实验四 溶解热的测定

合集下载

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定_KCl、KNO3实验报告:溶解热的测定——KCl、KNO3一、实验目的1.学习和掌握溶解热测定的原理和方法。

2.通过实验测定KCl和KNO3在水中溶解的热效应。

3.比较相同浓度下KCl和KNO3的溶解热效应差异。

二、实验原理溶解热是指物质在溶解过程中所伴随的热量变化。

当物质溶解时,其分子或离子会从固态或晶体状态分散到溶剂中,这一过程通常会吸收或释放热量。

溶解热的测定有助于了解物质溶解过程中的热力学性质。

溶解热的测定通常采用量热计进行。

量热计可以准确地测量溶液温度的变化,并以此来计算溶解热。

根据Arrhenius公式,溶解热与温度有关,因此,通过测量不同温度下的溶解热,可以评估温度对物质溶解热效应的影响。

三、实验步骤1.准备实验器材:500ml烧杯、电子天平、量筒、水浴锅、保温杯、恒温水浴、热量计等。

2.配制KCl和KNO3的饱和溶液:分别称取适量KCl和KNO3固体,加入烧杯中,再加入适量去离子水,搅拌至固体完全溶解,得到饱和溶液。

3.测量溶解热:将保温杯中的去离子水倒入量热计中,插入电子天平,记录初始温度T1。

分别将KCl和KNO3的饱和溶液倒入量热计中,记录溶解后的温度T2。

根据温度差和水的质量,计算溶解热。

4.重复测量:为了确保实验结果的准确性,可以重复以上步骤几次,每次测量不同的浓度。

5.数据处理和分析:整理实验数据,根据溶解热的计算公式,比较相同浓度下KCl和KNO3的溶解热效应差异。

四、实验结果与讨论1.实验数据:以下是实验测定的KCl和KNO3在水中溶解的热效应数据。

2.结果分析:从上表可以看出,相同浓度下,KCl的溶解热效应比KNO3高。

随着浓度的增加,两种物质的溶解热效应都逐渐增大。

这表明在溶解过程中,KCl分子或离子从固体分散到水中的吸热过程比KNO3更为显著。

此外,KCl和KNO3的溶解热效应与Arrhenius公式中的常数相关联,这意味着溶解热的温度依赖性较强。

实验四 溶解热的测定

实验四  溶解热的测定

实验四溶解热的测定一、实验目的1.用电热补偿法测定KNO3在不同浓度水溶液中的积分溶解热。

2.用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热。

二、预习要求1.复习溶解过程热效应的几个基本概念。

2.掌握电热补偿法测定热效应的基本原理。

3.了解如何从实验所得数据求KNO3的积分溶解热及其它三种热效应。

4.了解影响本实验结果的因素有那些。

三、实验原理1.在热化学中,关于溶解过程的热效应,引进下列几个基本概念。

溶解热在恒温恒压下,n2摩尔溶质溶于n1摩尔溶剂(或溶于某浓度的溶液)中产生的热效应,用Q表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。

积分溶解热在恒温恒压下,一摩尔溶质溶于n0摩尔溶剂中产生的热效应,用Q s表示。

微分溶解热在恒温恒压下,一摩尔溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以表示,简写为。

冲淡热在恒温恒压下,一摩尔溶剂加到某浓度的溶液中使之冲淡所产生的热效应。

冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。

积分冲淡热在恒温恒压下,把原含一摩尔溶质及n01摩尔溶剂的溶液冲淡到含溶剂为n02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以Qd表示。

微分冲淡热在恒温恒压下,一摩尔溶剂加入某一确定浓度的无限量的溶液中产生的热效应,以表示,简写为。

2.积分溶解热(Q S)可由实验直接测定,其它三种热效应则通过Q S—n0曲线求得。

设纯溶剂和纯溶质的摩尔焓分别为H m(1)和H m(2),当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为H1,m和H2,m,对于由n1摩尔溶剂和n2摩尔溶质组成的体系,在溶解前体系总焓为H。

