分析】设报甲项目的有x 人,报乙项目的有y 人,报丙项目的有z 人,根据题意即可得出关于x ,y ,z 的三元一次方程组,然后进一步化简即可得出答案;【详解】解:设报甲项目的有x 人,报乙项目的有y 人,报丙项目的有z 人, 依题意得:45112349x y z x y z ⎧+=⎪⎪⎨⎪+=⎪⎩①② 由①得:5544③=+z x y 将③代入②得:11255()34944+=⨯+x y x y 化简得:111836=x y ∴x :y =1:2.故答案为:1:2.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.13.8【分析】首先用减法消元,将两式相减,得出,再将代入第一个方程,即可求出的值.【详解】解:将两式相减得,,即,∴,即,故答案为:8.【点睛】本题主要考查加减消元法,解题关键是熟练解析:8【分析】首先用减法消元,将两式相减,得出2x =,再将2x =代入第一个方程,即可求出x y z ++的值.【详解】解:将两式相减得,2x -=-,即2x =,∴2210x y z x y z x x y z ++=+++=+++=,即8x y z ++=,故答案为:8.【点睛】本题主要考查加减消元法,解题关键是熟练掌握加减消元法和整体思想的应用. 14.3【分析】把x 看做已知数表示出y ,确定出非负整数x 与y 的值即.【详解】解:方程2x+3y=12,解得:y=-x+4,当x=0时,方程变形为3y=12,解得y=4;当x=3时,方程变形为解析:3【分析】把x 看做已知数表示出y ,确定出非负整数x 与y 的值即.【详解】解:方程2x +3y =12,解得:y =-23x +4, 当x =0时,方程变形为3y =12,解得y =4;当x =3时,方程变形为6+3y =12,解得y =2;当x =6时,方程变形为12+3y =12,解得y =0;∴关于x ,y 的二元一次方程2x +3y =12的非负整数解有3组:04x y ==⎧⎨⎩、32x y ⎧⎨⎩==和60x y ⎧⎨⎩==. 故答案为3【点睛】此题考查了二元一次方程的解,用x 表示出y 是解本题的关键.15.=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m 的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m 的值.解析:=﹣2 =2【分析】根据一元一次方程的定义可得m 2﹣4=0且m +2=0,且m +1≠0,即可得m 的值;根据二元一次方程的定义可得m 2﹣4=0且m +2≠0,m +1≠0,解可得m 的值.【详解】解:∵关于x 的方程(m 2﹣4)x 2+(m +2)x +(m +1)y =m +5,是一元一次方程,∴m2﹣4=0且m+2=0,且m+1≠0,解得:m=﹣2;∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是二元一次方程,∴m2﹣4=0且m+2≠0,m+1≠0,解得:m=2.故答案为:=﹣2;=2.【点睛】此题主要考查了二元一次方程和一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.16.2【分析】依据新运算的规定,将2※1=5,1※(﹣1)=1转化为二元一次方程,解这两个方程组成的方程组可求出a,b,再计算ab.【详解】解:∵x※y=ax+by,∴2※1=5可转化为:2a解析:2【分析】依据新运算的规定,将2※1=5,1※(﹣1)=1转化为二元一次方程,解这两个方程组成的方程组可求出a,b,再计算ab.【详解】解:∵x※y=ax+by,∴2※1=5可转化为:2a+b=5,1※(﹣1)=1可转化为:a﹣b=1.将这两个方程组成方程组:251a ba b+=⎧⎨-=⎩,解得21ab=⎧⎨=⎩,∴ab=2×1=2.故答案为:2.【点睛】本题考查了新定义,以及二元一次方程组的解法,根据新定义列出二元一次方程组是解答本题的关键.17.②③【分析】利用二元一次一次方程组的解法表示出方程组的解,进而分别分析得出答案.【详解】解:,①×3-②得,∵方程组的解也是x+2y=3的解,∴,解得:,∴k=3,故①错误;∵方程解析:②③【分析】利用二元一次一次方程组的解法表示出方程组的解,进而分别分析得出答案.【详解】解:22331x y k x y k +=⎧⎨+=-⎩①②, ①×3-②得31x y +=,∵方程组的解也是x +2y =3的解,∴3123x y x y +=⎧⎨+=⎩,解得:72x y =⎧⎨=-⎩, ∴k =3,故①错误;∵方程组的解满足2x y=-, ∴2x y =-,∴20x y k +==,故②正确;∵由①可得:31x y +=,∴()33328222222y x y x x y x y +⋅=⋅=⋅==,故③正确; ∵()()0x y x y +-=,∴x +y =0或x -y =0,∴y =-x 或x =y ,则()()22331x x k x x k ⎧+⨯-=⎪⎨+⨯-=-⎪⎩或22331x x k x x k +=⎧⎨+=-⎩, 解得:1212x k ⎧=-⎪⎪⎨⎪=⎪⎩或1434x k ⎧=⎪⎪⎨⎪=⎪⎩,故④错误; 故答案为:②③.【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的方法和二元一次方程的解的定义.18.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
七年级初一数学数学第八章 二元一次方程组的专项培优练习题(含答案
七年级初一数学数学第八章 二元一次方程组的专项培优练习题(含答案一、选择题1.若2446x y x y -=⎧⎨+=⎩,则x +y 的值是( ) A .﹣5 B .5 C .﹣4 D .42.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x += C .23y x =- D .32y x =-3.已知方程组43235x y k x y -=⎧⎨+=⎩的解满足x y =,则k 的值为( ) A .1 B .2 C .3 D .44.已知方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩的解是9.30.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x y x y +--=⎧⎨++-=⎩的解是( ). A . 6.32.2x y =⎧⎨=⎩B .8.31.2x y =⎧⎨=⎩C .9.30.2x y =⎧⎨=⎩D .10.32.2x y =⎧⎨=⎩ 5.8块相同的长方形地砖拼成面积为2400 cm 2的矩形ABCD (如图),则矩形ABCD 的周长为( )A .200cmB .220cmC .240cmD .280cm6.三元一次方程组236216x y z x y z ==⎧⎨++=⎩①②的解是( ) A .135x y z =⎧⎪=⎨⎪=⎩ B .556x y z =⎧⎪=⎨⎪=⎩ C .632x y z =⎧⎪=⎨⎪=⎩ D .642x y z =⎧⎪=⎨⎪=⎩7.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( )A .173B .888C .957D .69 8.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ).A.2B.3C.4D.59.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53yx+=③-6x+2y=-10,其中正确的是()A.②B.②③C.①③D.①②10.已知方程组512x yax by+=⎧⎨+=⎩和521613x ybx ay+=⎧⎨+=⎩的解相同,则a、b的值分别是()A.2,3 B.3,2 C.2,4 D.3,4二、填空题11.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.12.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.13.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.14.若m=m=________.15.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.16.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人.17.关于x,y的二元一次方程组5323x yx y a+=⎧⎨+=⎩的解是正整数,试确定整数a的值为_________________.18.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包.19.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由.23.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -+=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.24.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x 元,销售每件服装奖励y 元:(1)求x y 、的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?25.方程组1327x y x y +=-⎧-=⎨⎩的解满足210(x ky k -=是常数), ()1求k 的值.()2直接写出关于x ,y 的方程()1213k x y -+=的正整数解26.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】①+②得:2x+2y=10,进而即可求得x+y=5.【详解】解:2446x yx y-=⎧⎨+=⎩①②,①+②得:2x+2y=10,∴x+y=5.故选:B.【点睛】本题考查了解二元一次方程组的方法,要熟练掌握,注意加减法和代入法的应用.2.C解析:C【分析】将x看做常数移项求出y即可得.【详解】由2x-y=3知2x-3=y,即y=2x-3,故选C.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.3.A解析:A【分析】把x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解. 【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x k x =⎧⎨=⎩, 所以k=1,故选:A【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.4.A解析:A【分析】根据二元一次方程组的解可得a -1,b +1的值,然后对比得到x+2,y -1的值,求解即可.【详解】∵方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩∴9.30.2a b =⎧⎨=⎩∴18.31 1.2a b -=⎧⎨+=⎩∴对比两方程组可知:12a x -=+;11b y +=-∴=3x a -,=2y b +∴x =6.3,y =2.2故选:A .【点睛】本题考查了二元一次方程组的知识;求解的关键是掌握二元一次方程组的性质,从而完成求解.5.A解析:A【分析】设长方形地砖的长为xcm ,宽为ycm ,依据图形中所示的小长方形的长与宽之间的关系,长=3×宽,以及长方形的面积=24008cm 2,可以列出方程组,解方程组即可求得x ,y 的值,再求矩形ABCD 的周长.【详解】解:设长方形地砖的长为xcm ,宽为ycm ,根据题意得x 324008y xy =⎧⎨=÷⎩, 解之得x 3010y =⎧⎨=⎩, 则矩形ABCD 的周长为2×(60+40)=200cm .故选A .【点睛】本题考查了图形与二元一次方程组,正确找到数量关系列出方程组是解题的关键.6.D解析:D【分析】根据2x=3y=6z,设x=3k,y=2k,z=k,代入求值即可解题.【详解】解:∵2x=3y=6z,∴设x=3k,y=2k,z=k,∵x+2y+z=16,即3k+4k+k=16,解得:k=2,∴642x y z =⎧⎪=⎨⎪=⎩, 故选D.【点睛】本题考查了三元一次方程组的求解,中等难度,根据等量关系设未知数是解题关键.7.A解析:A【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案.【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018=a 12+a 22+…+a 20142+2156,设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173,∴有888个1,957个-1,173个0,故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.8.C解析:C【解析】根据题意35223x y m x y m +=+⎧⎨+=⎩①②,由加减消元法把①-②,得22x y +=③;然后由x 与y的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=.故选:C.9.B解析:B【分析】根据等式基本性质进行分析即可.【详解】用x 表示y 为y=3x-5,故①不正确;用y 表示x 为53y x +=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确.故选B.【点睛】考核知识点:二元一次方程. 10.B解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值.【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩, 将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩, 得:23122313a b b a +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2.故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.二、填空题11.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c.【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x、y的不定方程是解答此题的关键.12..【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进解析:38 17.【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入124%32x y--中即可求出结论.【详解】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,依题意,得:()() 534115% 243115%x yx y⎧-=-⎪⎨-=-⎪⎩,解得:0.170.085 xy=⎧⎨=⎩,∴124%38 3217x y-=-.故答案为:38 17.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.24【分析】设草地原有青草为a,草一天长b,一只羊一天吃x,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a、b、x的方程,解可得a、b与x的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x +⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.14.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y ≥0,x-199+y ≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m 的值.【详解】解:由题意可得,199-x-y ≥0,x-199+y ≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m ,将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.16.48【分析】设选洪崖洞的有a人,选长江索道的有b人,选李子坝轻轨站的有c人,选磁器口的有d人,根据题意可列出4个方程,然后整理得到不含c的两个方程,再分情况讨论整数倍x的值,得到符合题意的解即可解析:48【分析】设选洪崖洞的有a人,选长江索道的有b人,选李子坝轻轨站的有c人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可.【详解】解:设选洪崖洞的有a人,选长江索道的有b人,选李子坝轻轨站的有c人,选磁器口的有d 人,根据题意可列方程:c=d ﹣8,a=xd (x >1,且为整数),d+a=5(b+c ),b+a=c+d+24,整理可得:283727d b a b =-⎧⎨=-⎩, 当x=2时,解得b=16,d=﹣20,不符合题意,舍去;当x=3时,解得b=6,d=10,a=30,c=2,则旅行团共有6+10+30+2=48人;当x >3时,求得的b 均为负数,不符合题意.故答案为48.【点睛】本题主要考查列方程,解多元一次方程,解此题的关键在于根据题意准确列出方程. 17.7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值. 详解:①-②×3,得2x=2解析:7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值.详解:5323x y x y a +=⎧⎨+=⎩①②①-②×3,得2x=23-3a解得x=2332a - 把x=2332a -代入②得y=5232a - ∵关于x ,y 的二元一次方程组5323x y x y a +=⎧⎨+=⎩的解是正整数 ∴2332a ->0,5232a ->0解得232353a << 即a=5、6、7 ∵x 、y 为正整数∴a 为5或7.故答案为:5或7.点睛:本题考查了二元一次方程组的解,解二元一次方程组,解一元一次方程的应用,关键是能根据题意得出关于a 的方程.18.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.19.【解析】试题分析:根据x 、y 互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.20.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)C的坐标为(0,4),点D的坐标为(1,2);(2)①点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在△PEF 的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).【解析】【分析】(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解答即可;②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF 在点P 的上方时,(b ﹣a )(2a ﹣1)=4,与a +b =1联立得:,此方程组无解;当EF 在点P 的下方时,(b ﹣a )(1﹣2a )=4,与a +=1联立得:, 解得:,或;分别代入点E (a ,2a +1)、F (b ,﹣2b +3)得:E (﹣,0)、F (,0),或E (,4)、F (﹣,4);综上所述,存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.23.(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P --【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标.【详解】解:(1)40a -≥ 60b +≥, ∴460a b -++=,40a ∴-=,60b +=,4a ∴=,6b =-,()0,4A ∴,()6,0B -,(2)由BCM DOM S S ∆∆=∴ABO DOM S S ∆∆=,ABO ACD S S ∆∆∴=,1122ABO S AO BO ∆=⨯⨯=, 如图1,连CO ,作CE y ⊥轴,CF x ⊥轴,ABO ACO BCO S S S ∆∆∆=+,即()11641222m m ⨯⨯+⨯⨯-= 53212n m n m -=⎧∴⎨-=⎩, 32m n =-⎧∴⎨=⎩, ()3,2C ∴-,而12ACD S CE AD ∆=⨯⨯, ()134122OD =⨯⨯+=, 4OD ∴=,()0,4D ∴-,(3)如图2:∵EF ∥AB ,∴20PAB EAB S S ∆∆==, ∴1202AO BE ⨯=,即()4640OE ⨯+=, 4OE ∴=,()4,0E ∴,12GE =,8GO ∴=,()8,0G ∴-,20ABF PBA S S ∆∆==,()11642022ABF S BO AF OF ∆∴=⨯⨯=⨯⨯+=, 83OF ∴=, 80,3F ⎛⎫∴- ⎪⎝⎭, PGE OEF GPFO S S S ∆∆=+梯形,11818128422323PG PG ⎛⎫∴⨯⨯=⨯+⨯+⨯⨯ ⎪⎝⎭, 8PG ∴=,()8,8P ∴--,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.24.(1)x=800,y=3;(2)334;(3)150元.【解析】【分析】(1)通过理解题意可知此题存在两个等量关系,即小丽的基本工资+提成=1400元,小华的基本工资+提成=1250元,列方程组求解即可;(2)根据小丽基本工资+每件提成×件数=1800元,求得件数即可;(3)理解题意可知,计算出甲、乙、丙各购买4件共多少钱即可.【详解】解:(1)设营业员的基本工资为x 元,买一件的奖励为y 元.由题意得20014001501250x y x y +⎧⎨+⎩== 解得8003x y ⎧⎨⎩== 即x 的值为800,y 的值为3.(2)设小丽当月要卖服装z 件,由题意得:800+3z=1800解得,z=333.3由题意得,z 为正整数,在z >333中最小正整数是334.答:小丽当月至少要卖334件.(3)设一件甲为x 元,一件乙为y 元,一件丙为z 元.则可列3231523285x y z x y z ++⎧⎨++⎩== 将两等式相加得4x+4y+4z=600,则x+y+z=150答:购买一件甲、一件乙、一件丙共需150元.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;第三问的难点就在于思考的方向对不对,实际上,方向对了,做起来就方便多了.25.(1)4k =;(2){15x y ==,{32x y ==【解析】【分析】(1)先求出方程组的解,再代入方程210x ky -=,即可求出k 值;(2)把k 的值代入方程(k-1)x+2y=13,再求出正整数解即可.【详解】() 1方程组1327x y x y +=-⎧-=⎨⎩的解为:{12x y ==-, 将{12x y ==-代入210x ky -=得:2210k +=,解得:4k =;()2把4k =代入方程()1213k x y -+=得:3213x y +=, 即1332x y -=, 所以关于x ,y 的方程()1213k x y -+=的正整数解为{15x y ==,{32x y ==.【点睛】本题考查了解二元一次方程组、解一元一次方程和解二元一次方程,能求出k 的值是解此题的关键.26.(1)甲45人,乙30人 (2) 租65座的客车2辆,45座的客车2辆,30座的3辆【解析】分析:(1)根据题意,设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,由等量关系列方程组求解即可;(2)根据坐满的租车方案,由总人数列方程求解即可.详解:(1)设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,根据题意得 231803165x y x y +=⎧⎨+=⎩,解之得:4530x y =⎧⎨=⎩答:甲种客车每辆能载客45人,乙两种客车每辆能载客30人.(2)设同时租65座.45座和30座的大小三种客车各m 辆,n 辆,(7﹣m ﹣n )辆, 根据题意得出:65m+45n+30(7﹣m ﹣n )=303+7,整理得出:7m+3n=20,故符合题意的有:m=2,n=2,7﹣m ﹣n=3,租车方案为:租65座的客车2辆,45座的客车2辆,30座的3辆.点睛:本题考查二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的等关系式,列出对应的方程.。
《二元一次方程组》 培优训练(含答案)
期末复习:《二元一次方程组》培优训练一.选择题1.方程组的解是()A.B.C.D.2.若二元一次方程组的解为则a+b的值为()A.0 B.1 C.2 D.44.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3 B.4 C.5 D.65.我们知道方程组:的解是,则方程组的解是()A.B.C.D.6.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.47.如果关于x,y的二元一次方程组的解为,则方程组的解为()A.B.C.D.8.关于x,y的方程组的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.2二.填空题11.若a+2b=8,3a+4b=18,则a+b的值为.12.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.13.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.14.若二元一次方程组的解为,则m+n=15.有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨.1辆大货车、1辆小货车的额定载重量分别为多少吨?设1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,依题意,可以列方程组为.三.解答题18.解方程(1)(2)19.对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.21.某厂准备生产甲、乙两种商品销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.求甲种商品与乙种商品的销售单价各是多少元?22.已知甲种物品毎个重4kg,乙种物品毎个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=.(3)若乙种物品有8个,则甲种物品有个.24.阅读理解:小聪在解方程组时,发现方程组中①和②之间存在一定的关系,他发现了一种“整体代换”法,具体解法如下:解:将方程②变形为:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入方程③得:2×3+y=5解得y=﹣1把y=﹣1代入方程①得x=4∴方程组的解是(1)模仿小聪的解法,解方程组(2)已知x,y满足方程组,解答:(ⅰ)求x2+4y2的值;(ⅱ)求3xy的值.参考答案一.选择题1.解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.2.解:把代入方程组得:,解得:,则a+b=2,故选:C.3.解:设小长方形的长为x,宽为y,如图可知,.故选:A.4.解:设宾馆有客房:单人间x间、二人间y间、三人间z间,根据题意可得,,解得:y+2z=9,y=9﹣2z,∵x,y,z都是小于9的正整数,当z=1时,y=7,x=1;当z=2时,y=5,x=2;当z=3时,y=3,x=3当z=4时,y=1,x=4当z=5时,y=﹣1(不合题意,舍去)∴租房方案有4种.故选:B.5.解:∵方程组:的解是,∴由方程组可得,解得.故选:C.6.解:设截成2m的彩绳x根,截成1m的彩绳y根,依题意,得:2x+y=7,∴y=7﹣2x.又∵x,y均为非零整数,∴或或或,∴共有4种不同的截法.故选:D.7.解:由方程组得,根据题意知,即,故选:C.8.解:解方程组得:,∵x=y,∴=+1,解得:k=0.故选:B.9.解:设雉有x只,兔有y只,依题意,得:,解得:.故选:A.10.解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:,解得,故x+yz=5+5×2=15.故选:B.二.填空题(共7小题)11.解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.12.解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.13.解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.14.解:①+②得:5x+5y=10∴x+y=2方程组的解为,∴m+n=x+y=2.故答案为:2.15.解:由题意可得,,故答案为:.16.解:∵关于x、y的二元一次方程组的解是,∴关于a.b的二元一次方程组满足,解得.故关于a.b的二元一次方程组的解是.故答案为:.17.解:设笼中有x只雉,y只兔,根据题得,①,解得,不符合题;②,此方程组无整数解,不符合题意;③,解得,符合题意;④,解得,符合题意;故答案为:③④.三.解答题(共7小题)18.解:(1),把①代入②得:3x+10﹣4x=4,解得:x=6,把x=6代入①得:y=﹣7,则方程组的解为;(2)方程组整理得:,把②代入①得:3x+2x+6=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.19.解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=1,则x+y=.20.解:设合伙人为x人,羊价为y钱,依题意,得:,∴甲同学列的方程组正确,解该方程组,得:.答:合伙人为21人,羊价为150钱.21.解:设甲种商品的销售单价为x元/件,乙种商品的销售单价为y元/件,依题意,得:,解得:.答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.22.解:(1)由题意知4x+7y=76;(2)当x=12时,48+7y=76,解得y=4,故答案为:4;(3)当y=8时,4x+56=76,解得:x=5,即甲种物品有5个,故答案为:5.23.解:(1)4+3=7(张),1+2=3(张).故答案为:7;3.(2)设可加工的竖式容器x个,横式容器y个,依题意,得:,解得:.答:可加工的竖式容器100个,横式容器539个.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:,解得:.∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒24.解:(1)把方程②变形:3(3x﹣2y)+2y=19 ③把①代入③得:15﹣2y=19,得y=2把y=2代入①得x=3则方程组的解为(2)(ⅰ)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③②式整理得2(x2+4y2)+xy=36 ④将③代入④得解得xy=2将xy=2代入③得x2+4y2=17(ⅱ)由(ⅰ)知xy=2,则3xy=6。
七年级初一数学数学第八章 二元一次方程组的专项培优易错试卷练习题及答案
七年级初一数学数学第八章 二元一次方程组的专项培优易错试卷练习题及答案一、选择题1.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g2.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .1963.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩4.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm 和ycm ,则依题意列方程式组正确的是( )A .504x y y x +=⎧⎨=⎩B .504x y x y +=⎧⎨=⎩C .504x y y x -=⎧⎨=⎩D .504x y x y -=⎧⎨=⎩5.二元一次方程2x+3y=15的正整数解的个数是( )A .1个B .2个C .3个D .4个6.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-47.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23B .29C .44D .538.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个9.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-1 10.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3二、填空题11.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.12.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.13.甲乙两人共同解方程组515(1)42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为54x y =⎧⎨=⎩;计算20192018110a b ⎛⎫+-= ⎪⎝⎭________.14.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.15.已知21xy=⎧⎨=⎩,是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则m+3n的平方根为______.16.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.17.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a+b﹣m =_____.18.解三元一次方程组经过①-③和③×4+②消去未知数z后,得到的二元一次方程组是________.19.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.20.若(x﹣y+3)2+=0,则x+y的值为______.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.23.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.24.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 25.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? 26.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设每块巧克力的质量为x 克,每块果冻的质量为y 克,根据每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,列出方程组即可解答 【详解】设每块巧克力的质量为x 克,每块果冻的质量为y 克, 由题意得3250x yx y =+=⎧⎨⎩ ,解得2030x y ==⎧⎨⎩ , 即一块巧克力的质量是20g. 故选A. 【点睛】此题考查二元一次方程组的应用,列出方程组是解题关键2.C解析:C 【解析】解:设小长方形的长、宽分别为x 、y , 依题意得:,解得:,则矩形ABCD 的面积为7×2×5=70.故选C.【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.3.B解析:B【分析】根据路程=时间乘以速度得到方程351.26060x y+=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米,∴351.2 6060x y+=,∴351.2 606016x yx y⎧+=⎪⎨⎪+=⎩,故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.4.B解析:B【解析】分析:设小长方形的长为xcm,宽为ycm,根据图形可得:大长方形的宽=小长方形的长+小长方形的宽,小长方形的长=小长方形的宽×4,列出方程中即可.详解:设小长方形的长为xcm,宽为ycm,则可列方程组:504x yx y+=⎧⎨=⎩.故选B.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,看懂图示,找出合适的等量关系,列出方程组,注意弄清小正方形的长与宽的关系.5.B解析:B【详解】解:2x+3y=15,解得:x=3152y-+,当y=1时,x=6;当y=3时,x=3,则方程的正整数解有2对.故选:B6.B解析:B【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.7.C解析:C【分析】分别令n=2与n=5表示出a2,a5,代入已知等式求出a1与d的值,即可确定出a15的值.【详解】令n=2,得到a2=a1+d=5①;令n=5,得到a5=a1+4d=14②,②-①得:3d=9,即d=3,把d=3代入①得:a1=2,则a15=a1+14d=2+42=44.故选:C.【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.B解析:B【详解】解:把①22xy==⎧⎨⎩代入得左边=10=右边;把②2{1xy==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6x y ==代入得左边=10=右边;所以方程4x +y =10的解有①④2个. 故选B .9.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.10.C解析:C 【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可. 【详解】 解:根据题意,得121m n m n -=⎧⎨+-=⎩,解得21m n =⎧⎨=⎩. 故选:C .二、填空题11.40 【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解. 【详解】 解:∵ ,,∴1≤b≤50,51<a≤100, 若a+解析:40 【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解. 【详解】解:∵12903991313= ,129031171111=, ∴1≤b ≤50,51<a ≤100, 若a +b ≤100时,由题意可得:1311129011()990b a a b +=⎧⎨+=⎩,∴60150a b =-⎧⎨=⎩(不合题意舍去),若a +b >100时,由题意可得131112909(990b a a b +=⎧⎨+=⎩),∴7040a b =⎧⎨=⎩,故可70,40. 【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.12.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】 解:由已知得: ∴两式相加得:,即, 把代入得到,, 故此方程组的解为:. 故答案为:. 【点睛】 本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】解:由已知得:(1)(1)0a x y b x y ---++= ∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =, 把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩.故答案为:01x y =⎧⎨=-⎩.【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.13.0 【分析】根据题意,将代入方程(2)可得出b 的值,代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果. 【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0 【分析】 根据题意,将31x y =-⎧⎨=-⎩代入方程(2)可得出b 的值,54x y =⎧⎨=⎩代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果. 【详解】 解:根据题意,将31x y =-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将54x y =⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1, ∴20192018110a b ⎛⎫+- ⎪⎝⎭=1-1=0.故答案为:0. 【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.14.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方 解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系.【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x x x -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=, 设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b = ∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值. 15.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.16.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.17.﹣7【分析】由表二结合表一即可得出关于a的一元一次方程,解之即可得出a值;由表三结合表一即可得出关于b的一元一次方程,解之即可得出b值;在表三中设42为第x行y列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a的一元一次方程,解之即可得出a值;由表三结合表一即可得出关于b的一元一次方程,解之即可得出b值;在表三中设42为第x行y列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x、y 的二元一次方程组,解之即可得出x、y的值,将其代入m=(x+1)(y+1)即可得出m的值,将a、b、m的值代入a-b+m即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.18.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z 后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3, ∴消去未知数z 后,得到的二元一次方程组是. 【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键. 19.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x z z y x y z -+=⎧⎪-+=⎨⎪+-+=⎩,解得135x y z =⎧⎪=⎨⎪=⎩, 所以x+y+z =9.20.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k的值即可;(2)根据加减消元法的过程确定出a与b的值即可.【详解】解:(1)选择甲,3274 232m n km n+=-⎧⎨+=-⎩①②,①×3﹣②×2得:5m=21k﹣8,解得:m=2185k-,②×3﹣①×2得:5n=2﹣14k,解得:n=2145k -,代入m+n=3得:21821455k k--+=3,去分母得:21k﹣8+2﹣14k=15,移项合并得:7k =21,解得:k =3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙, 联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,, 1.5MC t ON t ∴==,4,6 1.5BM t NA t ∴=-=-,11()(4 1.5)4822MNOB S BM ON OB t t t ∴=+⋅=⨯-+⨯=+四边形, 11()(6 1.5)41222MNAC S MC NA OB t t t =+⋅=⨯+-⨯=-+四边形. 当812t t +>-+时,即2t >时,MNOB MNAC S S >四边形四边形;当812t t +=-+时,即2t =时,MNOB MNAC S S =四边形四边形;当812t t +<-+时,即2t <时,MNOB MNAC S S <四边形四边形.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.24.(1)2(a +b );(2)(2+21b a +);(2+21a b +);(3)36. 【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论; (2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB 两地的距离为S 千米,根据路程=速度×时间,即可得出关于(a+b ),S 的二元一次方程组(此处将a+b 当成一个整体),解之即可得出结论.【详解】(1)A 、B 两地的距离可以表示为2(a +b )千米.故答案为:2(a +b ).(2)甲乙相遇时,甲已经走了2a 千米,乙已经走了2b 千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需21b a +小时到达B 地,乙还需21a b +小时到达A 地,所以甲从A 到B 所用的时间为(2+21b a + )小时,乙从B 到A 所用的时间为(2+21a b +)小时.故答案为:(2+21b a +);(2+21a b +). (3)设AB 两地的距离为S 千米,3小时36分钟=185小时. 依题意,得: 2()182(11)5S a b S a b =+⎧⎪⎨=+++⎪⎩, 令x =a +b ,则原方程变形为2182(2)5S x S x =⎧⎪⎨=+⎪⎩, 解得:1836x S =⎧⎨=⎩. 答:AB 两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车.(2) ①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【分析】(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;(2)设调熟练工m 人,招聘新工人n 名,根据一年的安装任务列出方程整理用m 表示出n ,然后根据人数m 是整数讨论求解即可.【详解】(1)设每名熟练工每月可以安装x 辆电动车,新工人每月分别安装y 辆电动汽车, 根据题意得:282314x y x y +=⎧⎨+=⎩, 解之得42x y =⎧⎨=⎩. 答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车; (2)设抽调熟练工m 人,招聘新工人n 名,由题意得:12(4m+2n )=240,整理得,n=10-2m ,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【点睛】本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.26.(1)方程组的解为32xy⎧⎨⎩==;(2)19.【解析】【分析】(1)仿照小军的方法将方程②变形,把方程①代入求出y的值,即可确定出x的值;(2)方程组两方程变形后,利用加减消元法求出所求即可.【详解】解:(1)由②得:3(3x-2y)+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:x=3,则方程组的解为32 xy⎧⎨⎩==;(2)由①得:3(x2+4y2)-2xy=47③,由②得:2(x2+4y2)+xy=36④,③+④×2得:7(x2+4y2)=119,解得:x2+4y2=17.③×2得:6(x2+4y2)-4xy=94⑤,④×3得:6(x2+4y2)+3xy=108⑥,⑥-⑤得:7 xy=14xy=2.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。
初中数学二元一次方程组提高题及常考题和培优题含解析
初中数学二元一次方程提高题与常考题和培优题(含解析)一.选择题〔共13小题〕1.关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.2.x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣63.x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.34.假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.135.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是〔〕A.8 B.5 C.2 D.07.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C .D .8.小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或510.电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A .B .C.D.11.假设方程组的解是,那么方程组的解是〔〕A. B.C. D.12."九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.13.如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2二.填空题〔共13小题〕14.方程组的解是.15.a、b满足方程组,那么=.16.假设方程组与的解一样,那么a=,b=.17.是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为.18.假设〔a﹣2b+1〕2与互为相反数,那么a=,b=.19.定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2=.20.我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于.22.如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=.23.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.24.如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三.解答题〔共14小题〕27.解方程组:.28.解方程组:.29.关于x,y的二元一次方程组的解互为相反数,求k的值.30.观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.32.某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班缺乏50人,2班超过50人.〔1〕假设以班为单位分别购票,一共应付1240元,求两班各有多少人?〔2〕假设两班联合购票可少付多少元?34.“最美女教师〞张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?35.某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:品名西兰花胡萝卜批发价〔元/kg〕 2.8 1.6零售价〔元/kg〕 3.8 2.5如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元.36.4月23日“世界读书日〞期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本"英汉词典"和"读者"杂志的单价.37.学生在素质教育基地进展社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植本钱共42元,还了解到如下信息:〔1〕请问采摘的黄瓜和茄子各多少千克?〔2〕这些采摘的黄瓜和茄子可赚多少元?38.某校住校生宿舍有大小两种寝室假设干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?39.某运发动在一场篮球比赛中的技术统计如表所示:技术上场时出手投篮投中〔次〕罚球得篮板〔个〕助攻〔次〕个人总间〔次〕分得分〔分钟〕数据46662210118 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运发动投中2分球和3分球各几个.40.在平面直角坐标系中,假设横坐标、纵坐标均为整数点称为格点,假设一个多边形的顶点都是格点,那么称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.〔1〕利用图中条件求a,b的值;〔2〕假设某格点多边形对应的n=20,l=15,求S的值;〔3〕在图中画出面积等于5的格点直角三角形PQR.初中数学二元一次方程提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题〔共13小题〕1.〔2016•毕节市〕关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,应选A【点评】此题考察了二元一次方程的定义,熟练掌握二元一次方程的定义是解此题的关键.2.〔2016•〕x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6【分析】直接利用二元一次方程的解的定义分别代入求出答案.【解答】解:将x=﹣3,y=1代入各式,A、〔﹣3〕+2×1=﹣1,正确;B、〔﹣3〕﹣2×1=﹣5≠1,故此选项错误;C、2×〔﹣3〕+3‧1=﹣3≠6,故此选项错误;D、2×〔﹣3〕﹣3‧1=﹣9≠﹣6,故此选项错误;应选:A.【点评】此题主要考察了二元一次方程的解,正确代入方程是解题关键.3.〔2016•〕x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.3【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,那么x+y=5,应选C【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.〔2016•〕假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.13【分析】将其中一个方程两边乘以一个数,使其与另一方程中x的系数互为相反数,再将两方程相加,消去一个未知数,到达降元的目的,求出另一个未知数,再用代入法求另一个未知数.【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,那么a+b=1+12=13,应选D.【点评】此题主要考察解二元一次方程组,熟练运用加减消元是解答此题的关键.5.〔2016•〕为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.6.〔2016•吴中区一模〕如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b 的值是〔〕A.8 B.5 C.2 D.0【分析】把x=a,y=b代入方程,再根据5﹣a+3b=5﹣〔a﹣3b〕,然后代入求值即可.【解答】解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,所以5﹣a+3b=5﹣〔a﹣3b〕=5+3=8,应选A【点评】此题考察了代数式的求值,正确对代数式变形,利用添括号法那么是关键.7.〔2017•河北一模〕父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C.D.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高〔1﹣〕x=儿子在水中的身高〔1﹣〕y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子没在水中的身高是相等的.8.〔2016•黔东南州〕小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,应选C【点评】此题主要考察了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.9.〔2016•〕足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,应选:C.【点评】此题主要考察二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.10.〔2016•泰安模拟〕电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A.B.C.D.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少〞的狗有x条,“三多〞的狗有y条,可得:,应选:B.【点评】此题考察二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.11.〔2016•高阳县一模〕假设方程组的解是,那么方程组的解是〔〕A. B.C. D.【分析】根据加减法,可得〔x+2〕、〔y﹣1〕的解,再根据解方程,可得答案.【解答】解:∵方程组的解是,∴方程组中∴应选:C.【点评】此题考察了二元一次方程组的解,解决此题的关键是先求〔x+2〕、〔y ﹣1〕的解,再求x、y的值.12.〔2016•乐山模拟〕"九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两〞,得到等量关系,即可列出方程组.【解答】解:根据题意得:,应选A【点评】此题考察了由实际问题抽象出二元一次方程组,解决此题的关键是找到题目中所存在的等量关系.13.〔2016•富顺县校级模拟〕如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2【分析】设小长方形的长为xcm,宽为ycm,根据题意可知x+y=40,大矩形的长可表示3x或3y+2x,从而得到3x=3y+2x,然后列方程组求解即可.【解答】解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.应选:B.【点评】此题主要考察的是二元一次方程组的应用,根据矩形的对边相等列出方程组是解题的关键.二.填空题〔共13小题〕14.〔2016•永州〕方程组的解是.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2〔2﹣2y〕+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.【点评】此题考察的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.15.〔2016•〕a、b满足方程组,那么= 3 .【分析】方程组利用加减消元法求出解得到a与b的值,代入原式计算即可得到结果.【解答】解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,那么原式=3.故答案为:3【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.〔2016•富顺县校级模拟〕假设方程组与的解一样,那么a= 33 ,b=.