H=n1H m(1)+n2H m(2) (1)设溶液的焓为H′,H′=n1H1,m+n2H2,m (2)因此溶解过程热效应Q为Q =Δmix H=H - H= n1[H1。

m –H m(1)]+n2[H2,m–H m(2)]=n1Δmix H m(1)+n2Δmix H m(2) (3)(3)式中,Δmix H m (1)为微分冲淡热,Δmix H m (2)为微分溶解热。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告实验目的,通过本实验,我们旨在通过测定物质的溶解热来探究其热力学性质,并通过实验数据的分析,掌握溶解热的测定方法和步骤。

实验仪器与试剂,实验仪器包括热量计、热量计杯、电磁搅拌器、温度计等;实验试剂为待测物质和溶剂。

实验原理,在本实验中,我们将待测物质与溶剂混合,并通过测定混合物的温度变化来计算溶解热。

根据热力学原理,当物质溶解时,会吸收或释放一定量的热量,而溶解热则是单位物质在溶解过程中吸收或释放的热量。

实验步骤:1. 将热量计杯置于热量计中,加入一定量的溶剂,并记录溶剂的初始温度。

2. 将待测物质加入热量计杯中,并迅速搅拌均匀,记录混合物的最终温度。

3. 根据温度变化和溶剂的热容量,计算出溶解热的值。

实验数据处理:根据实验数据和原理公式,我们可以计算出待测物质的溶解热。

在实验中,我们需要注意控制实验条件,确保实验数据的准确性和可靠性。

同时,还需要进行数据处理和分析,得出溶解热的准确数值。

实验结果与讨论:通过实验数据处理,我们得到了待测物质的溶解热值,并对实验结果进行了讨论和分析。

在讨论中,我们可以比较不同物质的溶解热值,探讨其在热力学上的差异和特点,从而加深对溶解热的理解。

结论:在本次实验中,我们成功测定了待测物质的溶解热,并通过数据分析得出了准确的结果。

通过本实验,我们对溶解热的测定方法和步骤有了更深入的了解,为进一步研究物质的热力学性质奠定了基础。

总结,通过本次实验,我们不仅学习了溶解热的测定方法和步骤,还掌握了实验数据处理和分析的技巧。

实验中的经验和收获将对我们今后的实验和研究工作产生积极的影响。

同时,我们也意识到在实验中需要严格控制实验条件,确保实验数据的准确性和可靠性。

致谢,在此,特别感谢实验指导老师对我们实验过程中的指导和帮助,以及实验室工作人员对实验设备和试剂的准备工作。

同时也感谢实验小组成员的合作和努力,共同完成了本次实验。

参考文献:1. 《物理化学实验指导》,XXX,XXX出版社,201X年。

溶解热的测定

溶解热的测定

溶解热的测定一、 实验目的1、掌握溶解热的测定方法。

2、学习量热计的使用方法。

二、实验原理一定量的溶质溶解时产生的热效应与温度、压力和溶剂量有关,它随溶剂量的增加而增加,逐渐趋近一常数。

在25℃一大气压下一摩尔物质形成无限稀溶液时所产生的热效应叫摩尔溶解热。

溶解终了时正好形成饱和溶液则应注明“饱和溶液”溶解热。

通常盐类在水中溶解的摩尔比达1:300时、溶解热即趋于极值。

盐在水中溶解的过程可分为两步,即晶格的破环和离子的溶剂化。

前者为吸热过程;后者为放热过程。

总的能量得失决定溶解过程是吸热,还是放热。

即决定ΔH 是正值还是负值。

在计算溶液中进行的反应的热效应时各作用物和产物的溶解热同燃烧热、生成热一样,也是必要的热化学根据。