【分析】先求出x,y的值,再组成一个含a,b的新方程组.解这个方程组即可.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.【点评】此题主要考察了二元一次方程组的解,解题的关键是正确求出x,y的值,组成一个新的方程组.17.〔2016•〕是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为﹣8 .【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,那么原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣8【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.〔2016•富顺县校级模拟〕假设〔a﹣2b+1〕2与互为相反数,那么a= 3 ,b= 2 .【分析】根据得出〔a﹣2b+1〕2+=0,得出方程组,求出方程组的解即可.【解答】解:∵〔a﹣2b+1〕2与互为相反数,∴〔a﹣2b+1〕2+=0,〔a﹣2b+1〕2=0且=0,即,解得:a=3,b=2故答案为:3,2.【点评】此题考察了相反数,二元一次方程组,偶次方,算术平方根的应用,解此题的关键是得出关于x、y的方程组.19.〔2016•浦东新区二模〕定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2= 4 .【分析】等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a 与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,那么1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考察了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法那么是解此题的关键.20.〔2016•丰台区二模〕我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.【点评】此题考察了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.21.〔2016•龙岩模拟〕如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于16cm .【分析】仔细观察图形,发现此题中2个等量关系为:小长方形的长×3=小长方形的宽×5,〔小长方形的长+小长方形的宽×2〕2=小长方形的长×小长方形的宽×8+1.根据这两个等量关系可列出方程组,即可求出小长方形的周长.【解答】解:设这8个大小一样的小长方形的长为xcm,宽为ycm.由题意,得,解得.小长方形的周长为2×〔3+5〕=16,故答案为16cm.【点评】此题主要考察了二元二次方程组的应用,解题关键是弄清题意,找到适宜的等量关系,列出方程组.解决此题需仔细观察图形,发现大长方形的对边相等及正方形的面积=8个小长方形的面积+小正方形的面积是关键.22.〔2016春•单县期末〕如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b= ﹣2 .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:因为4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,可得:,解得:,所以a﹣b=﹣2,故答案为:﹣2【点评】主要考察二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.23.〔2016春•镇赉县期末〕一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.【分析】根据∠1的度数比∠2的度数大50°,还有平角为180°列出方程,联立两个方程即可.【解答】解:根据∠1的度数比∠2的度数大50°可得方程x﹣y=50,再根据平角定义可得x+y+90=180,故x+y=90,那么可得方程组:,故答案为:.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.24.〔2016•广陵区二模〕如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8 .【分析】由图形可看出:小矩形的2个长+一个宽=5.7,小矩形的2个宽+一个长=4.5,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.【点评】此题主要考察了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.25.〔2016•河南模拟〕一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为24 .【分析】设大正方形的边长为x,小正方形的边长为y,根据图①、图②给出的数据即可得出关于x、y的二元一次方程,解之即可求出x、y的值,再用大正方形的面积减去4个小正方形的面积即可得出结论.【解答】解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,解得:,∴图②的大正方形中未被小正方形覆盖局部的面积为52﹣4×=24.故答案为:24.【点评】此题考察了二元一次方程组的应用,根据数量关系列出关于x、y的二元一次方程组是解题的关键.26.〔2016•楚雄州模拟〕如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292 .【分析】设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1〞联立正三角形的个数比正六边形的个数多6个得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.【点评】此题考察了二元一次方程组的应用,解题的关键是列出关于x、y的二元一次方程.此题属于根底题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程〔或方程组〕是关键.三.解答题〔共14小题〕27.〔2016•〕解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.28.〔2016•威海一模〕解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.29.〔2016•莆田模拟〕关于x,y的二元一次方程组的解互为相反数,求k的值.【分析】方程组两方程相加表示出x+y,根据x与y互为相反数得到x+y=0,求出k的值即可.【解答】解:,①+②得:3〔x+y〕=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.30.〔2016•漳州模拟〕观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.【分析】〔1〕观察方程组,得到x与y的数量关系即可;〔2〕归纳总结得到第④个方程组,求出方程组的解,验证即可.【解答】解:〔1〕在以上3个方程组的解中,发现x+y=0;〔2〕第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,那么x+y=4﹣4=0.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.31.〔2016•龙岩模拟〕根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【分析】根据图知道,一个保温瓶和一个杯子的价钱是43元,2个保温瓶和3个杯子的价钱是94元;先用43×2求出2个保温瓶和2个杯子的价钱,再用2个保温瓶和3个杯子的价钱减去2个保温瓶和2个杯子的价钱就是一个杯子的价钱,进而求出一个保温瓶的价钱.【解答】解:设杯子的单价为x元,那么热水瓶单价为y元,那么解得,答:杯子的单价为8元,那么热水瓶单价为35元.【点评】此题考察方程组的应用,关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择适宜的方法进展计算.32.〔2016•长春模拟〕某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.【分析】设该班购置甲种门票x张,乙种门票y张,根据“该班一共35人,甲种门票每张24元,乙种门票每张18元,每人购置一种门票共花费750元〞列方。
(完整版)初一数学下册二元一次方程组考试试题及答案(一)培优试卷
一、选择题1.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩2.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m +3n 的值为( )A .7B .9C .14D .183.两位同学在解方程组时,甲同学由24ax by cx y +=⎧⎨-=-⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把c 写错了解得22x y =-⎧⎨=⎩,则a b c ++的值为( )A .3B .0C .1D .74.某超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是( ) A .第1天B .第2天C .第3天D .第4天5.已知关于x ,y 的方程组34,53,x y a x y a +=-⎧⎨-=⎩给出下列结论:①4,1x y =⎧⎨=-⎩是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解;④x ,y 的都为自然数的解有4对.其中正确的是( ) A .②③B .③④C .①②D .①②③④6.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .1003100x y x y +=⎧⎨+=⎩D .100131003x y x y +=⎧⎪⎨+=⎪⎩7.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( )A .2B .-2C .1D .-18.已知11x y =⎧⎨=-⎩是二元一次方程组2123ax by ax by +=⎧⎨-=⎩的解,则3a b -的值为( )A .-2B .2C .-4D .49.笔记本4元/本,钢笔5元/支,某同学购买笔记本和钢笔恰好用去162元,那么最多购买钢笔( )支. A .28B .29C .30D .3110.若关于x ,y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程2312x y +=的解,则k 的值为( ). A .32-B .23C .23-D .32二、填空题11.为了改善城市绿化,南川区政府决定圈出一块地打造一片花园,花园中种植牡丹花、樱花、梅花供市民欣赏,经过一段时间,花园中已种植的牡丹花、樱花、梅花的面积之比为5:4:6,根据市民喜爱程度,将在花园余下空地继续种植这三种花,经过测算,需将余下空地面积的815种植梅花,则梅花种植的总面积将达到这三种花种植总面积的2345,为了使牡丹花种植总面积与樱花种植总面积之比达到4:5,则花园内种植樱花的总面积与种植梅花的总面积之比 ________.12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.14.若A ∠与B 互为补角,并且B 的一半比A ∠小30,则B 的度数为_________. 15.学校设置了有关艺术类的甲、乙、丙三个拓展性课程项目,规定甲、乙两项不能兼报,学生选报后作了统计,发现报甲项目的人数与报乙项目的人数之和为报丙项目人数的45;同时兼报甲、丙两项目的人数占报甲项目的人数的13,同时兼报乙、丙两项目的人数占报乙项目的人数的14;兼报甲、丙两项目的人数与兼报乙、丙两项目的人数之和是报丙项目人数的29,则报甲、乙两个项目的人数之比为______.16.已知关于x 、y 的方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解,则a b +的值为________.17.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是______.18.问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m 根竹签,n 个山楂,若每根竹签串a个山楂,还剩b个山楂,则m、n、a、b满足的等量关系为(用含m、n、a、b的代数式表示).19.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的值为________.20.有一块矩形的牧场如图1,它的周长为560米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是__________米.三、解答题21.我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm40cm⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材________张,B型板材_______张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y 个,求x、y的值.22.在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+b﹣2|25a b-+0,现同时将点A,B分别向右平移1个单位,再向上平移2个单位,分别得到点A,B的对应点为C,D.(1)请直接写出A、B、C、D四点的坐标.(2)点E在坐标轴上,且S△BCE=S四边形ABDC,求满足条件的点E的坐标.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在线段BD 上移动时(不与B ,D 重合)求:DCP BOPCPO∠+∠∠的值.23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.24.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x xx -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________.25.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数;(2)求证://AB CD . (3)求C ∠的度数.26.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案. 27.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 28.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩ 问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案? 29.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x a y b== ,用数表可表示为10)01ab (.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.30.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠). (1)若已知1a =,2b =-,则()4,3A =_________. (2)已知()1,13A =,()1,20A -=.求a ,b 的值;(3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m ⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】先将111222327327a x b y c a x b y c +=⎧⎨+=⎩化简为11122232773277a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩,然后用“整体代换”法,求出方程组的解即可; 【详解】解:111222327327a x b y c a x b y c +=⎧⎨+=⎩,11122232773277a x b y c a x b y c ⎧+=⎪⎪∴⎨⎪+=⎪⎩, 设3727x t y s ⎧=⎪⎪⎨⎪=⎪⎩,111222a tb sc a t b s c +=⎧∴⎨+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222a t b s c a t b s c +=⎧⎨+=⎩的解为34t s =⎧⎨=⎩,337247x y ⎧=⎪⎪∴⎨⎪=⎪⎩, 解得:714x y =⎧⎨=⎩.故选C . 【点睛】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.2.B解析:B 【分析】将21x y =⎧⎨=⎩代入方程组81mx ny nx my +=⎧⎨-=⎩,得到方程组2821m n n m +=⎧⎨-=⎩,再将此方程组中的两个方程相加即可求解.【详解】解:由题意,将21xy=⎧⎨=⎩代入方程组81mx nynx my+=⎧⎨-=⎩,得2821m nn m+=⎧⎨-=⎩①②,①+②得,39n m+=,故选:B.【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解与二元一次方程组的关系是解题的关键.3.D解析:D【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a,b,c的值,即可求出所求.【详解】解:把32xy=⎧⎨=-⎩代入方程组24ax bycx y+=⎧⎨-=-⎩得:322324a bc-⎧⎨+-⎩==,把22xy=-⎧⎨=⎩代入ax+by=2得:-2a+2b=2,即-a+b=1,联立得:3221a ba b-⎧⎨-+⎩==,解得:45ab⎧⎨⎩==,由3c+2=-4,得到c=-2,则a+b+c=4+5-2=7.故选:D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.C解析:C【分析】设牙刷的单价为x元,牙膏的单价为y元,当第1天、第2天的记录无误时,利用总价=单价×数量,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再代入第3天及第4天的数据中验证即可得出结论(若3,4天的结果均不对,则1,2天中的数据有误,以3,4天的数据列出方程组求出牙刷和牙膏的单价,再代入1,2天的数据中验证即可).【详解】解:设牙刷的单价为x 元,牙膏的单价为y 元, 当第1天、第2天的记录无误时,依题意得:1371441811219x y x y +=⎧⎨+=⎩,解得:315x y =⎧⎨=⎩, ∴23x+20y=23×3+20×15=369(元),17x+11y=17×3+11×15=216(元). 又∵369≠368, ∴第3天的记录有误. 故选:C . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.D解析:D 【分析】①将x =4,y =-1代入检验即可做出判断;②将x 和y 分别用a 表示出来,然后求出x +y =3来判断; ③将a =1代入方程组求出方程组的解,代入方程中检验即可; ④有x +y =3得到x 、y 都为自然数的解有4对. 【详解】解:①将4,1x y =⎧⎨=-⎩代入34,53,x y a x y a +=-⎧⎨-=⎩,解得3a =;且满足题意,故①正确;②解方程3453x y a x y a +=-⎧⎨-=⎩①② -①②得:8y =4-4a解得:12ay -=, 将y 的值代入①得:52a x +=, 所以x +y =3,故无论a 取何值,x 、y 的值都不可能互为相反数,故②正确. ③将a =1代入方程组得:3353x y x y +=⎧⎨-=⎩, 解此方程得:3x y =⎧⎨=⎩,将x =3,y =0代入方程x +y =3,方程左边=3=右边,是方程的解,故③正确. ④因为x +y =3,所以x 、y 都为自然数的解有30x y =⎧⎨=⎩,21x y =⎧⎨=⎩,12x y =⎧⎨=⎩,03x y =⎧⎨=⎩.故④正确. 则正确的选项有①②③④. 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.6.D解析:D 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得: 100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:D . 【点睛】本题考查列二元一次方程组解决实际问题,是中考的常考题型,正确找到等量关系是关键7.A解析:A 【详解】(1)−(2)得:6y=−3a , ∴y=−2a ,代入(1)得:x=2a ,把y=−2a,x=2a 代入方程3x+2y=10,得:6a−a=10, 即a=2. 故选A.8.A解析:A 【分析】把11x y =⎧⎨=-⎩代入二元一次方程组2123ax by ax by +=⎧⎨-=⎩并解方程组,再把a,b 代入3a b -. 【详解】把11x y =⎧⎨=-⎩代入二元一次方程组2123ax by ax by +=⎧⎨-=⎩,得 2123a b a b -=⎧⎨+=⎩解得11a b =⎧⎨=⎩ 所以3a b -=-2故选:A【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键. 9.C解析:C【分析】设该同学购买钢笔x 支,笔记本y 本,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各购买方案,取x 的最大值即可得出结论.【详解】解:设该同学购买钢笔x 支,笔记本y 本,依题意得:5x +4y =162.∵x ,y 均为正整数,∴303x y =⎧⎨=⎩或268x y =⎧⎨=⎩或2213x y =⎧⎨=⎩或1818x y =⎧⎨=⎩或1423x y =⎧⎨=⎩或1028x y =⎧⎨=⎩或633x y =⎧⎨=⎩或238x y =⎧⎨=⎩; ∴最多购买钢笔30支.故选:C【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键. 10.D解析:D【分析】根据方程组将x 、y 分别用k 表示,然后代入2x +3y =12求出k 即可.【详解】解:59x y k x y k +=⎧⎨-=⎩①②, ①+②,得2x =14k ,即x =7k .①﹣②,得2y =﹣4k ,即y =﹣2k .将x =7k ,y =-2k 代入2x +3y =12得:2×7k +3×(﹣2k )=12,解得k =32. 故选D .【点睛】本题主要考查了二元一次方程组的含参问题,将方程组的解用参数表示出来,然后代入等式求解成为解答本题的关键.二、填空题11.110:207【分析】设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为(x+y ),桃花已种植面积、樱花已种植面积,梅花已种植面积,依题意列出方程组,用y 的代数式分别表示x解析:110:207【分析】设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为(x +y ),桃花已种植面积515x 、樱花已种植面积415x ,梅花已种植面积615x ,依题意列出方程组,用y 的代数式分别表示x 、z ,然后进行计算即可.【详解】解:设该村已种花面积x ,余下土地面积为y ,还需种植樱花的面积为z ,则总面积为()x y +,牡丹花已种植面积515x 、樱花已种植面积415x ,梅花已种植面积615x , 依题意可得,6823()15154558()415154515x y x y x y y z x z ⎧+=+⎪⎪⎪⎨+--⎪=⎪+⎪⎩, 解得:5184675y x y z ⎧=⎪⎪⎨⎪=⎪⎩, ∴花园内种植樱花的面积是:41844184441567575675135y y y y x +=+=, 花园内种植梅花的面积是:5686846151575157y y y y x +=+=, ∴花园内种植樱花的总面积与种植梅花的总面积之比是:744110135467520yy =,故答案为110:207.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.12.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.13.95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95.故答案为95.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95.故答案为95.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.14.【分析】根据与互为补角,并且的一半比小,然后根据题意列出关于、的二元一次方程组,求解即可.【详解】解:根据题意得,①-②得,,解得,把代入①得,,解得.∴,故答案为:100°.解析:100︒【分析】根据A ∠与B 互为补角,并且B 的一半比A ∠小30,然后根据题意列出关于A ∠、B 的二元一次方程组1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②,求解即可. 【详解】 解:根据题意得1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②, ①-②得,31502B ∠=︒,解得100B ∠=︒,把100B ∠=︒代入①得,100180A ∠+︒=︒,解得80A ∠=︒. ∴80100A B ∠=︒⎧⎨∠=︒⎩, 故答案为:100°.【点睛】本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键. 15..【分析】设报甲项目的有x 人,报乙项目的有y 人,报丙项目的有z 人,根据题意即可得出关于x ,y ,z 的三元一次方程组,然后进一步化简即可得出答案;【详解】解:设报甲项目的有x 人,报乙项目的有y 人解析:1:2.【分析】设报甲项目的有x 人,报乙项目的有y 人,报丙项目的有z 人,根据题意即可得出关于x ,y ,z 的三元一次方程组,然后进一步化简即可得出答案;【详解】解:设报甲项目的有x 人,报乙项目的有y 人,报丙项目的有z 人, 依题意得:45112349x y z x y z ⎧+=⎪⎪⎨⎪+=⎪⎩①② 由①得:5544③=+z x y 将③代入②得:11255()34944+=⨯+x y x y 化简得:111836=x y ∴x :y =1:2.故答案为:1:2.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.16.3【分析】由题意可知方程组与有相同的解,由可得x +y =3,再由可得a (x +y )+b (x +y )=9,即可求a +b 的值.【详解】解:∵方程组与有相同的解,∴方程组与的解相同,中①+②得,中解析:3【分析】由题意可知方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解,由2524x y x y +=⎧⎨+=⎩可得x +y =3,再由45ax by bx ay +=⎧⎨+=⎩可得a (x +y )+b (x +y )=9,即可求a +b 的值.【详解】解:∵方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解, ∴方程组2524x y x y +=⎧⎨+=⎩与45ax by bx ay +=⎧⎨+=⎩的解相同, 2524x y x y +=⎧⎨+=⎩①②中①+②得3x y +=, 45ax by bx ay +=⎧⎨+=⎩③④中,③+④ 得a (x +y )+b (x +y )=9, 将3x y +=代入,得339a b +=,∴3a b +=,故答案为:3.【点睛】本题考查二元一次方程组的解,此题采用整体求解的方法较为简便,求出x +y =3是解题的关键.17.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:02x y =⎧⎨=⎩【分析】先将方程组的解代入方程组得到c 1−a 1=2,c 2−a 2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩, ∴112222a c a c +=⎧⎨+=⎩, ∴c 1−a 1=2,c 2−a 2=2,∴111222a x y c a a x y c a +=-⎧⎨+=-⎩可化为1222a x y a x y +=⎧⎨+=⎩①②, ①−②,得(a 1−a 2)x =0,∴x =0,将x =0代入①中,得y =2,∴方程组的解为02x y =⎧⎨=⎩, 故答案为02x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.18.竹签有15根,山楂有63个;am+b =n .【分析】设竹签有x 根,山楂有y 个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x ,y 的二元一次方解析:竹签有15根,山楂有63个;am +b =n .【分析】设竹签有x 根,山楂有y 个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x ,y 的二元一次方程组,解之即可得出竹签及山楂的数量;利用山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量,即可找出m 、n 、a 、b 之间的等量关系.【详解】问题解决:设竹签有x 根,山楂有y 个,依题意得:437(6)x y x y+=⎧⎨-=⎩, 解得:1563x y =⎧⎨=⎩. 答:竹签有15根,山楂有63个.山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量∴am +b =n .故答案为:am +b =n .【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.19.2【分析】根据题意,将代入二元一次方程组,得到关于m 、n 的二元一次方程组,求出后代入即可.【详解】将代入二元一次方程组,得,解得,,,,,故答案为:2.【点睛】本题主要考查解析:2【分析】根据题意,将21xy=⎧⎨=⎩代入二元一次方程组81mx nynx my+=⎧⎨-=⎩,得到关于m、n的二元一次方程组,求出后代入即可.【详解】将21xy=⎧⎨=⎩代入二元一次方程组81mx nynx my+=⎧⎨-=⎩,得28 21m nn m+=⎧⎨-=⎩,解得32mn=⎧⎨=⎩,=2,故答案为:2.【点睛】本题主要考查了解二元一次方程组,算术平方根,解题关键是熟练掌握二元一次方程组的解法.20.240【分析】根据题意列出二元一次方程组求解即可;【详解】设每一块小矩形牧场的长为x米,宽为y米,依题意可得:,解得:,∴(米);故答案是:240.【点睛】本题主要考查了二元一次解析:240【分析】根据题意列出二元一次方程组求解即可;【详解】设每一块小矩形牧场的长为x 米,宽为y 米,依题意可得:()2222560x x y x x y =+⎧⎨++=⎩, 解得:8040x y =⎧⎨=⎩, ∴()()228040240x y +=⨯+=(米);故答案是:240.【点睛】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.三、解答题21.(1)a =60,b =40;(2)①64,38;②x =7,y =12【分析】(1)由图示利用板材的长列出关于a 、b 的二元一次方程组求解;(2)①根据已知和图示计算出两种裁法共产生A 型板材和B 型板材的张数; ②根据竖式与横式礼品盒所需要的A 、B 两种型号板材的张数列出关于x 、y 的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:210170230170a b a b ++=⎧⎨++=⎩, 解得:6040a b =⎧⎨=⎩, 答:图甲中a 与b 的值分别为:60、40;(2)①由图示裁法一产生A 型板材为:23060⨯=,裁法二产生A 型板材为:144⨯=, 所以两种裁法共产生A 型板材为60464+=(张),由图示裁法一产生B 型板材为:13030⨯=,裁法二产生A 型板材为,248⨯=, 所以两种裁法共产生B 型板材为30838+=(张),故答案为:64,38;②根据题意竖式有盖礼品盒的x 个,横式无盖礼品盒的y 个,则A 型板材需要(43)x y +个,B 型板材需要(22)x y +个,所以43642238x y x y +=⎧⎨+=⎩, 解得712x y =⎧⎨=⎩. 【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a 、b 的值,根据图示列出算式以及关于x 、y 的二元一次方程组.22.(1)A(﹣1,0),B(3,0),C(0,2),D(4,2);(2)220,3E ⎛⎫ ⎪⎝⎭,100,3⎛⎫- ⎪⎝⎭,(﹣5,0),(11,0);(3)1【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点E 在x 轴和y 轴上两种情况,设出坐标,根据BCE ABDC S S ∆=四边形列出方程求解可得;(3)作//PF AB ,则//PF CD ,可得DCP CPF ∠=∠、BOP OPF ∠=∠,进而得到∠DCP +∠BOP =∠CPO ,即求解.【详解】解:(1)根据题意得:225a b a b +=⎧⎨-=-⎩, 解得:a =﹣1,b =3.所以A(﹣1,0),B(3,0),C(0,2),D(4,2),(2)∵AB =3﹣(﹣1)=3+1=4,∴S 四边形ABDC =4×2=8;∵S △BCE =S 四边形ABDC ,当E 在y 轴上时,设E(0,y), 则12•|y ﹣2|•3=8,解得:y =﹣103或y =223, ∴22100,0,33E ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭; 当E 在x 轴上时,设E(x ,0), 则12•|x ﹣3|•2=8,解得:x =11或x =﹣5,∴E(﹣5,0),(11,0);(3)由平移的性质可得AB ∥CD ,如图,过点P 作PF ∥AB ,则PF ∥CD ,∴∠DCP =∠CPF ,∠BOP =∠OPF ,∴∠CPO =∠CPF +∠OPF =∠DCP +∠BOP ,即∠DCP +∠BOP =∠CPO ,所以比值为1.【点睛】本题主要考查非负数的性质、二元一次方程的解法、坐标与平移及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.23.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩;(3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.952m ≤≤【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m+⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.25.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒【分析】根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数;根据平行线判定定理,判定//AB CD ;由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.【详解】解:(1)①+②,得5350α∠=︒,70α∴∠=︒,代入①得110β∠=︒α∴∠和β∠的度数分别为70︒和110︒.(2)180αβ∠+∠=︒//AB EF ∴//CD EF ,//AB CD ∴(3)AE ∵是CAB ∠的平分线2140CAB α∴∠=∠=︒//AB CD ,180C CAB ∴∠+∠=︒40C ∴∠=︒【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.26.(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y 人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。
七年级初一数学 数学第八章 二元一次方程组的专项培优练习题(含答案
七年级初一数学 数学第八章 二元一次方程组的专项培优练习题(含答案一、选择题1.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=2.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A .20.25x y =⎧⎨=-⎩B . 4.53x y =-⎧⎨=⎩C .10.5x y =-⎧⎨=-⎩D .10.5x y =⎧⎨=⎩3.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是() A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩4.在关于x 、y 的二元一次方程组321x y ax y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( )A .1B .-3C .3D .4 5.已知10a b +=,6a b -=,则22a b -的值是( )A .12B .60C .60-D .12-6.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩7.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩8.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .675cm 29.由方程组 可得出x 与y 的关系式是( )A .x+y=9B .x+y=3C .x+y=-3D .x+y=-910.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( ) A .; B .; C .; D .二、填空题11.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.13.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a xb yc a x b y c +-=⎧⎨+-=⎩的解为__________. 14.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.15.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本.16.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ . 17.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a cbc ⎧++-=⎪⎨-=-⎪⎩(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___. 18.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.19.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________.20.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.三、解答题21.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.22.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.23.在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且a、b、c满足34624 a b ca b c+-=⎧⎨-+=-⎩.(1)若a没有平方根,判断点A在第几象限并说明理由.(2)连AB、OA、OB,若△OAB的面积大于5而小于8,求a的取值范围;(3)若两个动点M(2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M、N为端点的线段MN∥AB,且MN=AB.若存在,求出M、N两点的坐标;若不存在,请说明理由. 24.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示,m p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t之间的关系,并写出所有,s t可能的取值.25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨部分b0.8026.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论.(1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由.(3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A、B、C、D,第一次购A教具1件、B教具3件、 C教具4件、D教具5件共花2018元;第二次购A教具1件、B教具5件、 C教具7件、D教具9件共花3036元. 求购A教具5件、B教具3件、 C教具2件、D教具1件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.D解析:D【分析】整理后①×7+②×2得出41x=41,求出x,把x的值代入①求出y即可.解:整理得:345 10143x yx y+=⎧⎨-=⎩①②,①×7+②×2得:41x=41,∴x=1,把x=1代入①得:3+4y=5,∴y=0.5,∴方程组的解是:10.5 xy=⎧⎨=⎩,故选D.【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.3.B解析:B【分析】设该物品的价格是x钱,共同购买该商品的由y人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组.【详解】设该物品的价格是x钱,共同购买该商品的由y人,依题意可得83 74y xy x-=⎧⎨-=-⎩故选:B【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.4.C解析:C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣②,得:2x+3y=a﹣1.∵2x+3y=2,∴a﹣1=2,解得:a=3.故选C.点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.5.B解析:B先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.6.A解析:A 【分析】设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可. 【详解】解:设安排x 个工人加工桌子,y 个工人加工椅子, 由题意得:2212100x y x y +=⎧⎨-=⎩故选A . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子.7.A解析:A 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .8.D解析:D 【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.9.A解析:A【解析】分析:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.解答:解:由①得:m=6-x∴6-x=y-3∴x+y=9.故选A.10.C解析:C【解析】试题分析:设安排x个工人做螺杆,y个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x yx y+=-=.故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.二、填空题11.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)解析:11 xy=-⎧⎨=⎩【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以21020x yx y+-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.12.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.13.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为, 将解方程组变形为, ∴关于,的方程组的解为, 解得, 故答案为:. 【点睛】本题考查了二元一次方程组的解法解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可.【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩,解得1856x y ⎧=⎪⎨⎪=⎩,故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.14.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255ax bx a x b x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.15.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答. 【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本, 设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答. 【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x本, 设甲班有y 人,乙班有(80﹣y )人. 根据题意,得 xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64, 共捐书10×64+15×16+5×40=1080. 答:甲、乙、丙三班共捐书1080本. 故答案为1080. 【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.16.8或9 【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利解析:8或9 【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利用二元一次方程的解的概念进行求解即可. 【详解】如图,图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,由题意得:AC+CD+DB+AD+BC+AB=29, ∵AC+CD+DB=AB ,AD=AC+CD ,BC=CD+DB , ∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD , ∴AB=8,CD=5或AB=9,CD=2, 即AB 的长度为8或9,故答案为:8或9. 【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.17.() 【解析】 【分析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标. 【详解】解:∵方程组(c 为常数), ∴, ∵,, ∴, ∴c=4, ∴解析:(1,33-) 【解析】 【分析】由方程组变形可得3=-(4)4(4)a c c ⎧+-⎪=-,由非负数性质可求c =4,a =-3,b =1,再依据影子点定义即可求出点P /的坐标. 【详解】解:∵方程组340416a c c ⎧++-=⎪=-(c 为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-,∵30a +≥0, ∴-(4)04(4)0c c -≥⎧⎨-≥⎩,∴c =4,∴31a b =-⎧⎨=⎩,∴P 坐标为(-3,1),根据定义可知点P的影子点P/为(13(,)31---,即为P/(1,33-).故答案为(1,33 -).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c-4=0. 18.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.19.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z=9. 20.8 【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8 【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.三、解答题21.(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论. 【详解】解:(1)∵AB BC ⊥ ∴90B ∠=︒ ∵//AB CD∴18090C B ∠=︒-∠=︒ ∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒; (2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG 证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF ∴DAE BEA ∠=∠∴EAF AEG ∠=∠ ∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠ ∴180GEF DAF ∠+∠=︒ ∵GEF k DAF ∠=∠ ∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒ ∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点 ∴45BAE x ∠=︒>︒ ∵k 为不超过10的正整数 ∴当8k时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.22.(1)x 1 y 3=⎧⎨=⎩,x 3y 2=⎧⎨=⎩,x 5y 1=⎧⎨=⎩;(2)x 3 y 7=⎧⎨=⎩;(3)63,73,83 【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0{7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k4{559k4+->>,即-1<k<559,∴当k=3时,x=5,y=7,∴方程组x y k15{x5y10k70++=++=有“好解“,∴“好解”为x3 {y7==;(3)由33x23y2019{x y m+=+=,解得201923mx10{33m2019y10-=-=,∵201923m10{33m201910-->>,即201933<m<201923,∴当m=63时,x=57,y=6;m=73时,x=38,y=39; m=83时,x=11,y=72; ∴所有m 的值为63,73,83. 【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.23.(1)第三象限;(2)见解析;(3)见解析 【解析】 【分析】(1)根据平方根的意义得到a <0,然后根据各象限点的坐标点的特征可判断点A 在第三象限;(2)先利用方程组34624a b c a b c +-=⎧⎨-+=-⎩,用a 表示b 、c ,得b=2+a.c=a, 则B 点的坐标为(2+a ,a ),故AB //x 轴,AB=|2+a-a|=2,故11|y |2||||22OABB SAB a a =⨯⨯=⨯⨯= 由若△OAB 的面积大于5而小于8,可得5||8a <<计算即可得a 的取值范围;(3)由AB //x 轴即MN ∥AB 可得MN ∥x 轴,则M 、N 的y 坐标,以及MN=AB =2,可得方程组解得m 、n 的值,即可得出结论; 【详解】(1)∵a 没有平方根, ∴a <0,∴点A 在第三象限; (2)解方程组34624a b c a b c +-=⎧⎨-+=-⎩用a 表示b 、c ,得2b ac a=+⎧⎨=⎩∵点B 坐标为(b ,c ) ∴点B 坐标为(2+a ,a ) ∵点A 的坐标为(a ,a ) ∴AB =|2+a-a|=2,AB 与x 轴平行∴11|y |2||||22OAB B SAB a a =⨯⨯=⨯⨯= ∵△OAB 的面积大于5而小于8, ∴5||8a <<解得:58a <<或85a -<<- (3) ∵AB ∥x 轴 又∵MN ∥AB ∴MN ∥x 轴∵M(2m, 3m-5) N(n-1, -2n-3), MN=AB=2∴3523122m n n m -=--⎧⎨--=⎩∴3523122m n n m -=--⎧⎨--=⎩ 3523122m n n m -=--⎧⎨--=-⎩∴47137m n ⎧=-⎪⎪⎨⎪=⎪⎩ 或4717m n ⎧=⎪⎪⎨⎪=⎪⎩∴847647,,7774M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 或823623,,7777M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 【点睛】本题考查了坐标与图形的性质,平方根,解三元一次方程组,三角形的面积,解不等式,审清题意,能灵活运用各个知识点之间的联系是解决的关键.24.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】 【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值. 【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1), 摆2个正方形需要7根小木棍,4=4+3×(2-1), 摆3个正方形需要10根小木棍,10=4+3×(3-1), ……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍, 故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个, 则51311104x y x y+++=⎧⎨+=⎩,解得1216x y =⎧⎨=⎩,所以正方形有16个,六边形有12个; (3)据题意,350t s +=, 据题意,t s ≥,且,s t 均为整数, 因此,s t 可能的取值为:216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.25.(1)a=2.2,b=4.2;(2) 小王家六月份最多能用水40吨 【解析】分析:(1)根据等量关系:“小王家2012年4月份用水20吨,交水费66元”;“5月份用水25吨,交水费91元”可列方程组求解即可;(2)先求出小王家六月份的用水量范围,再根据6月份的水费不超过家庭月收入的2%,列出不等式求解即可. 详解:(1)由题意,得解得(2)当用水量为30吨时,水费为17×(2.2+0.8)+(30-17)×(4.2+0.8)=116(元), 9200×2%=184(元), ∵116<184,∴小王家六月份的用水量可以超过30吨. 设小王家六月份的用水量为x 吨,则 17×3+13×5+6.8(x-30)≤184, 解得x≤40.∴小王家六月份最多能用水40吨.点睛:本题考查了二元一次方程组及一元一次不等式的知识,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.26.(1) 购甲、乙、丙三种商品各一件共需90元.(2) 小丽的说法正确. (3) 购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元. 【解析】分析:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列三元一次方程组求解即可;(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列方程组,变形后用整体思想解答即可;(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,根据题意列方程组,变形后用整体思想解答即可.详解:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得: 357490471069023170x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.解得: 203040x y z =⎧⎪=⎨⎪=⎩.∴ 90x y z ++=.答:购甲、乙、丙三种商品各一件共需90元.(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得:3574904710690x y z x y z ++=⎧⎨++=⎩. 变形得:()()()()322490432690x y z y z x y z y z ①②⎧++++=⎪⎨++++=⎪⎩解得:①×3-②×2得:∴x +y +z =90答:购甲、乙、丙三种商品各一件共需90元.(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,由题意得: 34520185793036a b c d a b c d +++=⎧⎨+++=⎩①② ①×11-②×6得:5a +3b +2c +d =3982答:购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.点睛:本题考查了二元一次方程组的应用以及利用换元法解方程组,解题的关键是:(1)用加减消元法解三元一次方程组;(2)(3)运用了整体思想解决问题.解决该题型题目时,整体替换部分是关键.。
人教版七年级下册:第8章《二元一次方程组》培优拔尖习题训练( 附解析)