当实验在定压下,只作膨胀功的绝热体系中进行时,体系的总焓保持不变,根据热平衡原理,即可计算过程所涉及的热效应。

我们把保温瓶做成的量热计看成绝热体系,当把某种盐溶于瓶内一定量的水中时,可列出如下的热平衡式:gtM ]k gC GC [(H 21∆++-=∆溶解式中:ΔH 溶解—盐在溶液温度和浓度下的积分溶解热; G —水重量(克) C 1—水的比热(卡/克度) g —溶质重量(克) C 2—溶质的比热(卡/克度) M —溶质的分子量Δt —溶解过程的真实温差 K —量热计的热容实验测得G 、g 、Δt 、K 后即可按上式算出溶解热ΔH 。

三、仪器和药品1000毫升广口保温瓶 1个 精密温度计 1支 玻璃搅拌器 1支 100毫升移液管 1支 电吹风 1个氯化钾、硝酸钾、酒精 四、实验步骤量热计热容的测定:1、本实验采用已知氯化钾在水中的溶解热来标定量热计热容(不同温度下一摩尔氯化钾溶于200摩尔水中的积分溶解热)。

将干洁的保温瓶、温度计及搅拌器按图2-1装好,用移液管量取100毫升蒸馏水,经塞子上小孔注入瓶内,塞好小孔,准确测定水的温度(每隔30秒读一次,共读8次)打开塞子迅速将已称好的KC1(6.000克)倒入量热计内盖好塞子,立即搅拌,继续每隔30秒读一次温度,至温度不再下降,再读8次即可停止。

物化实验报告溶解热的测定

物化实验报告溶解热的测定

物化实验报告-溶解热的测定一、实验目的本实验旨在通过科学的测定方法,准确地得到溶解热数据,进一步理解溶解热现象和物质溶解过程中的热力学性质。

二、实验原理溶解热是指一定温度下,一定量的溶剂中溶质溶解时所需的热量。

通过测量溶解热,可以了解溶质和溶剂之间的相互作用、溶解过程的动力学性质等。

溶解热的测定有助于我们深入理解溶解现象和溶液的热力学性质。

本实验采用综合量热法测定溶解热。

综合量热法是一种通过测量热量和温度变化来确定溶解热的实验方法。

在实验过程中,需要精确控制温度变化和溶液浓度等因素,以减小误差。

三、实验步骤1.准备实验器材:恒温水浴、量热计、搅拌器、称量纸、电子天平、保温杯、热水浴、计时器等。

2.配制一定浓度的溶质溶液:用称量纸称取一定质量的溶质,加入热水浴中搅拌均匀,冷却至室温。

3.将量热计和保温杯放入恒温水浴中,确保其处于稳定状态。

4.将配制好的溶质溶液倒入保温杯中,记录初始温度T1。

5.开启搅拌器,将保温杯置于恒温水浴中,记录最终温度T2。

6.测量此过程中溶液的体积变化ΔV,计算溶液的密度ρ=m/ΔV(m为溶质的质量)。

7.根据综合量热法公式计算溶解热ΔH:ΔH = cm(T2-T1) +mΔTc·ΔV/ΔV·m·c·ΔT (c为水的比热容,m为溶质的质量,ΔTc为溶液的密度变化)。

四、实验数据分析通过本次实验,我们得到了一系列溶质的溶解热数据。

从数据中可以看出,不同溶质具有不同的溶解热。

这些数据有助于我们深入理解溶解现象和物质溶解过程中的热力学性质。

溶解热在化学、物理、生物等许多领域都有重要应用,例如化学反应过程的动力学分析、生物大分子的溶液性质研究等。

本实验方法具有较高的精度和可靠性,为后续相关领域的研究提供了有价值的参考数据。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热测定姓名 学号 班级 实验日期1 实验目的(1)了解电热补偿法测定热效应的基本原理。

(2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。

(3)掌握用微机采集数据、处理数据的实验方法和实验技术。

2 实验原理溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。

积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。

用s Q 表示。

微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以12nn Q ⎪⎪⎭⎫⎝⎛∂∂表示。

冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。

积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。

微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以21n n Q ⎪⎪⎭⎫⎝⎛∂∂或20n s n Q ⎪⎪⎭⎫ ⎝⎛∂∂表示。

它们之间关系可表示为:s Q n Q =2 令021n n n= 21002n s n s n Q n n Q Q ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= ()()0201n s n s d Q Q Q -=积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热(即OC )。

显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。

欲求溶解过程的各种热效应,应测定各种浓度下的摩尔积分溶解热。

实验中采用累加的方法,先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据先后加入溶质总量可求出,各次热效应总和即为该浓度下的溶解热。

溶解热的测定实验操作流程

溶解热的测定实验操作流程

溶解热的测定实验操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!溶解热的测定实验操作流程如下:1. 准备实验仪器和药品:量热计、温度计、搅拌器、电子天平、硝酸钾(分析纯)、蒸馏水等。

物理化学实验溶解热的测定实验报告

物理化学实验溶解热的测定实验报告

物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。

2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。

3.掌握电热补偿法的仪器使用要点。

二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。

它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。

前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。

后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。

即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。

它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。

前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。

表示,显然。

后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。

2.药品:硝酸钾(分析纯)。

四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告实验目的:本实验旨在通过测定溶解热的方法,探究溶解过程中的能量变化,并了解溶解过程中的吸热或放热现象。

实验仪器:热量计、电子天平、恒温槽、烧杯、玻璃棒等。

实验原理:溶解热是指单位物质在吸热或放热下完全溶解所需吸收或放出的热量。

根据热力学第一定律,物质溶解时需要吸收热量应与物质溶解时释放的热量之和相等。

实验中,我们可以通过热量计来测定单位物质溶解时所吸收的热量,从而得到溶解热。

实验步骤:1.首先,在恒温槽中预先调节溶液的温度,使其保持恒定。

2.称取一定质量的物质(例如NaCl)放入烧杯中,并记录其质量。

3.将烧杯放入恒温槽中,使溶液与温度恒定的介质充分接触,等待溶解过程完成。

4.测量热量计中的温度变化,并记录下来。

5.从热量计的示数中计算出所吸收或放出的热量。

实验结果:通过实验测得,以1g的物质溶解过程中吸热量为Q(J),则单位质量物质的溶解热即为ΔH = Q/m (J/g),其中m为物质的质量。

实验讨论:1.根据实验数据,我们可以推断溶解过程中的溶解热是吸热还是放热的。

如果测得的热量为正值,则说明溶解过程为吸热过程;如果热量为负值,则说明溶解过程为放热过程。

2.溶解热与物质之间的相互作用力有关,较强的相互作用力导致溶解热较大的正值,而较弱的相互作用力则导致溶解热为负值。

3.实验中,我们可以选择不同的物质进行测定,比较它们的溶解热大小,从中探究物质溶解过程中的相互作用力的差异。

4.溶解热的测定还可以应用于其他领域,如药物研发、化工工艺等。

了解和掌握物质的溶解热有助于优化工艺和提高效率。

实验结论:通过本实验的测定,我们可以得到不同物质的溶解热,从中了解物质溶解过程中的能量变化。

实验中使用的测定方法能够较准确地获得溶解热的数值,为后续研究和应用提供了基础。

研究溶解热有助于深入了解物质溶解过程中的能量变化与物质特性之间的关系,进一步推动相关领域的发展和创新。

实验四 溶解热的测定实验报告

实验四 溶解热的测定实验报告

实验四 溶解热的测定【摘要】本文的目的是了解电热热补偿法测定热效应的基本原理,并掌握测温量热的基本原理和测量方法。

采用雷诺图解法及量热法,测定了KNO 3在水中的溶解热。

实验结果表明,实验结果表明KNO 3在水中的积分溶解热为52688.865J mol ⁄;结果说明实验误差为34.89%,误差较大。

【前言】物质溶解于溶剂过程的热效应称为溶解热。

溶解热可进:.步划分为积分溶解热和微分溶解热两种。

(前者是指在恒温恒压下,1 mol 溶质溶于n 0mol 溶剂中产生的热效应,用Q s 表示后者是指在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中所产生的热效应,在溶解过程中溶液浓度可视为不变,可以将其用符号(∂Q ∂n ⁄)T,p,n 0表示。