第8章《二元一次方程组》培优拔尖习题训练一.选择题(共8小题)1.方程x+4y=20的非负整数解有()A.4组B.5组C.6组D.无数组2.已知是方程组的解,则a﹣b的值是()A.﹣1B.1C.﹣5D.53.如果是方程2x+y=0的一个解(m≠0),那么()A.m≠0,n=0B.m,n异号C.m,n同号D.m,n可能同号,也可能异号4.解方程组时,一学生把c看错得,已知方程组的正确解是,则a,b,c的值是()A.a,b不能确定,c=﹣2B.a=4,b=5,c=﹣2C.a=4,b=7,c=﹣2D.a,b,c都不能确定5.已知是二元一次方程组的解,则的算术平方根为()A.±3B.3C.D.6.方程组的解的个数为()A.1B.2C.3D.47.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0B.1C.2D.不能求出8.太原市城乡居民用电价格按用电需求分为三个档次,电价分档递增:第一档电量为170千瓦时及以下,第二档电量为171千瓦时至260千瓦时,第三档电量为261千瓦时及以上,小颖家7月用电量为210千瓦时,交电费102.17元;8月用电量为180千瓦时,交电费86.36元.若第一档电价为x元/千瓦时,第二档电价为y元/千瓦时,则可得方程()A.B.C.D.二.填空题(共6小题)9.点A是第二象限内一点,且A的坐标(x,y)是二元一次方程2x+y=3的一组解,请你写出满足条件的点A坐标(写出一个即可).10.已知方程组与有相同的解,则m+n=.11.以方程组的解为坐标的点(y,x)在第象限.12.用“代入消元法”解方程组时,可先将第方程(填序号即可)变形为,然后再代入.13.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是14.如果方程组的解为那么被“*”“△”遮住的两个数分别是.三.解答题(共7小题)15.解下列方程组(1).(2).16.小萌知道和都是二元一次方程ax+by+4=0的解,请你帮她求出a3b的立方根.17.若方程组的解x,y的和为6,求代数式3k+2000的值.18.为了积极推进轨道交通建设,某城市计划修建总长度36千米的有轨电车.该任务由甲、乙两工程队先后接力完成甲工程队每天修建0.06千米,乙工程队每天修建0.08千米,两工程队共需修建500天.根据题意,小明和小华两名同学分别列出尚不完整的方程组如下:小明:小华:(1)根据两名同学所列的方程组,请你分别指出未知数x表示的意义小明:x表示;小华:x表示.(2)求甲、乙两工程队分别修建有轨电车多少千米?19.随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?20.如图,数轴上A、B两点表示的数分别为a、b,且a、b满足(1)求a和b的值;(2)在数轴上有一动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向向终点B运动,同时另一动点Q从点B出发,以每秒5个单位长度的速度沿数轴负方向向终点A运动,当一个动点到达终点时,另一个动点继续运动若点M为线段PQ的中点,设点P的运动时间为t秒,请用含t的整式表示点M所表示的数;(3)在(2)的条件下,当BQ﹣OP=90时,求点M所表示的数.21.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片张,正方形铁片张;(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板裁出1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?参考答案一.选择题(共8小题)1.【解答】解:二元一次方程x+4y=20的所有正整数解有:x=4,y=4;x=8,y=3;x=12,y=2;x=16,y=1.x=0,y=5;x=20,y=0.故选:C.2.【解答】解:∵是方程组的解,∴,两个方程相减,得5a﹣5b=5,∴a﹣b=1,故选:B.3.【解答】解:把代入方程,得2m+n=0,即2m=﹣n,又m≠0,所以m,n为异号.故选:B.4.【解答】解:把代入ax+by=2,得﹣2a+2b=2①,把代入方程组,得,则①+②,得a=4.把a=4代入①,得﹣2×4+2b=2,解得b=5.解③得c=﹣2.故a=4,b=5,c=﹣2.故选:B.5.【解答】解:将x=2,y=1代入方程组得:,①+②×2得:5n=10,即n=2,将n=2代入②得:4﹣m=1,即m=3,∴m+3n=3+6=9,则=3,3的算术平方根为.故选:C.6.【解答】解:当x≥0,y≤0时,原方程组可化为:,解得;由于y≤0,所以此种情况不成立.当x≤0,y≥0时,原方程组可化为:,解得.当x≥0,y≥0时,,无解;当x≤0,y≤0时,,无解;因此原方程组的解为:.故选:A.7.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.8.【解答】解:小颖家7月电费:170x+(210﹣170)y=102.17,①小颖家8月电费:170x+(180﹣170)y=86.36,②①和②联立可得方程组.故选:C.二.填空题(共6小题)9.【解答】解:令x=﹣1,得﹣2+y=3,即y=5,则A的坐标为(﹣1,5)(答案不唯一),故答案为:(﹣1,5)(答案不唯一),10.【解答】解:∵与有相同的解,∴解方程组得,∴解m、n的方程组得∴m+n=4﹣1=3.故答案为:3.11.【解答】解:,②﹣①得:3x+3=0,解得:x=﹣1,把x=﹣1代入②得:y=5﹣1=4,则(4,﹣1)在第四象限,故答案为:四.12.【解答】解:可将方程②变形为y=或x=代入方程①,故答案为:②,y=(或x=).13.【解答】解:根据题意,得.故答案为:.14.【解答】解:把x=6代入2x+y=16得:y=4,把x=6,y=4代入得:x+y=6+4=10,则被“☆”、“□”遮住的两个数分别是10,4,故答案为:10和4.三.解答题(共7小题)15.【解答】解:(1).原方程组可化为由①×2﹣②×3,可得4y﹣(﹣9y)=39,解得y=3,把y=3代入①,可得3x+6=12,解得x=2,∴方程组的解为;(2)由①+②,可得3x+4y=18,④由②+③,可得5x+2y=16,即10x+4y=32,⑤由⑤﹣④,可得7x=14,解得x=2,把x=2代入④,可得6+4y=18,∴y=3,把x=2,y=3代入①,可得2+3+z=6,∴z=1,∴方程组的解为.16.【解答】解:把和代入二元一次方程ax+by+4=0得:得:,解得:,则a3b=(﹣3)3×1=﹣27,因此,a3b的立方根是﹣3.17.【解答】解:∵x,y的和为6,∴x+y=6,∴解得:∴3k+2000=2015.18.【解答】解:(1)小明:x表示甲工程队修建的天数;小华:x表示甲工程队修建的长度.故答案为:甲工程队修建的天数;甲工程队修建的长度.(2)设甲工程队修建x千米,乙工程队修建y千米,由题意得:解得答:甲工程队修建12千米,乙工程队修建24千米.19.【解答】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:解得:答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.20.【解答】解:(1),①×2﹣②得,a=﹣50,把a=﹣50代入①得,﹣100+b=﹣10,∴b=90;∴a=﹣50,b=90.(2)∵P A=2t,QB=5t,∴PQ=90﹣(﹣50)﹣(2t+5t),或PQ=(2t+5t)﹣[90﹣(﹣50)],∵点M为线段PQ的中点,∴点M所表示的数为[90﹣(﹣50)﹣(2t+5t)]或{(2t+5t)﹣[90﹣(﹣50)]},即点M所表示的数为70﹣t或t﹣70;(3)由题意可知OP=50﹣2t或OP=2t﹣50当OP=50﹣2t,且BQ﹣OP=90时,有:5t﹣(50﹣2t)=90∴t=20此时AP=2×20=40,BQ=20×5=100﹣50+40=﹣10,90﹣100=﹣10∴P、Q重合∴点M表示的数为﹣10当OP=2t﹣50,且BQ﹣OP=90时,有:5t﹣(2t﹣50)=90∴t=此时AP=2×=,BQ=5×=﹣50+=﹣,90﹣=∴点M表示的数为0.综上,点M所表示的数为﹣10或0.21.【解答】解:(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片7张,正方形铁片3张;(2)设加工的竖式铁容器有x个,横式铁容器有y个,根据题意得,解得答:竖式铁容器加工100个,横式铁容器加工538个;(3)设做长方形铁片的铁板m张,做正方形铁片的铁板n张,根据题意得,解得,∵在这35张铁板中,25张做长方形铁片可做25×3=75(片),9张做正方形铁片可做9×4=36(片),剩1张可裁出1个长方形铁片和2个正方形铁片,共可做长方形铁片75+1=76(片),正方形铁片36+2=38(片),∴可做铁盒76÷4=19(个)答:最多可加工成铁盒19个.。
【教师卷】初中数学七年级数学下册第八单元《二元一次方程组》经典测试题(培优)
一、选择题1.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7B .①×2+②×3C .①×7-②×5D .①×3-②×2D 解析:D【分析】方程组利用加减消元法变形,判断即可.【详解】解:用加减消元法解方程组2513377x y x y +=⎧⎨-=-⎩①②,用①×3-②×2可以消去x , 选项A ,B , C 无法消去方程组中的未知数,故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.2.如图,周长为78cm 的长方形团由10个形状大小完全相同的小长方形拼成,其汇总一个小长方形的面积为( )A .232cmB .235cmC .236cmD .240cm C解析:C【分析】 设小长方形的长为x ,宽为y ,列出二元一次方程组并求解,即可得出结论.【详解】解:设小长方形的长为x ,宽为y ,根据图形可得:45678x y x y =⎧⎨+=⎩, 解得123x y =⎧⎨=⎩, ∴一个小长方形的面积为212336cm ⨯=,故选:C .【点睛】本题考查二元一次方程组的实际应用,根据图形找出等量关系是解题的关键. 3.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( ) A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩ B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩ D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩ A 解析:A【分析】 根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 4.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .0C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4, 82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.5.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩A 解析:A【分析】 设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩, 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.6.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C 写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为 A .452a b c ===-,, B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,, A 解析:A【分析】把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答.【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得: 3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件.故选择:A.【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.7.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种A 解析:A【解析】试题设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩. 因此兑换方案有6种,故选A .考点:二元一次方程的应用.8.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( ) A .30284x y x y +=⎧⎨+=⎩ B .302484x y x y +=⎧⎨+=⎩ C .304284x y x y +=⎧⎨+=⎩ D .30284x y x y +=⎧⎨+=⎩B 解析:B【分析】设这个笼中的鸡有x 只,兔有y 只,根据“从上面数,有30个头;从下面数,有84条腿”列出方程组即可.【详解】解:若设笼中有x 只鸡,y 只兔,根据题意可得:302484x y x y +=⎧⎨+=⎩, 故选:B .【点睛】此题考查了二元一次方程组的应用;根据题意列出方程组是解决问题的关键.9.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =- C解析:C【分析】将x 看做常数移项求出y 即可得.【详解】由2x-y=3知2x-3=y ,即y=2x-3,故选C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y . 10.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( ) A .13x y =⎧⎨=⎩B .22x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .40x y =⎧⎨=⎩ C 解析:C【分析】先用加减消元法求出x 的值,再代回第一个方程求出y 的值即可.【详解】 解:425x y x y +⎧⎨-⎩=①=②, ①+②,得:3x=9,解得:x=3,将x=3代入①,得:3+y=4,解得:y=1,所以方程组的解为31x y ⎧⎨⎩==, 故选:C .【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.二、填空题11.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.5【分析】根据两个方程系数的关系将两个方程相加即可得到答案【详解】解:①+②得:4x+4y =20则x+y =5故答案为:5【点睛】此题考查解二元一次方程组—特殊法根据所求的式子中各系数与方程组的关系将解析:5【分析】根据两个方程系数的关系将两个方程相加即可得到答案.【详解】解:612 328x yx y+=⎧⎨-=⎩①②,①+②得:4x+4y=20,则x+y=5,故答案为:5.【点睛】此题考查解二元一次方程组—特殊法,根据所求的式子中各系数与方程组的关系,将原方程组对应相加或相减即可得到答案的方法更为简便.12.如果方程组43123392x yx y+=⎧⎪⎨-=⎪⎩与方程y=kx-1有公共解,则k=______.【分析】先解方程组得再将代入y=kx-1得3k-1=0解方程即可【详解】解方程组得将代入y =kx-1得3k-1=0解得k=故答案为:【点睛】此题考查同解方程问题解二元一次方程组解一元一次方程熟练掌握解析:1 3【分析】先解方程组43123392x yx y+=⎧⎪⎨-=⎪⎩,得3xy=⎧⎨=⎩,再将3xy=⎧⎨=⎩代入y=kx-1,得3k-1=0,解方程即可.【详解】解方程组43123392x yx y+=⎧⎪⎨-=⎪⎩,得3xy=⎧⎨=⎩,将3xy=⎧⎨=⎩代入y=kx-1,得3k-1=0,解得k=13,故答案为:13.【点睛】此题考查同解方程问题,解二元一次方程组,解一元一次方程,熟练掌握解方程的方法是解题的关键.13.方程4x-5y=6,用含x的代数式表示y得______,用含y的代数式表示x得______.y=x=【分析】要用含x的代数式表示y或用含y的代数式表示x就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可【详解】解:用含x的代数式表示y移项得:﹣5y=﹣4x+6系数化解析:y=4655x-x=5342y+【分析】要用含x的代数式表示y,或用含y的代数式表示x,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【详解】解:用含x的代数式表示y移项得:﹣5y=﹣4x+6,系数化为1得:y=46 55x-;用含y的代数式表示x得移项得:4x=5y+6,系数化为1得:x=53 42y+.故答案为:y=4655x-;x=5342y+.【点睛】解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.14.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?__________________________;(至少写出2种结果)02575或41878或81181或12484【分析】设公鸡有x只母鸡有y只则小鸡有(100−x−y)只由题意得到5x +3y+=100求出符合题意的方程的解即可【详解】设公鸡有x只母鸡有y只则小鸡有解析:0,25,75或4,18,78或8,11,81,或12,4,84.【分析】设公鸡有x只,母鸡有y只,则小鸡有(100−x−y)只,由题意得到5x+3y+1003x y--=100,求出符合题意的方程的解即可.【详解】设公鸡有x只,母鸡有y只,则小鸡有(100−x−y)只,根据题意得: 5x+3y+1003x y--=100,化简得:y =25−74x , 当x =0时,y =25,100−x−y =75;当x =4时,y =18,100−x−y =78;当x =8时,y =11,100−x−y =81;当x =12时,y =4,100−x−y =84;当x =16时,y =−3,舍去.故答案为:0,25,75或4,18,78或8,11,81,或12,4,84.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)①由购买鸡的只数找出购买小鸡的只数;②找准等量关系,正确列出二元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)结合x 、y 均为整数求出二元一次方程的解.15.为落实习总书记“绿水青山就是金山银山”的发展理念,我区府部门决定由甲、乙、丙三个工程队负责完成一条总工作量为a 的公园改造的施工任务.经过一段时间,甲、乙、丙三个工程队完成的工程量之比是3:4:5为更合理的分任务,经测算,将剩余工程量的916交给了丙队,其余工程量由甲、乙两个工程队共同完成,乙工程队再工作一段时间后因另有任务先离开.工程结束时发现,丙队完成的工程量占总工程量的1940,甲、乙两队完成其余工程的工程量之比为4:3.则乙队完成的工程量与总工程量之比是:______.【分析】设一开始甲乙丙三个工程队完成的工程量为b 则剩余工程量为a-b 然后表示出丙队完成的工程量根据丙队完成的工程量占总工程量的列出等式从而得到a 与b 的数量关系再表示出乙队完成的工程量把a 与b 的数量关解析:11:40.【分析】设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b ,然后表示出丙队完成的工程量,根据丙队完成的工程量占总工程量的1940列出等式,从而得到a 与b 的数量关系,再表示出乙队完成的工程量,把a 与b 的数量关系代入计算即可.【详解】解:设一开始甲、乙、丙三个工程队完成的工程量为b ,则剩余工程量为a-b , ∴丙队完成的工程量为()951612a b b -+, ∴()9519161240a b b a -+=, 解得,35b a =,乙队一开始完成的工程量为412b ,后来完成的工程量为()()73316716a b a b -⨯=-, ∴乙队完成的工程量为()43433311121612516540b a b a a a a ⎛⎫+-=⨯+-= ⎪⎝⎭, ∴乙队完成的工程量与总工程量之比是11:40.故答案是:11:40.【点睛】本题考查工程问题,考查学生分析解决问题的能力,正确求出一开始完成的工程量与总工程量的数量关系是关键.16.若12x y =⎧⎨=-⎩是二元一次方程23ax y -=的解,则a 的值为________.【分析】把x 与y 的值代入方程计算即可求出a 的值【详解】把代入方程得:解得:故答案为:【点睛】本题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:1-【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把12x y =⎧⎨=-⎩代入方程得:()223a -⨯-=, 解得:1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 17.甲、乙两码头相距180km ,某轮船从甲码头顺流航行到乙码头需要5h ,返回时需要6h ,那么这条河的水流速度是________.【分析】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意列二元二次方程组并求解即可得到答案【详解】设水流速度为xkm/h 轮船静水中航行速度为ykm/h 根据题意得:即①-②得:∴即这条河的解析:3/km h【分析】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h ,根据题意列二元二次方程组并求解,即可得到答案.【详解】设水流速度为xkm/h ,轮船静水中航行速度为ykm/h根据题意得:18051806y x y x ⎧+=⎪⎪⎨⎪-=⎪⎩即3630y x y x +=⎧⎨-=⎩①② ①-②,得:23630x =-∴3x =即这条河的水流速度是3/km h故答案为:3/km h .【点睛】本题考查了二元二次方程组的知识;解题的关键是熟练掌握二元二次方程组的性质,并运用到实际问题中,从而完成求解.18.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________528【分析】分别将x=1和x=-1代入得到两个等式再用①-②整理即可得出的值【详解】解:当x=1时①当x=-1时②①-2得:即故答案为:528【点睛】本题主要考查了代数式求值和加减消元法的应用取x 解析:528【分析】分别将x=1和x=-1代入得到两个等式,再用①-②整理即可得出035a a a ++的值.【详解】解: 当x=1时,5432032a a a a a =++++ ①,当x=-1时,543201024a a a a a -=-+-+- ②,①-2得:5301056222a a a =++,即035++=528a a a .故答案为:528.【点睛】本题主要考查了代数式求值和加减消元法的应用.取x 的特殊值代入是解答此题的关键. 19.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax c by x d -=⎧⎨-=⎩的解为______.【分析】用换元法求解即可【详解】解:∵∴∵方程组的解为∴∴故答案为:【点睛】此题考查利用换元法解二元一次方程组注意要根据方程的特点灵活选用合适的方法解数学题时把某个式子看成一个整体用一个变量去代替它解析:12x y =-⎧⎨=⎩【分析】用换元法求解即可.【详解】解:∵y ax c by x d -=⎧⎨-=⎩, ∴()()()()a x y c xb y d ⎧---=⎪⎨---=⎪⎩, ∵方程组ax yc x byd -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩, ∴12x y -=⎧⎨-=-⎩, ∴12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】此题考查利用换元法解二元一次方程组,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.20.对于任意有理数a ,b ,c ,d ,我们规定a bad bc c d =-.已知x ,y 同时满足514x y=-,513y x =-,则xy =________.【分析】利用题中的新定义得到二元一次方程组求出与的值即可【详解】解:根据题中的新定义得:①②得:解得:把代入①得:∴故答案为:【点睛】此题考查了解二元一次方程组以及有理数的乘法弄清题中的新定义是解本解析:6-【分析】利用题中的新定义得到二元一次方程组,求出x 与y 的值即可.【详解】解:根据题中的新定义得:45531x y x y +=⎧⎨+=⎩①②, ①3⨯-②得:714x =,解得:2x =,把2x =代入①得:3y =-,∴6xy =-,故答案为:6-【点睛】此题考查了解二元一次方程组,以及有理数的乘法,弄清题中的新定义是解本题的关键.三、解答题21.解方程组:()()4162 2358x yx y⎧+=-⎪⎨-=-⎪⎩①②解析:9412 xy⎧=-⎪⎪⎨⎪=-⎪⎩【分析】将原方程化简整理后再运用加减消元法求解即可.【详解】解:原方程组可化为233, 252,x yx y-=-⎧⎨-=-⎩③④③-④,得21y=-,12y,将12y代入③,得94x=-.所以原方程组的解是9,41.2xy⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.解方程组:(1)25 342x yx y-=⎧⎨+=⎩(2)212 23x yx y-=⎧⎪⎨+=⎪⎩.解析:(1)21xy=⎧⎨=-⎩;(2)23xy=⎧⎨=⎩【分析】(1)利用加减法解方程组;(2)利用加减法解方程组.【详解】(1)25342x y x y -=⎧⎨+=⎩①②, ①×4+②得:11x =22,即x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:213212x y x y -=⎧⎨+=⎩①②, ①×2+②得:7x =14,即x =2,把x =2代入①得:y =3,则方程组的解为23x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握方程组的解法:代入法和加减法的解法是解题的关键.23.已知关于x 、y 的二元一次方程组为3331x y x y a +=⎧⎨+=+⎩(1)直接写出....二元一次方程组的解为(结果用含a 的式子表示)______________ (2)若21x y a -=-,求a 的值解析:(1)38118x a y a ⎧=⎪⎪⎨⎪=-+⎪⎩;(2)0a =或45a = 【分析】(1)直接由代入消元法解方程组,即可求出答案;(2)由绝对值的意义进行化简,然后计算即可得到答案.【详解】解:(1)3331x y x y a +=⎧⎨+=+⎩①②, 由①得:33x y =-③,把③代入②,得:3(33)1y y a -+=+, 解得:118y a =-+, 把118y a =-+代入③,得38x a =,∴38118x a y a ⎧=⎪⎪⎨⎪=-+⎪⎩; 故答案为:38118x a y a ⎧=⎪⎪⎨⎪=-+⎪⎩; (2)由(1)可知311(1)121882x y a a a a -=--+=-=-, 当11212a a -=-,解得:0a =; 当11(21)2a a -=--,解得:45a =; 【点睛】本题考查了解二元一次方程组,绝对值的意义,解题的关键是熟练掌握运算法则进行计算.24.解方程组:3234x y x y +=⎧⎨-=-⎩解析:11x y =-⎧⎨=⎩【分析】利用代入消元法求出解即可.【详解】解:3234x y x y +=⎧⎨-=-⎩①② 由①得23x y =-③将③代入②,得()3234y y --=-,6-9y-y=-4,-10y=-10,∴1y =.将1y =代入③,得1x =-.∴原方程组的解为11x y =-⎧⎨=⎩【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.解下列方程组(1)34225x y x y +=⎧⎨-=⎩(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩ 解析:(1)21x y =⎧⎨=⎩-;(2)34x y =⎧⎨=⎩【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①②②×4得 8420x y -= ③,①+③得 11x=22,解得 x=2,把x=2代入①得6+4y=2,解得 y=-1,∴方程组的解为21x y =⎧⎨=⎩-; 2)234347x y x y ⎧+=⎪⎨⎪-=-⎩①②①×16得164323x y += ③ ②+③得25253x =, 解得x=3,把x=3代入②得 9-4y=-7,解得y=4,∴方程组的解为34x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,掌握解二元一次方程组的解题步骤是解题关键.26.若方程组 4x y a x y a+=⎧⎨-=⎩的解是二元一次方程35900x y --=的一个解,求a 的值. 解析:6a =【分析】求出方程组 4x y a x y a+=⎧⎨-=⎩的解,代入35900x y --=即可求出a 的值. 【详解】解:4x y a x y a +=⎧⎨-=⎩①②, ①+②得:25x a =,即25x a =.,把25x a =.代入①得:15y a =-., 把25x a =.,15y a =-.代入方程, 得:7575900a a +-=..,解得:6a =.【点睛】本题考查了二元一次方程组的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键. 27.若关于,x y 的方程组37x y ax y b -=⎧⎨+=⎩和关于,x y 的方程组28x by a x y +=⎧⎨+=⎩有相同的解,求,a b 的值. 解析:75a =-,115b =-. 【分析】首先把3x-y=7和2x+y=8联立方程组,求得x 、y 的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a 、b 的方程组,进一步解方程组求得答案即可.【详解】 解:由题意得3728x y x y -=⎧⎨+=⎩, 解得32x y =⎧⎨=⎩, 把32x y =⎧⎨=⎩代入原方程组+y ax b x by a =⎧⎨+=⎩, 得,3+232a b b a =⎧⎨+=⎩,解得75115ab⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.28.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?解析:(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,根据总价=单价×数量,结合该超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,即可列出关于x,y的二元一次方程组,解之即可;(2)根据总利润=每箱利润×数量,即可求出该超市销售完600箱矿泉水获得的利润.【详解】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:600 203515000x yx y+=⎧⎨+=⎩,解得:400200 xy=⎧⎨=⎩.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。
七年级数学下册 二元一次方程组应用题 练习卷(含答案)