本实验测定硝酸钾溶解于水中时的积分溶解热。

水中溶解硝酸钾是一个溶解过程中温度会逐渐降低的吸热过程,故该实验采用电热补偿法进行测定。

实验装置如下图所示:溶解热实验装置即先测定体系的起始温度T,溶解过程中体系温度会随溶解过程的进行而降低,再用电加热法使体系升温至起始温度,根据所消耗电能求出溶解过程的热效应Q 。

溶解过程和电加热过程均在杜瓦瓶中进行,可近似地将体系看成是绝热体系,此时电加热产生的热效应等于体系的热容与温度的乘积,即:Q =UIt =C 体∆T 1其中,I 为电流强度(A);U 为电阻丝两端所施加的电压(V);t 为通电时间(s)s ;C 体为体系的热容; ∆T 1为电加热导致的温度升高值。

通过上式可标定出体系的热容C 体。

同理,测定因加入硝酸钾面导致的温度降低值∆T 2,即可求出KNO 3的积分溶解热。

m KNO 3M KNO 3Q s=C 体∆T 2其中,,m KNO3和M KNO3分别为确酸钾的质量和原尔质量, ∆T2为加人KNO3而引起的温度的降低值。

整个过程中体系和环境必然有少许的热量交换.故为了减小误差,需要对温差进行雷诺图法校正。

试验四溶解热的测定

试验四溶解热的测定

实验四 溶解热的测定一 实验目的1. 了解测定溶解热的基本原理2. 掌握量热法的测量技术3. 测定KNO 3 二 实验原理的积分溶解热 物质溶于溶剂时,常伴随着热效应产生。

经研究表明,温度、压力以及溶质和溶剂的性质、用量都对热效应有影响。

物质溶解过程,常包括溶质晶格的破坏和分子或离子的溶剂化作用。

一般晶格的破坏为吸热过程,溶剂化作用为放热过程。

总的热效应由两个过程的热量相对大小决定。

溶解热分为积分溶解热和微分溶解热,积分溶解热是在标准压力和一定温度下,1摩尔溶质溶于一定量的溶剂中所产生的热效应。

微分溶解热是在标准压力和一定温度下,1摩尔溶质溶于大量某浓度的溶液中所产生的热效应。

本实验测定的是积分溶解热。

测定积分溶解热是在绝热的量热计(杜瓦瓶)中进行。

首先标定量热系统的热容(指量热计和溶液温度升高1开所吸收的热量,单位为J ·K -1)。

将某温度下已知积分溶解热的标准物质KCI 加入量热计中溶解,用贝克曼温度计测量溶解前后量热系统的温度,并用雷诺作图法求出真实温度差△T s ,若系统的绝热性能很好,而且搅拌热可忽略时,由热力学第一定律可得如下公式:ss M m ·θs H ∆+C·△T s ss s s T H M m C ∆∆⋅−=0=0 (4-1)(4-2) 式中s m 、s M 分别为标准物质即KCI 的质量和摩尔质量,θs H ∆为标准压力和一定温度下1摩尔KCI 溶于200摩尔水中的积分溶解热(不同温度下KCI 积分溶解热见附表)。

△T s MmT C H ⋅∆⋅−=∆0溶为KCI 溶解前后温度变化值。

其次测待测物质的积分溶解热.若待测物质的质量为m ,摩尔质量为M 。

溶解前后温度变化△T ,则由(4-2)式得待测物质积分溶解热:(4-3) 必须指出,上述计算中包含了水溶液的热容都相同的假设条件。

三 仪器与药品测温量热计(保温瓶、贝克曼温度计、电动搅拌机各一个) 1套 秒表 1块 台称和分析天平各 1台 放大镜 1 个 1000 ml 容量瓶 1个 分析纯 KCI 和KNO 1.实验前准备3 四 实验步骤⑴ 称量KCI :把KCI 研磨成细小颗粒,按1摩尔KCI 与200摩尔水的比例称量(准确到0.001克)。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是描述物质在溶解过程中吸热或放热的能力,是化学中一个重要的热力学参数。

本实验旨在通过测定溶解过程中吸热或放热的变化,来确定溶解热的大小。

实验步骤:1. 实验前准备:准备好所需的实验器材和试剂,包括量热器、电子天平、试管、溶液A和溶液B。

2. 量取溶液A:使用电子天平准确称取一定质量的溶液A,并记录下质量。

3. 量取溶液B:同样使用电子天平准确称取一定质量的溶液B,并记录下质量。

4. 混合溶液A和溶液B:将溶液A和溶液B倒入量热器中,并迅速搅拌均匀。

5. 记录温度变化:使用温度计记录混合溶液的初始温度,并随着时间的推移,记录下一系列温度变化。

6. 分析数据:根据温度变化曲线,计算出溶解过程中吸热或放热的大小。

实验结果与讨论:根据实验数据,我们可以绘制出溶解过程中温度变化的曲线。

在溶解过程开始时,温度会有所下降,这是因为溶解过程吸热作用的结果。

随着溶解的进行,温度逐渐上升,直至达到最高点。

这是因为溶解过程中吸热作用逐渐被平衡,导致温度升高。

最终,温度趋于稳定,说明溶解过程已经完成。

根据实验数据和温度变化曲线,我们可以计算出溶解热的大小。

溶解热的计算公式为:溶解热 = (溶液A的质量 + 溶液B的质量) × (最终温度 - 初始温度)通过实验数据的处理,我们可以得出溶解热的数值。

这个数值反映了溶解过程中吸热或放热的大小,可以用来比较不同物质的溶解热性质。

实验误差分析:在实验过程中,可能会存在一些误差,影响到实验结果的准确性。

例如,实验时温度计的读数可能存在一定的误差,称取溶液的质量也可能存在一定的误差。

这些误差会对最终计算出的溶解热数值产生一定的影响。

为了减小误差的影响,我们可以采取一些措施。

例如,使用更精确的温度计来测量温度变化;在称取溶液质量时,使用更准确的电子天平,并进行多次称量取平均值。

这些措施可以提高实验数据的准确性,减小误差的影响。

物理化学实验报告 溶解热的测定

物理化学实验报告 溶解热的测定

物理化学实验报告溶解热的测定
溶解热的测定
溶解热是专指溶质在一定压力下从固体形态转变为液体形态时,其能量所耗费的热量大小,也就是说溶解过程中溶液所吸收或释放的热量。

本次实验以NaCl为溶质,采用盐酸与碳酸钠溶液混合液体的方式,来测定它在溶解过程中的溶解热。

实验环境、设备及试剂
本实验室使用的温度测定设备为“风冷式热量卡尔托热量计”,溶质的试剂为氯化钠。

实验步骤
1、将极为准确的容器(用于测量热量变化的容器)放入温度计中;
2、调整温度计,将温度稳定在25℃;
3、将已称重好的氯化钠放入容器,记录初始温度StartT;
4、将试剂温度均匀上升到150-170℃后,搅拌均匀,等待20秒左右;
5、读取上升后的终止温度EndT;
6、计算溶解热: Q = 60 * EndT - 60 * StartT,单位为J / mol。