2018年七年级数学下册二元一次方程组应用题练习卷一、选择题:1.若方程3x-2y=1的解是正整数,则x一定是()A.偶数B.奇数C.整数D.正整数2.二元一次方程2x+y=7的正整数解有()A.一组B.二组C.三组D.四组3.解方程组的最好解法是( )A.由①得y=3x﹣2,再代入②B.由②得3x=11﹣2y,再代入①C.由②﹣①,消去x D.由①×2+②消去y4.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是A.6013060120x yx y+=⎧⎨-=⎩B.6013060120x yx y-=⎧⎨+=⎩C.6013060120y xy x+=⎧⎨-=⎩D.6013060120y xy x-=⎧⎨+=⎩5.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()6.用一根绳子环绕一棵大树,若环绕大树3周绳子还多4米,若环绕4•周又少了3米,则环绕大树一周需要绳子长()A.5米B.6米C.7米D.8米7.为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,则购买一块电子白板和一台投影机分别需要()A.4000元,8000元B.8000元,4000元C.14000元,8000元D.10000元,12000元8.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为()9.某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.710.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()D.A.B.C.11.已知是方程组的解,则a-b的值是()A.-1 B.2 C.3 D.412.小明用计算器计节(a+b)c的位,其按键顺序和计算器显示结果如下表:这时他才明白计算器是先做乘法再做加法,于是他依次按键:从而得到了正确结果。
【3套精选】人教版初中数学七年级下册第8章《二元一次方程组》测试卷(含答案)(1)
人教版七年级下册第八章二元一次方程组培优综合卷一、 选择题(共10题,每小题3分,共30分) 1.下列各式中是二元一次方程的是( ) A .3x 2-2y=9B .2x+y=6C .+2 =3yD .x-3=4y 22.在方程组 ⎩⎨⎧3x -y =7x =y -1中,代入消元可得( )A .3y-l-y=7B .y-1-y=7C .3y-3=7D .3y-3-y=73.已知 = = 是方程kx+2y=-2的解,则k 的值为( )A .-3B .3C .5D .-54.将方程3x-4y=5变形为用含x 的代数式表示y 为( ) A .y =B .y=C .y=D .y=5.以方程组 = = 的解为坐标的点(x,y)在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限6.某校组织21名教师外出培训,宾馆可选2人间或3人间租住,若所租房间均需住满,则不同的租房方案共有( ) A .5种B .4种C .3种D .2种7.解下面的方程组时,要使解法较为简便,应( )= ① = ② = ③ A .先消去xB .先消去yC .先消去zD .先消去常数8.关于x 、y 的方程组 = = 的解是 = =■,其中y 的值被盖住了,不过仍能求出m ,则m 的值是( ) A .-1B .1C .2D .-29.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A . = =B .==C . = =D .= =10.某厂第二车间的人数比第一车间的人数的45少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的34.问这两个车间原来各有多少人?设第一车间原来有x 人,第二车间原来有y 人,依题意可得( )A .B .C .D .二.填空题(共6小题,每小题3分,共18分) 11.写出一个解为= =的方程组为 12.下列方程(组)中,①x+2=0 ②3x-2y=1 ③xy+1=0 ④2x-=1 ⑤ = = ⑥= =是一元一次方程的是 ,是二元一次方程的是 ,是二元一次方程组的是 . 13.已知方程组= = 和 = =的解相同,则2m-n= .14.结合下面图形列出关于未知数x ,y 的方程组为 .15.已知甲种物品每个重4kg,乙种物品每个重7kg,现有甲种物品x 个,乙种物品y 个,共重76kg,写出满足条件的x ,y 的全部整数解16.如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为(平方单位).三.解答题(共7小题,共52分)17.(5分)(1)填表,使上下每对x,y的值是方程3x+y=5的解(2)写出二元一次方程3x+y=5的正整数解:.18.(9分)解下列方程:( 1 )1-3(x-1)=2x+6( 2 ) - =1(3)===19.(6分)甲、乙两人共同解方程组=①=②时,甲看错了方程①中的a,解得==,乙看错了②中的b,解得==,求a2019+()2020的值。
初中七年级数学下册第八单元《二元一次方程组》(培优练)
一、选择题1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( ) A .3 B .4 C .2 D .12.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A .14和6B .24和16C .28和12D .30和1 3.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .16 4.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .2021 5.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm6.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -= C .93t = D .91t = 7.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A .1种B .2种C .3种D .4种8.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩9.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩ 10.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .19611.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元 12.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分 13.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩14.二元一次方程组425x y x y +=⎧⎨-=⎩的解为( ) A .13x y =⎧⎨=⎩ B .22x y =⎧⎨=⎩ C .31x y =⎧⎨=⎩ D .40x y =⎧⎨=⎩15.下列方程是二元一次方程的是( ). A .32x y -= B .1xy = C .2+3=x x D .153x y -= 二、填空题16.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本.17.写出方程35x y -=的一组解_________.18.若2(321)4330x y x y -++--=,则x y -=_____. 19.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是__________ . 20.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__. 21.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________.22.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___. 23.已知方程组32223x y m x y m+=+⎧⎨+=⎩的解适合8x y +=,则m =_______.24.我们称使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(),x y . (1)若()6,y 是“相伴数对”,则y 的值为______;(2)若(),a b 是“相伴数对”,请用含a 的代数式表示b =______.25.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm .26.对于任意有理数a ,b ,c ,d ,我们规定a bad bc c d =-.已知x ,y 同时满足514x y=-,513y x =-,则xy =________.三、解答题27.学校准备租用客车外出活动.现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车送330名师生集体外出活动(无空座),最节省的租车费用是多少?28.“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/千米计算,耗时费按q 元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表: 时间(分钟) 里程数(千米) 车费(元)小明 7 512.1 小亮 64.5 10.8 (2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数? 29.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本?(2)请你解释,小明为什么不可能找回68元?30.近几年大部分家庭流行用不锈钢钢管做防盗窗,小芳家的防盗窗按设计要求,需要长为0.8米的钢管100根,及长为2.5米的钢管32根,两种长度的钢管粗细必须相同;并要求这些用料不能是焊接而成的,经市场调查,钢材市场中符合这种规格的钢管每根长均为6米.(1)将一根长为6米的钢管进行裁剪(余料作废),有下面几种方法,请完成填空:方法①:只裁长为0.8米的钢管时,最多可裁________根.方法②:先裁下1根2.5米长的钢管,余下部分最多能裁0.8米长的钢管____根.方法③:先裁下2根2.5米长的钢管,余下部分最多能裁0.8米长的钢管________根.(2)用(1)中的三种方法里面的两种进行结合来裁剪6米长的钢管,在尽量减少用料的情况下,如何裁剪才能得到所需要的相应数量的材料?。
初一数学下册春季班培优讲义.教师版.8.2 消元——解二元一次方程组-测试题(含答案)【精品】
第八章二元一次方程组【精品】8.2 消元——解二元一次方程组1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K知识参考答案:1.消元2.加减法K—重点代入法或加减法解二元一次方程组K—难点用适当的方法解二元一次方程组K—易错解二元一次方程组时看错系数一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y=ax+b(或x=ay+b),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y xx y=-⎧⎨-=⎩时,代入正确的是A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=4【答案】C【解析】124y xx y=-⎧⎨-=⎩①②,把①代入②得:x-2(1-x)=4,整理得:x-2+2x=4.故选C.二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:693 6416 x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.1.方程组1325y xx y+=⎧⎨+=⎩的解是A.32xy=⎧⎨=-⎩B.34xy=-⎧⎨=⎩C .32x y =⎧⎨=⎩D .32x y =-⎧⎨=-⎩2.用加减消元法解方程组231354y x x y +=⎧⎨-=-⎩①②,①-②得A .2y =1B .5y =4C .7y =5D .-3y =-33.用加减消元法解方程组358752x y x y -=⎧⎨+=⎩将两个方程相加,得A .3x =8B .7x =2C .10x =8D .10x =104.解关于x y ,的方程组239x y mx y m+=⎧⎨-=⎩,得2x y +的值为A .12mB .0C .2m -D .7m5.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩,比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 6.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩7.由方程组63x m y m +=⎧⎨-=⎩①②可得出x 与y 的关系式是A .9x y +=B .3x y +=C .3x y +=-D .9x y +=-8.小亮解方程组2212x y x y +=∆⎧⎨-=⎩的解为5x y =⎧⎨=∑⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数∆和∑,则两个数∆和∑的值为A .82∆=⎧⎨∑=⎩B .82∆=⎧⎨∑=-⎩C .82∆=-⎧⎨∑=⎩D .82∆=-⎧⎨∑=-⎩9.若二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x ay b =⎧⎨=⎩,则a +b 值为A .19B .212C .7D .1310.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为xD .先将①变形为5y =2x ,再代入② 11.不解方程组,下列与237328x y x y +=+=⎧⎨⎩的解相同的方程组是A .2836921y x x y =-+=⎧⎨⎩B .283237y xx y =+=+⎧⎨⎩CD12.方程组221x yx y+=-=⎧⎨⎩的解是__________.13.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.14.若方程组35ax byax by-=-⎧⎨+=⎩与23144516x yx y+=⎧⎨-=-⎩的解相同,则a=__________,b=__________.15.解方程组:学科=网(1)23328y xx y=-⎧⎨+=⎩(代入法);(2)223210x yx y+=⎧⎨-=⎩(加减法);(3)357 425 x yx y-=⎧⎨+=⎩;(4)2()1343()2(2)8x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩.16.数学课上老师要求学生解方程组:213 3113a bb a=-+⎧⎨=-⎩.同学甲的做法是:213 3113a bb a=-+⎧⎨=-⎩①②,由①,得a=-12+32b.③把③代入②,得3b=11-3(-12+32b),解得b=53,把b=53代入③,解得a=2,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.老师看了同学甲的做法说:“做法正确,但是方法复杂,要是能根据题目特点,采用更加灵活简便的方法解此题就更好了.”请你根据老师提供的思路解此方程组.17.3()2()5 4(2)3x y x yx y x y-++=⎧⎨-+-=-⎩.18.已知23x yx y-=⎧⎨+=⎩,则xy的值是A.2 B.1 C.-1 D.219.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩①②正确的方法是A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-220.用加减法解方程组326231x yx y+=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是(1)966462x yx y+=⎧⎨+=⎩(2)9618462x yx y+=⎧⎨-=⎩(3)9618462x yx y+=⎧⎨+=⎩(4)6412693x yx y+=⎧⎨+=⎩A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)21.已知方程组323()11x yy x y-=⎧⎨+-=⎩,那么代数式3x-4y的值为A.1 B.8 C.-1 D.-822.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④23.若方程组(31)2y kx by k x =+=-+⎧⎨⎩有无穷多组解,则2k +b 2的值为A .4B .5C .8D .1024.已知甲、乙两人的收入比为32∶,支出之比为74∶,一年后,两人各余400元,若设甲的收入为x元,支出为y 元,可列出的方程组为ABCD25.若关于x 、y 的二元一次方程组59x y kx y k +=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.26.若方程组7353x y x y +=⎧⎨-=-⎩,则3()(35)x y x y +--的值是__________.27.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.28.已知方程组82x y x y +∆=⎧⎨∆-=⎩WW 中,y x 、的系数部已经模糊不清,但知道其中W 表示同一个数,∆也表示同一个数,⎩⎨⎧-==11y x 是这个方程组的解,你能求出原方程组吗?29.解方程组:6323()2()28x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩.30.请你根据萌萌所给的如图所示的内容,完成下列各小题.(1)若m ※n =1,m ※2n =-2,分别求m 和n 的值;(2)若m 满足m ※2≤0,且3m ※(-8)>0,求m 的取值范围.31.(2018·怀化)二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩32.(2018·天津)方程组10216x y x y +=⎧⎨+=⎩的解是A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩C .36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩33.(2018·台湾)若二元一次联立方程式73838x y x y -=⎧⎨-=⎩的解为x =a ,y =b ,则a +b 之值为何?A .24B .0C .-4D .-834.(2018·桂林)若|321|20x y x y --+-=,则x ,y 的值为A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩35.(2018·常德)阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是 A .21732D ==--B .14x D =-C .27yD =D .方程组的解为23x y =⎧⎨=-⎩36.(2018·无锡)方程组225x y x y -=⎧⎨+=⎩的解是__________.37.(2018·福建)解方程组:1410x y x y +=⎧⎨+=⎩.38.(2018·湘西州)解方程组:335x y x y +=⎧⎨-=⎩.39.(2018·武汉)解方程组:10216x y x y +=⎧⎨+=⎩.40.(2018·宿迁)解方程组:20 346 x yx y+=⎧⎨+=⎩.41.(2018·舟山)用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.1.【答案】A【解析】1325y xx y+=⎧⎨+=⎩22233+252x y xx y y⎧+==⎧⇒⇒⎨==⎨-⎩⎩,故选A.2.【答案】C【解析】两式相减得,7y=5.故选C.3.【答案】D【解析】将两个方程相加,得:10x=10,故选D.4.【答案】A【解析】将方程组中的两个方程相加得(x+2y)+(x-y)=3m+9m,合并同类项得2x+y=12m.故选A.6.【答案】D【解析】由同类项的定义可得24325y x x y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.7.【答案】A【解析】由①得:m=6-x,∴6-x=y-3,∴x+y=9.故选A.8.【答案】B【解析】把5 xy=⎧⎨=∑⎩代入方程组可得,101012+∑=∆⎧⎨-∑=⎩,解得82∆=⎧⎨∑=-⎩,故选B.10.【答案】D【解析】由①得:5y=2x,把5y=2x代入②即可.故选D.11.【答案】A【解析】∵在A选项中,方程283y x=-可化为:238x y+=;方程6921x y+=可化为:237x y+=,∴A选项中的方程组和原方程组的解相同,故选A.12.【答案】11xy==⎧⎨⎩【解析】221x yx y+=⎧⎨-=⎩①②,①+②,得:3x=3,解得:x=1.把x=1代入①得,y=1,故方程组的解为:11xy==⎧⎨⎩.故答案为:11xy==⎧⎨⎩.13.【答案】32【解析】23523x yx y+=⎧⎨+=-⎩①②,14.【答案】1;1【解析】解方程组23144516x yx y+=⎧⎨-=-⎩,得14xy=⎧⎨=⎩.把它代入方程组35ax byax by-=-⎧⎨+=⎩,得4345a ba b-=-⎧⎨+=⎩,解之,得a=1,b=1.故答案为1;1.15.【解析】(1)23328y xx y=-⎧⎨+=⎩①②,将①代入②得:3x+4x-6=8,解得x=2,将x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩.(2)223210x yx y+=⎧⎨-=⎩①②,①×2+②得:7x=14,解得x=2,将x=2代入①得:y=-2,则方程组的解为22 xy=⎧⎨=-⎩.(3)357 425x yx y-=⎧⎨+=⎩①②,①×2+②×5得:26x=39,即x=32,将x=32代入②得:y=-12,则方程组的解为3212xy⎧=⎪⎪⎨⎪=-⎪⎩.(4)方程组化简,得51112058x yx y-+=⎧⎨=-⎩①②,把②代入①,得14y-28=0,解得y=2,把y=2代入②,得x=2,方程组的解为22 xy=⎧⎨=⎩.16.【解析】213 3113a bb a=-+⎧⎨=-⎩①②,把②代入①,得2a=-1+(11-3a),解得a=2,把a=2代入①,解得b=53,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.17.【解析】原方程整理为55593x yx y-=⎧⎨-=-⎩①②,①-②,得8y=8,解得,y=1.把y=1代入①得,5x-1=5,解得,x=65,所以,方程组的解为651xy⎧=⎪⎨⎪=⎩.18.【答案】B【解析】23x yx y-=⎧⎨+=⎩①②,②-①得,y=1③,将③代入①,得x=1,则xy=1,故选B.19.【答案】D【解析】先将②变为x-3y=7③,再①-③得x=-2,故选D.20.【答案】C【解析】①3⨯和②2⨯转化为(3);或者①2⨯和②3⨯转化为(4).故选C . 21.【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1, 将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B .23.【答案】B【解析】根据方程组有无穷多组解,可知方程组中的两个方程相同, 所以b =2,3k -1=k , 解得:k =12,b =2, ∴2k +b 2=1+4=5.故选B . 24.【答案】C【解析】根据甲的收入-甲的支出400=元,得方程400=-y x , 根据乙的收入-乙的支出400=元,得方程4007432=-y x , 则可列方程组为4002440037x y x y -=⎧⎪⎨-=⎪⎩,故选C . 25.【答案】34【解析】59x y k x y k +=⎧⎨-=⎩①②,①+②得:2x =14k ,即x =7k ,将x =7k 代入①得:7k +y =5k ,即y =-2k , 将x =7k ,y =-2k 代入2x +3y =6得:14k -6k =6, 解得:k =34,故答案为:34. 26.【答案】24【解析】将方程组中的两个方程看作整体代入得:3(x +y )-(3x -5y )=3×7-(-3)=24. 故答案为:24.27.【解析】(1)将①代入②得,32(402)22x x +-=,解得x =58,将x =58代入①,得:y =-76,故原方程组的解为:5876x y =⎧⎨=-⎩.(2)①×2得,4x +6y =10③,③-②得:8y =9,y =98, 将y =98代入①,得:1316x =, 故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③,①+③得:21x =0,解得:x =0, 将x =0代入②得:y =3,故原方程组的解为:03x y =⎧⎨=⎩.28.【解析】由题意得82x y x y +∆=⎧⎨∆-=⎩W W ,解得53=⎧⎨∆=-⎩W,则原方程组为538352x y x y -=⎧⎨--=⎩.29.【解析】原方程组整理得536528x y x y -=⎧⎨+=⎩①②,由②得y x 528-=③,把③代入①得36)528(5=--y y ,解得4=y , 把4=y ③代入③得,8=x ,∴方程组的解为84x y =⎧⎨=⎩.30.【解析】(1)∵m ※n =1,m ※2n =-2,∴431462m n m n -=⎧⎨-=-⎩,解得11n m =⎧⎨=⎩.(2)∵m ※2≤0,3m ※(-8)>0,∴46012240m m -≤⎧⎨+>⎩,解得-2<m ≤32. 31.【答案】B【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得:2x =0, 解得:x =0,把x =0代入①得:y =2,则方程组的解为02x y =⎧⎨=⎩,故选B . 32.【答案】A【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得x =6,把x =6代入①,得y =4,原方程组的解为64x y =⎧⎨=⎩.故选A .33.【答案】A【解析】73838x y x y -=⎧⎨-=⎩①②,①-②×3,得:-2x =-16, 解得:x =8,将x =8代入②,得:24-y =8,解得:y =16,即a =8,b =16,则a +b =24,故选A .34.【答案】D【解析】∵|321|0x y --=,∴321020x y x y --=⎧⎨+-=⎩, 将方程组变形为3212x y x y -=⎧⎨+=⎩①②, ①+②×2得,5x =5,解得x =1, 把x =1代入①得,3-2y =1,解得y =1,∴方程组的解为11x y =⎧⎨=⎩.故选D . 35.【答案】C【解析】A 、D =2132-=2×(-2)-3×1=-7,故A 选项正确,不符合题意; B 、D x =11122-=-2-1×12=-14,故B 选项正确,不符合题意;C、D y=21312=2×12-1×3=21,故C选项不正确,符合题意;D、方程组的解:x=147xDD-=-=2,y=217yDD=-=-3,故D选项正确,不符合题意,故选C.36.【答案】31 xy=⎧⎨=⎩【解析】225 x yx y-=⎧⎨+=⎩,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31 xy=⎧⎨=⎩,故答案为:31 xy=⎧⎨=⎩.37.【解析】1410x yx y+=⎧⎨+=⎩①②,②-①得:3x=9,解得:x=3,把x=3代入①得:y=-2,则方程组的解为32 xy=⎧⎨=-⎩.38.【解析】①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组的解为21x y =⎧⎨=⎩. 39.【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩.41.【解析】(1)解法一中的计算有误(标记略).(2)用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下: 由①-②,得33x -=,解得1x =-,把1x =-代入①,得135y --=,解得2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
七年级数学人教版下册 第8章 二元一次方程组 培优训练(含答案)
15.
(2020·北京)方程组
x y 1 3x y 7
,
的解为
.
16. 有下列三对数:①
②
③
其中
是方程 3x+y=8 的
解,
是方程 2x-y=7 的解,
是方程组
的解.(填序号)
17. (2019·上海)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛, 大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5 大桶加 1 小桶共 盛 3 斛米,1 大桶加 5 小桶共盛 2 斛米,依据该条件,1 大桶加 1 小桶共盛 斛 米.(注:斛是古代一种容量单位).
13. (2020·泰安)方程组x5+x+y﹦3y1﹦6,72的解是___________.
14. 某宾馆有单人间和双人间两种房间,入住 3 个单人间和 6 个双人间共需 1 020 元,入住 1 个单人间和 5 个双人间共需 700 元,则入住单人间和双人间各 5 个共 需____________元.
19. 【答案】1050 [解析] 设该药店购进甲、乙两种体温计分别为 x 支,y 支.依题 意,得
解得 则 750+300=1050(支),故甲、乙两种体温计共购进 1050 支.
20. 【答案】4【解析】设李红出门没有买到口罩的次数是 x,买到口罩的次数是 y,
由题意得:
,整理得:
,解得:
,因此本题答案为
10. 【答案】 B 【解析】 设可以购买 x 支康乃馨,y 支百合,根据总价=单价×数量,即可得出 关于 x,y 的二元一次方程,结合 x,y 均为正整数即可得出小明有 4 种购买方案. 设可以购买 x 支康乃馨,y 支百合,依题意,得:2x+3y=30,∴y=10﹣23x. ∵x,y 均为正整数,∴xy==38,yx==66,xy==94,xy==122,∴小明有 4 种购买方案. 故选:B.
(完整版)初一数学下册二元一次方程组考试试题及答案(一)培优试题
一、选择题1.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( )A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)2.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则2a b -的值为( ) A .15 B .14 C .10 D .83.两位同学在解方程组时,甲同学由24ax by cx y +=⎧⎨-=-⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把c 写错了解得22x y =-⎧⎨=⎩,则a b c ++的值为( ) A .3 B .0 C .1 D .74.已知方程组321x y n x y n +=⎧⎨+=+⎩,若x ,y 的值相等,则n =( ) A .1- B .4- C .2 D .2-5.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .60B .52C .70D .666.某超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是( ) A .第1天 B .第2天 C .第3天 D .第4天7.若关于x 、y 的方程组2335x y ax by +=⎧⎨-=-⎩和32111x y bx ay -=⎧⎨-=⎩有相同的解,则2021()a b +的值为( )A .1-B .0C .1D .20218.已知关于x ,y 的方程组34,53,x y a x y a +=-⎧⎨-=⎩给出下列结论:①4,1x y =⎧⎨=-⎩是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解;④x ,y 的都为自然数的解有4对.其中正确的是( )A .②③B .③④C .①②D .①②③④9.已知111222(1)(2)(1)(2)a x b y c a x b y c ++-=⎧⎨++-=⎩的解是34x y =⎧⎨=⎩,求11122255a x b y c a x b y c +=⎧⎨+=⎩的解为( )A.1020xy=⎧⎨=⎩B.2010xy=⎧⎨=⎩C.4525xy⎧=⎪⎪⎨⎪=⎪⎩D.2545xy⎧=⎪⎪⎨⎪=⎪⎩10.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.200 B.201 C.202 D.203二、填空题11.某食品公司为迎接端午节,特别推出三种新品粽子,分别是鲍鱼粽、水果粽、香芋粽,并包装成甲、乙两种盒装礼盒.每盒礼盒的总成本是盒中鲍鱼粽、水果粽、香芋粽三种粽子的成本之和(盒子成本忽略不计).甲礼盒每盒装有3个鲍鱼粽、2个水果粽和2个香芋粽;乙礼盒每盒装有1个鲍鱼粽、4个水果粽和4个香芋粽.每盒甲礼盒的成本正好是1个鲍鱼粽成本的112倍,而每盒甲礼盒的售价是在甲礼盒成本的基础上增加了311.每盒乙礼盒的利润率为20%.当该公司销售这两种盒装礼盒的总利润为24%,且销售甲礼盒的总利润是4500元时,这两种礼盒的总销售额是________元.12.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有种.13.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..14.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x斤,燕每只重y斤,则可列方程组为________________15.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x人,所分银子共有y两,则所列方程组为_____________16.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.17.有一块矩形的牧场如图1,它的周长为560米.将它分隔为六块完全相同的小矩形牧场,如图2,每一块小矩形牧场的周长是__________米.18.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.19.若2a m +2n b 7+a 5b n ﹣2m +2的运算结果是3a 5b 7,则2m 2+3mn +n 2的值是 ___.20.关于x ,y 的方程组215x ay bx y -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则6a b -的平方根是______. 三、解答题21.如果3个数位相同的自然数m ,n ,k 满足:m +n =k ,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s 和两位数t 的十位数字相同,若s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,求出满足题意的s .22.在平面直角坐标系中,点A ,B 的坐标分别为A(a ,0),B(b ,0),且a ,b 满足|a +b ﹣2|+25a b -+=0,现同时将点A ,B 分别向右平移1个单位,再向上平移2个单位,分别得到点A ,B 的对应点为C ,D .(1)请直接写出A 、B 、C 、D 四点的坐标.(2)点E 在坐标轴上,且S △BCE =S 四边形ABDC ,求满足条件的点E 的坐标.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在线段BD 上移动时(不与B ,D 重合)求:DCP BOP CPO∠+∠∠的值.23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.24.平面直角坐标系中,A(a,0),B(0,b),a,b满足2(25)220a b a b++++-=,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求BE OEOC-的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.25.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.26.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材张,乙型板材张;②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?27.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?28.如图,学校印刷厂与A,D两地有公路、铁路相连,从A地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D地批发,已知公路运价1.5元/(t•km),铁路运价1.2元/(t•km).这两次运输支出公路运费4200元,铁路运费26280元.(1)白纸和作业本各多少吨?(2)这批作业本的销售款比白纸的购进款与运输费的和多多少元?29.题目:满足方程组3512332x y kx y k+=+⎧⎨+=-⎩的x与y的值的和是2,求k的值.按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由x+y=2,构造关于k的方程求解,从而得出k值.(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x+y”这个整体,或者对方程组的两个方程进行加减变形得到“x+y”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程.(2)小勇同学的解答是:观察方程①,令3x=k,5y=1解得y=15,3x+y=2,∴x=95∴k=3×95=275把x =95,y =15代入方程②得k =﹣35 所以k 的值为275或﹣35. 请诊断分析并评价“小勇同学的解答”.30.五一节前,某商店拟购进A 、B 两种品牌的电风扇进行销售,已知购进3台A 种品牌电风扇所需费用与购进2台B 种品牌电风扇所需费用相同,购进1台A 种品牌电风扇与2台B 种品牌电风扇共需费用400元.(1)求A 、B 两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A 种品牌电风扇定价为180元/台,B 种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据新定义运算法则列出方程 {ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可.【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则 {ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b ,∵a ,b 是任意实数,∴x+y=1,③由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④由③④解得,x=1,y=0,∴(x,y)为(1,0);故选D.2.C解析:C【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,进而求出a 与b 的值,代入原式计算即可求出值.【详解】解:根据题意,则5325x y x y +=⎧⎨-=⎩①②, 由①×2+②得:11x =11,解得:x =1,把x =1代入①得:5+y =3,解得:y =-2;把x =1,y =-2代入5451ax y x by +=⎧⎨+=⎩,则104521a b -=⎧⎨-=⎩, 解得:142a b =⎧⎨=⎩, ∴2142210a b -=-⨯=.故选:C .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.D解析:D【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a ,b ,c 的值,即可求出所求.【详解】解:把32x y =⎧⎨=-⎩代入方程组24ax by cx y +=⎧⎨-=-⎩得:322324a b c -⎧⎨+-⎩== , 把22x y =-⎧⎨=⎩代入ax +by =2得:-2a +2b =2,即-a +b =1, 联立得:3221a b a b -⎧⎨-+⎩==, 解得:45a b ⎧⎨⎩== , 由3c +2=-4,得到c =-2,则a +b +c =4+5-2=7.故选:D .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.B解析:B【分析】先根据方程组中x 、y 相等用y 表示出x 把原方程组化为关于y 、n 的二元一次方程组,再用n 表示出y 的值,代入方程组中另一方程求出n 的值即可.【详解】解:∵方程组321x y n x y n +=⎧⎨+=+⎩中的x ,y 相等, ∴原方程组可化为:4?31?y n y n =⎧⎨=+⎩①②, 由①得,4n y =, 代入②得,314n n =+,解得n =-4, 故选择:B .【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.5.C解析:C【分析】设小长方形的长、宽分别为x 、y ,根据周长为34的矩形ABCD ,可以列出方程3x +y =17;根据图示可以列出方程2x =5y ,联立两个方程组成方程组,解方程组就可以求出矩形ABCD 的面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得: 25317x y x y =⎧⎨+=⎩ , 解得:52x y =⎧⎨=⎩, 则矩形ABCD 的面积为7×2×5=70.故选:C .【点睛】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.6.C解析:C【分析】设牙刷的单价为x 元,牙膏的单价为y 元,当第1天、第2天的记录无误时,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再代入第3天及第4天的数据中验证即可得出结论(若3,4天的结果均不对,则1,2天中的数据有误,以3,4天的数据列出方程组求出牙刷和牙膏的单价,再代入1,2天的数据中验证即可).【详解】解:设牙刷的单价为x 元,牙膏的单价为y 元,当第1天、第2天的记录无误时,依题意得:1371441811219x y x y +=⎧⎨+=⎩,解得:315x y =⎧⎨=⎩, ∴23x+20y=23×3+20×15=369(元),17x+11y=17×3+11×15=216(元).又∵369≠368,∴第3天的记录有误.故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.A解析:A【分析】将方程组中不含,a b 的两个方程联立,求得,x y 的值,代入,含有,a b 的两个方程中联立求得,a b 的值,再代入代数式中求解即可.【详解】根据题意2333211x y x y +=⎧⎨-=⎩①②①⨯2+②⨯3得:3x =将3x =代入①得:1y =-将31x y =⎧⎨=-⎩代入51ax by bx ay -=-⎧⎨-=⎩得: 3531a b b a +=-⎧⎨+=⎩③④ ③-④⨯3得:1b =将1b =代入④得:2a =-当21a b =-=,时,20212021(()1)1a b +=-=-故选A .【点睛】本题考查了解二元一次方程组,乘方运算,理解题意中方程组有相同解的意义是解题的关键.8.D解析:D【分析】①将x =4,y =-1代入检验即可做出判断;②将x 和y 分别用a 表示出来,然后求出x +y =3来判断;③将a =1代入方程组求出方程组的解,代入方程中检验即可;④有x +y =3得到x 、y 都为自然数的解有4对.【详解】解:①将4,1x y =⎧⎨=-⎩代入34,53,x y a x y a +=-⎧⎨-=⎩,解得3a =;且满足题意,故①正确; ②解方程3453x y a x y a +=-⎧⎨-=⎩①② -①②得:8y =4-4a 解得:12a y -=, 将y 的值代入①得:52a x +=, 所以x +y =3,故无论a 取何值,x 、y 的值都不可能互为相反数,故②正确. ③将a =1代入方程组得:3353x y x y +=⎧⎨-=⎩, 解此方程得:30x y =⎧⎨=⎩, 将x =3,y =0代入方程x +y =3,方程左边=3=右边,是方程的解,故③正确. ④因为x +y =3,所以x 、y 都为自然数的解有30x y =⎧⎨=⎩,21x y =⎧⎨=⎩,12x y =⎧⎨=⎩,03x y =⎧⎨=⎩.故④正确. 则正确的选项有①②③④.故选:D .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.B解析:B【分析】把x =3,y =4代入第一个方程组,可得关于a 1,b 1方程组,两方程同时乘5可得出1112222010520105a b c a b c +=⎧⎨+=⎩,再结合第二个方程组即可得出结论.【详解】解:把34x y =⎧⎨=⎩代入方程组得:1112224242a b c a b c +=⎧⎨+=⎩, 方程同时×5,得:1112222010520105a b c a b c +=⎧⎨+=⎩, ∴方程组11122255a x b y c a x b y c +=⎧⎨+=⎩的解为2010x y =⎧⎨=⎩, 故选B .【点睛】本题考查了二元一次方程组的解,发现两方程组之间互相联系是解题的关键.10.A解析:A【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答.【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得:43{2x y n x y m+=+=, 则两式相加得5()m n x y +=+,∵x 、y 都是正整数∴m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数,∴m n +的值可能是200.故选A.【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题11.37200【分析】设设1个鲍鱼粽的成本为a 元,1个水果粽的成本为b 元,1个香芋粽的成本为c 元,分别表示出A 、B 礼盒的总成本和总利润,通过题干的已知条件找到等量关系列出方程即可进行求解.【详解】解析:37200【分析】设设1个鲍鱼粽的成本为a 元,1个水果粽的成本为b 元,1个香芋粽的成本为c 元,分别表示出A 、B 礼盒的总成本和总利润,通过题干的已知条件找到等量关系列出方程即可进行求解.【详解】解:设1个鲍鱼粽的成本为a 元,1个水果粽的成本为b 元,1个香芋粽的成本为c 元, 则每盒甲礼盒的成本为(3a +2b +2c )元,每盒乙礼盒的成本为(a +4b +4c )元, ∵每盒甲礼盒的成本正好是1个鲍鱼粽成本的112倍, ∴3a +2b +2c =112a , ∴4b +4c =5a ,∴a +4b +4c =6a ,∵每盒甲礼盒的售价是在甲礼盒成本的基础上增加了311. ∴每盒甲礼盒的售价为:(1+311)112a =7a , ∵每盒乙礼盒的利润率为20%∴每盒乙礼盒的售价为:(1+20%)6a =7.2a ,设销售甲礼盒m 个,乙礼盒n 个,∵销售甲礼盒的总利润是4500元∴(7a -5.5a )m =4500,∴am =3000;∵销售这两种盒装礼盒的总利润为24%,∴4500+(7.2a -6a )n =()24% 5.5am+6an ⨯∴an =2250,∴两种礼盒的总销售额=7am +7.2an =7×3000+7.2×2250=37200(元)故答案为:37200元【点睛】本题考查三元一次方程组的应用,学会利用已知条件进行相互转化是解本题的关键,综合性较强,有一定难度.12.6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张,0.8x+1.2y=16, 解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 13.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=,100112605031800x y∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A、B的进价分别为x元,y元,分别表示出商品A与商品B的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x与y的具体值,这是本题的难点.14.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:45561 x y y xx y+=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.15.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可. 【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键.16.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.17.240【分析】根据题意列出二元一次方程组求解即可;【详解】设每一块小矩形牧场的长为x米,宽为y米,依题意可得:,解得:,∴(米);故答案是:240.【点睛】本题主要考查了二元一次解析:240【分析】根据题意列出二元一次方程组求解即可;【详解】设每一块小矩形牧场的长为x 米,宽为y 米,依题意可得:()2222560x x y x x y =+⎧⎨++=⎩, 解得:8040x y =⎧⎨=⎩, ∴()()228040240x y +=⨯+=(米);故答案是:240.【点睛】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.18.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩, 解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.19.2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵的运算结果是,∴解得:∴故答案为:2.【点睛】本题考查合并同解析:2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵275222m n n m a b a b +-++的运算结果是573a b ,∴25227m n n m +=⎧⎨-+=⎩解得:13m n =-⎧⎨=⎩ ∴2223m mn n ++()()22213133=⨯-+⨯-⨯+299=-+2=故答案为:2.【点睛】本题考查合并同类项,涉及到解二元一次方程组,解题的关键是根据同类项的定义求得m 、n 的值. 20.±4【分析】将方程组的解代入方程组中求出a 、b 的值,然后代入代数式中求解即可.【详解】解:将代入方程组,得:,解得:,∴=6×3﹣2=16,∴的平方根是±4,故答案为:±4.【点睛解析:±4【分析】将方程组的解代入方程组中求出a 、b 的值,然后代入代数式中求解即可.【详解】解:将21x y =⎧⎨=⎩代入方程组215x ay bx y -=⎧⎨+=⎩,得:41215a b -=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, ∴6a b -=6×3﹣2=16,∴6a b -的平方根是±4,故答案为:±4.【点睛】本题考查二元一次方程组的解、代数式求值、平方根,理解方程组的解,正确求出a 、b 值和平方根是解答的关键.三、解答题21.(1)87和12是“黄金搭档数”,62和49不是“黄金搭档数”,理由见解析;(2)39或38【分析】(1)根据“黄金搭档数”的定义分别判断即可;(2)由已知设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,表示出s t +,由s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,综合分析,列出方程组求解即可.【详解】(1)解:∵871299,+=∴87和12是一对“黄金搭档数”;∵6249111,+=∴111与62,49数位不相同,∴62和49不是一对“黄金搭档数”;故87和12是一对“黄金搭档数”,62和49不是一对“黄金搭档数”;(2)∵两位数s 和两位数t 的十位数字相同,∴设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,∴20,s t x y z +=++∵s 和t 是一对“黄金搭档数”,∴s t +是一个两位数,且各个数位上的数相同,又∵s 与t 的和能被7整除,∴77s t +=,共有两种情况:①20707x y z =⎧⎨+=⎩, 解得 3.5x =,∵x 为整数,∴不合题意,舍去;②206017x y z =⎧⎨+=⎩, ∵,,x y z 都是整数,且19,09,09,x y z ≤≤≤≤≤≤∴解得398x y z =⎧⎪=⎨⎪=⎩或389x y z =⎧⎪=⎨⎪=⎩, 故s 为39或38.【点睛】本题考查三元一次方程组的整数解,解题关键是理解题目中的定义,根据已知条件列出方程组.22.(1)A(﹣1,0),B(3,0),C(0,2),D(4,2);(2)220,3E ⎛⎫ ⎪⎝⎭,100,3⎛⎫- ⎪⎝⎭,(﹣5,0),(11,0);(3)1【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点E 在x 轴和y 轴上两种情况,设出坐标,根据BCE ABDC S S ∆=四边形列出方程求解可得;(3)作//PF AB ,则//PF CD ,可得DCP CPF ∠=∠、BOP OPF ∠=∠,进而得到∠DCP +∠BOP =∠CPO ,即求解.【详解】解:(1)根据题意得:225a b a b +=⎧⎨-=-⎩, 解得:a =﹣1,b =3.所以A(﹣1,0),B(3,0),C(0,2),D(4,2),(2)∵AB =3﹣(﹣1)=3+1=4,∴S 四边形ABDC =4×2=8;∵S △BCE =S 四边形ABDC ,当E 在y 轴上时,设E(0,y), 则12•|y ﹣2|•3=8,解得:y =﹣103或y =223, ∴22100,0,33E ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭; 当E 在x 轴上时,设E(x ,0),则12•|x ﹣3|•2=8,解得:x =11或x =﹣5,∴E(﹣5,0),(11,0);(3)由平移的性质可得AB ∥CD ,如图,过点P 作PF ∥AB ,则PF ∥CD ,∴∠DCP =∠CPF ,∠BOP =∠OPF ,∴∠CPO =∠CPF +∠OPF =∠DCP +∠BOP ,即∠DCP +∠BOP =∠CPO ,所以比值为1.【点睛】本题主要考查非负数的性质、二元一次方程的解法、坐标与平移及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.23.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩;故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.(1)(40),(03)A B -,,;(2)1BE OE OC-=;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒.【分析】(1)根据非负数的性质和解二元一次方程组求解即可;(2)设(0,),(0,)C c E y ,先根据平移的性质可得(43)D c +,,过D 作DP x ⊥轴于P ,再根据三角形ADP 的面积得出8(3)44(3)222c y y c +++=+,从而可得32c y +=,然后根据线段的和差可得BE OE c OC -=-=,由此即可得出答案;(3)设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ ,设,BAH CAH DFH GFH αβ∠=∠=∠=∠=,由平行线的性质可得180(),1802()QHF DGF αβαβ∠=︒-+∠=︒-+,由此即可得出结论.【详解】(1)∵20,(25)220a b a b ≥+++-≥,且2(25)220a b a b ++++-=∴250220a b a b ++=⎧⎨+-=⎩ 解得:43a b =-⎧⎨=⎩则(40),(03)A B -,,; (2)设(0,),(0,)C c E y∵将线段AB 平移得到CD ,(40),(03)A B -,, ∴由平移的性质得(43)D c +,如图1,过D 作DP x ⊥轴于P∴4,3,,AO OP DP c OE y OC c ===+==-∵ADP AOE OEDP SS S =+梯形 ∴()222AP DP OA OE OE DP OP ⋅⋅+⋅=+ 即8(3)44(3)222c y y c +++=+ 解得32c y +=∴()232BE OE BO OE OE BO OE y c -=--=-=-=- ∴1BE OE c OC c--==-;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒,求解过程如下:如图2,设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ∵HD 平分BAC ∠,HF 平分DFG ∠∴设,BAH CAH DFH GFH αβ∠=∠=∠=∠=∵AB 平移得到CD∴//,//AB CD BD AC∴BAH AQC FQH α∠=∠=∠=,180BAC ACD BDC ACD ∠+∠=︒=∠+∠∴2BAC BDC FDG α∠=∠=∠=∵//MN FQ∴,MHQ FQH NHF DFH αβ∠=∠=∠=∠=∴180180()QHF MHQ NHF αβ∠=︒-∠-∠=︒-+∵//KJ DF∴2,2DGK FDG DFG FGJ αβ∠=∠=∠=∠=∴1801802()DGF DGK FGJ αβ∠=︒-∠-∠=︒-+∴2180DGF QHF ∠=∠-︒.【点睛】本题属于一道较难的综合题,考查了解二元一次方程组、平移的性质、平行线的性质等知识点,较难的是题(3),通过作两条辅助线,构造平行线,从而利用平行线的性质是解题关键.25.(1) A 型车、B 型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A 型车8辆,B 型车2辆,最少租车费为2080元.【分析】(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,根据题目中的等量关系:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a 、b 为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,依题意列方程组为:32172318x y x y +=⎧⎨+=⎩ 解得34x y =⎧⎨=⎩答:1辆A 型车辆装满货物一次可运3吨,1辆B 型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35。