实验结果与分析
本次实验的初始温度StartT=25℃,上升后的终止温度EndT=90℃,溶解热Q=60* EndT - 60 *StartT=18000 J/mol,在实验室配置的误差范围内,结果合格。

结论
本次实验中使用盐酸与碳酸钠混合液体的溶液,测定了溶质NaCl的溶解热,结果为18000 J/mol,在实验室配置的误差范围内,结果合格。

热学实验4 混合量热法测冰的溶解热

热学实验4 混合量热法测冰的溶解热

实验四用混合量热法测定冰的熔解热熔解是晶体物质从固态向液态转化的相变过程。

一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。

对于晶体而言,熔解是组成物质的晶粒由规则排列向不规则排列转变的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。

单位质量的某种物质晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。

【实验目的】1.正确使用物理天平、量热器和温度计;2.用混合量热法测定冰的熔解热;3.实验中学习如何正确选取参量;4.学会一种粗略修正散热的方法——抵偿法【实验仪器和用具】量热器、温度计(0℃~50.00℃及0℃~100.0℃各一只)、物理天平(或电子天平)、电子表、量筒、烧杯、干拭布、冰及热水等。

2212211))(.91(1CT T T V m C m C Cm ML --+++=(3-2) 由于量热器的绝热条件并不十分完善,实际实验系统并非严格的孤立系统,所以在做精密测量 时,就需设法求出实验过程中系统与外界交换的热量,以作适当的散热修正。

本实验介绍一种粗略散热修正及所谓的补偿法。

其依据是牛顿冷却定律。

当系统的温度T 高于环境温度θ时,它就要散失热量。

实验证明:当温差较小(一般不超过10℃-15℃)时,(非自然对流)系统的散热速率与温度差成正比。

此即牛顿冷却定律:)(θ--=T k dtdq(3-4) 其中,dq 表dt 时间内系统与外界交换的热量。

比例系数k 为一个与系统表面积成正比并随表面 辐射本领而变的常数,称为散热常数。

其物理意义为:单位温差下,单位时间的热量损失。

负号的意义表示当系统温度高于环境温度时散失热量,即:θ〉T 时,0〉dtdq,系统向外界散热;反之,0〈dtdq,系统从外界吸热。

在实验过程中,如果恰当地将系统 的初温和末温分别选择在室温的两侧,即:21T T 〉〉θ,并设法使整个实验过程中系统与外界的热量 传递前后相互抵消,则可以达到散热修正的目的。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时释放或吸收的热量。

它是研究溶解过程中能量变化的重要参数之一,对于了解溶解过程的热力学性质具有重要意义。

本实验旨在通过测定溶解热的方法,探究不同物质的溶解过程中的热力学特性。

实验部分:1. 实验原理:溶解热的测定可以通过定容热量计的方法进行。

在实验中,我们使用了恒温水浴槽来保持溶剂和溶质的温度稳定。

通过测量在溶解过程中溶液的温度变化,可以计算出溶解热的值。

2. 实验仪器和试剂:实验仪器:定容热量计、恒温水浴槽、温度计。

试剂:硫酸铜、氯化钠、氯化铵。

3. 实验步骤:(1)将定容热量计清洗干净,并用去离子水冲洗干净。

(2)将一定质量的溶质加入定容热量计中,记录下溶质的质量。

(3)将一定体积的溶剂加入定容热量计中,记录下溶剂的体积。

(4)将定容热量计放入恒温水浴槽中,使溶液温度达到恒定值。

(5)记录下溶液的初始温度。

(6)迅速将溶质加入到溶剂中,同时用玻璃棒搅拌均匀。

(7)记录下溶液的最高温度。

(8)根据实验数据计算出溶解热的值。

结果与讨论:通过实验测得的溶解热值如下:硫酸铜:-36.2 kJ/mol氯化钠:3.9 kJ/mol氯化铵:14.5 kJ/mol根据实验结果可以得出以下结论:1. 硫酸铜的溶解过程是吸热反应,即溶解热为负值。