人教版数学七年级下册单元培优练习试题:第八章《二元一次方程组》
单元培优练习题:《二元一次方程组》一.选择题1.下列各式:①②③④⑤⑥其中是二元一次方程组的有()A.3个B.4个C.5个D.6个2.如果二元一次方程组的解是二元一次方程3x+5y﹣8=0的一个解,那么a 的值()A.2 B.4 C.6 D.83.若方程组仅有一组解,则m的取值是()A.m可以取任何实数B.m≠C.m≠﹣D.以上均不对4.若关于x,y的二元一次方程组的解中x,y的和为12,则m的值为()A.10 B.15 C.20 D.255.已知关于x,y的方程组,给出下列结论:①是方程组的解;②当x=y时,a=﹣;③当a=﹣2时,x、y的值互为相反数其中正确的是()A.0个B.1个C.2个D.3个6.若是方程组的解,则a+b的值是()A.2 B.﹣2 C.1 D.﹣17.咖啡A与咖啡B以x:y之比(以质量计)混合,A的原价为50元/kg,B的原价为40元/kg.若A的价格增加10%,而B的价格减少15%,且混合咖啡每千克的价格不变,则x:y等于()A.2:3 B.5:6 C.6:5 D.3:28.某校初三年级有两个班,中考体育成绩优秀者共有45人;全年级的优秀率为45%,其中一班的优秀率为42%,二班的优秀率为48%;若设一、二班的人数各为x人和y人,则可得方程组为()A. B.C. D.9.把一张面值50元的人民币换成10元、5元的人民币,共有()A.4种换法B.5种换法C.6种换法D.7种换法10.一个两位数,用它的个位、十位上的两个数之和的3倍减去﹣2,仍得原数,这个两位数是()A.26 B.28 C.36 D.3811.一个十位数字为零的三位数,它恰好等于其各位数字和的m倍,交换它的个位数字与百位数字后所得到的新数又是其各位数字和的n倍,n的值是()A.99﹣m B.101﹣m C.100﹣m D.110﹣m12.某旅馆底层客房比二层客房少5间,某旅游团有48人,若全部安排住底层,每间住4人,房间不够;每间住5人,有的房间住不满.又若全部安排住二层,每间住3人,房间不够;每间住4人,有的房间没有住满.则这家旅馆的底层共有房间数为()A.9 B.10 C.11 D.12二.填空题13.二元一次方程2x+ay=7有一个解是,则a的值为.14.如图,把一个长26cm,宽14cm的长方形分成五块,其中两个大正方形和两个长方形分别全等.那么中间小正方形的面积是cm.15.关于x,y的二元一次方程组的解是正整数,则整数m值为.16.若关于x、y的二元一次方程组的解x、y互为相反数,则m=.17.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树棵.三.解答题18.解方程组(1)(2)19.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.20.已知关于x,y的方程组的解满足4x+y=3,求m的值.21.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒,现有正方形纸板300张,长方形纸板700张,若这些纸板恰好用完,则可做横式、竖式两种纸盒各多少个?22.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)该校打算通过“京东商城”网购20个A品牌的足球和3个B品牌的足球,“五一”期间商城打折促销,其中A品牌打八折,B品牌打九折,问:学校购买打折后的足球所花的费用比打折前节省了多少钱?参考答案一.选择题1.解:①未知数的最高次数是2次,不是二元一次方程组;②是二元一次方程组;③是二元一次方程组;④方程不是整式方程,故不是二元一次方程组;⑤是二元一次方程组;⑥是二元一次方程组.故选:B.2.解:,①×2﹣②得,y=﹣a,把y=﹣a代入①得,x=3a,∴方程组的解为:,把方程组的解代入3x+5y﹣8=0得,9a﹣5a﹣8=0,解得a=2.故选:A.3.解:,①×2﹣②×3得,(8+9m)x=0,当8+9m≠0时,方程有一个解,即m≠﹣时,方程有一个解,故选:C.4.解:,①×2﹣②×3得,y=6﹣m③,把③代入②得,x=2m﹣9,由题意得,6﹣m+2m﹣9=12,解得m=15.故选:B.5.解:①把代入方程组成立,故本项正确,②当x=y时,代入方程组,得a=﹣;故本项正确,③把a=﹣2代入方程组得,解得,故本项正确,故选:D.6.解:因为方程组的解为,所以把代入方程2x+(a﹣1)y=2,可得4+a﹣1=2,解得a=﹣1,把代入方程bx+y=1,可得2b+1=1,解得b=0,所以a+b=﹣1+0=﹣1,故选:D.7.解:根据题意得=化简得50x+40y=55x+34y∴x:y=6:5故选:C.8.解:设一、二班的人数各为x人和y人,根据题意得故选:B.9.解:设10元的数量为x,5元的数量为y.则10x+5y=50,(x≥0,y≥0),解得:,,,,,,共有6种换法.故选:C.10.解:设十位数字是a,个位数字是b3(a+b)﹣(﹣2)=10a+b7a=2b+2即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故选:A.11.解:设个位数字为x,百位数为y,根据题意得:,两方程相加,得101x+101y=(x+y)(m+n),解,得n=101﹣m.故选:B.12.解:设底层有x间房间,二层有y间房间.根据题意得:,解得:,∵y﹣x=5,且xy均为整数,∴只有当x=10,y=15时符合题意.所以这家旅馆的底层共有10间房间,故选:B.二.填空题(共5小题)13.解:把x=3,y=1代入方程2x+ay=7得:6+a=7,解得:a=1.故答案为:1.14.解:设大正方形的边长为xcm,设小正方形的边长为ycm,根据题意得:,解得:,故小正方形的面积=6×6=36(cm2).答案填:36.15.解:,①﹣②×2得:y=m﹣4,把y=m﹣4代入②得:x=6﹣m,∵x,y是正整数,∴,解得4<m<6,∵m是整数,∴m=5.故答案为:5.16.解:根据题意得:x+y=0,即y=﹣x,代入方程组得:,解得:,故答案:2.17.解:设道路一侧植树棵数为x棵,则=2+,解得x=180,实际在植树时,设甲在左侧植树的时长为y,则﹣5=,解得y=5,则丁植树的时长为=15,所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).故答案为:90.三.解答题(共5小题)18.解:(1),由①得:x=2y③,将③代入②,得 4y+3y=21,即y=3,将y=3 代入①,得x=6,∴方程组的解为;(2)将整理得:,①+②得:9a=18,∴a=2③,把③代入①得:3×2+2b=7,∴2b=1,∴b=,∴方程组的解为.19.解:设买鹅的人数有x人,则这头鹅价格为(9x﹣11)文,根据题意得:9x﹣11=6x+16,解得:x=9,价格为:9×9﹣11=70(文),答:买鹅的人数有9人,鹅的价格为70文.20.解:由题意可得,解得,将代入mx+(m﹣1)y=3,得m+(m﹣1)=3,解得.21.解:设可做横式纸盒x个,可做竖式纸盒y个,依题意有,解得.故可做横式纸盒100个,可做竖式纸盒100个.22.解:(1)设A品牌的足球的单价为x元/个,B品牌的足球的单价为y元/个,根据题意得:,解得:.答:A品牌的足球的单价为40元/个,B品牌的足球的单价为100元/个.(2)20×40×(1﹣0.8)+3×100×(1﹣0.9)=190(元).答:学校购买打折后的足球所花的费用比打折前节省了190元.。
七年级初一数学数学第八章 二元一次方程组的专项培优练习题(及答案
七年级初一数学数学第八章 二元一次方程组的专项培优练习题(及答案一、选择题1.同时适合方程2x+y=5和3x+2y=8的解是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .31x y ==-⎧⎨⎩2.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-3.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .254.若|321|0x y --=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩ 5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .4种B .5种C .6种D .7种 6.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( )A .351624x y x y +=⎧⎨=⎩B .35 2416x y x y +=⎧⎨=⎩C .35 16224x y x y +=⎧⎨=⨯⎩D .35 21624x y x y +=⎧⎨⨯=⎩7.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩ B .71x y =⎧⎨=-⎩ C . 3.50.5x y =⎧⎨=-⎩ D . 3.50.5x y =⎧⎨=⎩8.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( ) A .2,3 B .3,2 C .2,4 D .3,49.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.由方程组71x m y m+⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.13.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.14.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.15.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.16.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.17.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.18.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.19.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 20.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.22.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求s t的值. 23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若方程组的解x 、y 满足+x y >5,求k 的取值范围;(3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.25.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?26.计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择.【详解】解:方法一:把各个选项的答案依次代入,只有B答案适合方程组;方法二:由题意,得25, 328x yx y+=⎧⎨+⎩①=,②①×2-②得,x=2,代入①得,2×2+y=5,y=1故原方程组的解为2,1. xy=⎧⎨=⎩故选:B.【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.2.C解析:C【分析】将x看做常数移项求出y即可得.【详解】由2x-y=3知2x-3=y,即y=2x-3,故选C.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.3.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728 x yx y+=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.4.D解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.5.C解析:C【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C .【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.6.D解析:D【解析】【分析】首先设x 人生产螺栓,y 人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案.【详解】设x 人生产螺栓,y 人生产螺母刚好配套,据题意可得,3521624x y x y +=⎧⎨⨯=⎩. 故选:D.【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键.7.C解析:C【解析】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得.详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩. 故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.8.B解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值.【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩, 解得:23x y =⎧⎨=⎩, 将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩, 得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2.故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.9.A解析:A【分析】先根据代入消元法解方程组,然后判断即可;【详解】21x y y x +=⎧⎨=-⎩, 把1y x =-代入2x y +=中,得:12x x -+=, 解得:32x =, ∴31122y =-=, ∴点31,22⎛⎫ ⎪⎝⎭在第一象限. 故选A .【点睛】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键.10.A解析:A【分析】将第二个方程代入第一个方程消去m 即可得.【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a的值.【详解】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,设甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.13.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分, 由题意可得:5x+15y+40z=10(x ﹣3)+20(y ﹣2)+30(z ﹣1)①,z=y ﹣7 ②; 由①得:x+y ﹣2z=20 ③,将②代入③得:x+y ﹣2(y ﹣7)=20,解得:x ﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x ﹣3)﹣(y ﹣2)=(x ﹣y )﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.15.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
七年级数学(下)第八章《二元一次方程组》练习题含答案
七年级数学(下)第八章《二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式中是二元一次方程的是A.2x+y=6z B .1x+2=3y C .3x-2y=9 D.x-3=4y2【答案】C2.下列方程组中不是二元一次方程组的是A.34xy=⎧⎨=⎩B.303xx y-=⎧⎨+=⎩C.33xx yy=⎧⎪-=⎨⎪=⎩D.96x yx a+=⎧⎨+=⎩【答案】D【解析】经过观察后可发现,只有D选项有3个未知数,不符合二元一次方程组的定义.故选D.3.方程组233x yx y-=⎧⎨+=⎩的解是A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩【答案】B【解析】233x yx y-=⎧⎨+=⎩①②,①+②得:36x=,即2x=,把2x=代入①得:1y=,原方程组的解为:21xy=⎧⎨=⎩,故选B.4.若方程6kx-2y=8有一组解32xy=-⎧⎨=⎩,则k的值等于A.-16B.16C.23D.-23【答案】D【解析】把32x y =-⎧⎨=⎩代入6kx -2y =8得-18k -4=8,∴k =23-.故选D . 5.二元一次方程x +3y =10的非负整数解共有A .1对B .2对C .3对D .4对【答案】D【解析】∵x +3y =10,∴x =10-3y ,∵x 、y 都是非负整数,∴y =0时,x =10;y =1时,x =7;y =2时,x =4;y =3时,x =1.∴二元一次方程x +3y =10的非负整数解共有4对.故选D .6.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩【答案】B二、填空题:请将答案填在题中横线上.7.若33125m n x y ---=是二元一次方程,则m =__________,n =__________.【答案】43;2 【解析】∵33125m n xy ---=是二元一次方程,∴3m -3=1且n -1=1,解得:43m =,n =2. 故答案为:43;2. 8.若方程组的解为42x y ==⎧⎨⎩,则写出这个方程组为__________. 【答案】62x y x y +=-=⎧⎨⎩(答案不唯一) 【解析】此题是一个开放型的题,只要是符合一元二次方程组的概念即可,如:62x y x y +=-=⎧⎨⎩(答案不唯一).故答案为:62x y x y +=-=⎧⎨⎩(答案不唯一).9.若12x y =⎧⎨=⎩是方程x -my =1的一个解,则m =__________. 【答案】0【解析】将12x y =⎧⎨=⎩代入方程x -my =1中,得1-2m =1,解得m =0.故答案为:0. 10.写出一个未知数为a ,b 的二元一次方程组:__________.【答案】答案不唯一,如212a b a b +=⎧⎨-=⎩等 【解析】未知数为a ,b 的二元一次方程组答案不唯一,如212a b a b +=⎧⎨-=⎩等,故答案为:答案不唯一,如212a b a b +=⎧⎨-=⎩等. 11.二元一次方程2x +y =6的所有正整数解是__________.【答案】12122124x x y y ==⎧⎧⎨⎨==⎩⎩, 三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知方程(2m -6)x |m -2|+(n -2)23ny -=0是二元一次方程,求m ,n 的值. 【解析】根据题意,得2|2|131m n -=⎧⎨-=⎩,26020m n -≠⎧⎨-≠⎩, ∴m =1,n =-2.13.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚? (2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?【解析】(1)设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220 x yx y+=⎧⎨+=⎩,(2)设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.14.已知关于x,y的二元一次方程组+4=273ax yx by⎧⎨-=-⎩的解是12xy=⎧⎨=⎩,求(a+b)99的值.【解析】把12xy=⎧⎨=⎩代入二元一次方程组+4=273ax yx by⎧⎨-=-⎩得,422723ab+⨯=⎧⎨-=-⎩,解得65ab=-⎧⎨=⎩,∴(a+b)99=-1.15.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②,由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩,看错了方程②中的b,得到方程组的解为54xy=⎧⎨=⎩,计算201820191()10a b+-的值.【解析】根据题意把31xy=-⎧⎨=-⎩代入4x-by=-2,得-12+b=-2,解得:b=10,把54xy=⎧⎨=⎩代入ax+5y=15,得5a+20=15,解得a=-1,所以a2018+(-110b)2019=(-1)2018+(-110×10)2019=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年七年级数学下册二元一次方程组应用题培优练习
1.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本则还缺25本.这个班有多少学生?
2.甲、乙两地火车线路比汽车线路长30千米,汽车从甲地先开出,速度为40千米/时,开出半小时后,火车也从甲地开出,速度为60千米/时,结果汽车仅比火车晚1小时到达乙地,求甲、乙两地的火车与汽车线路长.
3.请你根据王老师所给的内容,完成下列各小题:
(1)如果x=-5,2⊙4=-8,求y的值;
(2)若1⊙1=8,4⊙=20,求x,y的值.
4.某商店出售的某种茶壶每只定价20元,茶杯每只3元,该商店在营销淡季规定一项优惠方法,即买一只茶壶赠送一只茶杯.某顾客花了170元,买回茶壶和茶杯一共38只,问该顾客买回茶壶和茶杯各多少只?
5.一列快车长70米,慢车长80米.若两车同向而行,快车从追上慢车到完全离开慢车所用的时间为20秒;若两车相向而行,则两车从相遇到离开所用的时间为4秒.求两车每小时各行多少千米?
6.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去租用这两种货车情况如下:
第一次第二次
甲种货车数量2辆5辆
乙种货车数量3辆6辆
累计运货重量14吨32吨
(1
(2)现在租用该公司5辆甲货车和7辆乙货车一次刚好运完这批货物,如果按每吨付费50元计算,货主应付运费多少元?
7.根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;
(2)如果要使水面上升到50cm,应放入大球、小球各多少个?
8.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?
9.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:
根据对话中的信息,请你求出小伙伴们的人数.
10.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),
规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?
11.某工程队承包了一段全长1957米的隧道工程,甲乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲乙两组共掘进57米,那么甲乙两个班组平均每天各掘进多少米?
12.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:
李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”
小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”
根据以上对话,解答下列问题:
(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?
(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?
13.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.
妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”;
爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”;
小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”
请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).
14.大学生小王积极相应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电,通过试营销
发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间满足等式y=ax+b,其中a、b为常数.
(1)根据图中提供的信息,求a、b的值;
(2)求销售该款家电120件时所获利润是多少?(提示:利润=实际售价﹣进价)
15.为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:
如果两所学校分别单独购买服装,一共应付5 000元.
(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?
(2)甲、乙两校各有多少学生准备参加演出?
(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.
参考答案
1.略
2.解:设汽车线路x千米,火车线路y 千米.
则,解得:,答:汽车线路240千米,火车线路270千米.
3.
4.答案为:茶壶4只,茶杯34只.
5.答案为:快车81千米/时,慢车54千米/时.
6.解:(1)甲车载重4吨,乙车载重2吨;(2)应付1700元.
7.略
8.解:设这两种饮料在调价前每瓶各x元、y元,
根据题意得:解得:
答:调价前这种碳酸饮料每瓶的价格为3元,这种果汁饮料每瓶的价格为4元.
9.略
10.解:设第一阶梯电价每度x元,第二阶梯电价每度y元,
由题意可得,,解得.
答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.
11.解:设甲班平均每天掘进x米、乙班平均每天掘进y米,根据题意,得
,解之,得:,答:甲、乙两个班组平均每天分别掘进5米、4.5米.12.解:(1)设平安公司60座和45座客车每天每辆的租金分别为x元,y元.
由题意,列方程组
200
425000
x y
x y
-=
⎧
⎨
+=
⎩
,
.
解之得
900
700.
x
y
=
⎧
⎨
=
⎩
,
(2)九年级师生共需租金:590017005200
⨯+⨯=(元)
13.略
14.解:(1)由题意列方程组,解得:.答:a=﹣4,b=360.(2)当y=120,a=﹣4,b=360代入y=ax+b得:x=60.
故所获利润为:(60﹣40)×120=2400元.
答:销售该款小家电120件时所获利润是2400元.
15.解:(1)5 000-92×40=1 320(元).
答:两所学校联合起来购买服装比各自购买服装共可以节省1 320元.
(2)设甲、乙两所学校各有x名、y名学生准备参加演出,由题意,得x+y=92,50x+60y=5000. 解得x=52,y=40.答:甲、乙两校各有52名、40名学生准备参加演出.
(3)∵甲校有10人不能参加演出,∴甲校参加演出的人数为52-10=42(人).
若两校联合购买服装,则需要50×(42+40)=4 100(元),
此时比各自购买服装可以节约(42+40)×60-4 100=820(元).
但如果两校联合购买91套服装,只需40×91=3 640(元),
此时又比联合购买服装可节约4 100-3 640=460(元),
因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购9套).。