这是因为在溶解过程中,硫酸铜与水发生了吸热反应,吸收了周围环境的热量。

2. 氯化钠的溶解过程是放热反应,即溶解热为正值。

这是因为在溶解过程中,氯化钠与水发生了放热反应,释放了热量。

3. 氯化铵的溶解过程是放热反应,即溶解热为正值。

这是因为在溶解过程中,氯化铵与水发生了放热反应,释放了热量。

实验中的误差主要来自于以下几个方面:1. 实验仪器的精确度:定容热量计和温度计的精确度会对实验结果产生影响。

在实验中,我们尽量选择精确度较高的仪器,以减小误差。

2. 实验操作的准确性:在实验过程中,对溶质和溶剂的质量和体积的测量需要准确无误,任何误差都会对最终结果产生影响。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告实验名称:溶解热的测定实验目的:1. 学习并掌握溶解热的测定方法;2. 进一步理解溶解热的概念;3. 测定一种化合物的溶解热,并比较其与理论值的偏差。

实验原理:溶解热是指在恒定压力下,将一摩尔物质溶解在溶剂中时吸收或放出的热量。

溶解热的测定方法有多种,其中较为常用的是恒定温度法。

该方法利用两个等温反应容器,一个装有溶质的溶液,在反应过程中吸收热量,另一个装有纯溶剂,在反应过程中略有温度下降。

通过测量两个容器的温度变化,即可计算出溶解热的大小。

实验器材和试剂:1. 等温反应容器(两个);2. 实验电热器;3. 电器控温仪;4. 温度计;5. 秤;6. 纯净水、硫酸钠等试剂。

实验步骤:1. 准备两个等温反应容器,称量一定质量的溶质(如硫酸钠)和纯溶剂(如纯净水)分别装入两个反应容器中,记录质量。

2. 将两个反应容器放在温度控制仪电热器上,用温度控制仪保持两个容器的温度恒定,并且两个容器的压力相同。

3. 开始实验,先加热纯溶剂容器至一定温度,并记录温度为T1。

4. 同时,将溶质溶液容器中的溶质加入纯溶剂容器中,并将溶液充分搅拌,观察溶质的溶解过程。

5. 实验结束后,记录溶剂容器温度为T2。

6. 计算溶解热的大小,使用以下公式:Q = m × C × ΔT其中,Q为溶解热,m为溶质的质量,C为溶液的比热容,ΔT为溶剂容器温度降低值(T1-T2)。

注意事项:1. 操作时要小心,避免烫伤。

2. 实验过程中要确保两个反应容器的温度和压力相同,以保证测量结果的准确性。

3. 确保使用的溶剂和溶质的纯度,以免影响实验结果。

实验结果:根据实验测得的数据,计算得到溶解热的大小,与理论值进行对比,计算偏差。

实验结论:根据实验结果可以得出溶解热的大小,并与理论值进行比较,判断实验结果的准确性,评估实验的可靠性。

根据实验结果分析可能存在的误差来源,并提出改进方案。

溶解热的测定 实验报告

溶解热的测定 实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时所吸收或释放的热量。

它是研究溶解过程的重要参数,对于了解溶解动力学和热力学性质具有重要意义。

本实验旨在通过测定溶解过程中的温度变化,来计算溶解热。

实验步骤:1. 实验前准备:准备所需的实验器材和试剂,包括烧杯、温度计、搅拌棒、电子天平、蒸馏水等。

2. 实验操作:a. 将一定质量的溶质加入烧杯中,并记录其质量。

b. 向烧杯中加入一定量的溶剂,并用搅拌棒搅拌均匀。

c. 在溶解过程中,用温度计测量溶液的温度变化,并记录下来。

d. 根据温度变化曲线计算溶解热。

实验结果与数据处理:在实验中,我们选择了无水乙醇作为溶剂,将一定质量的氯化钠溶解其中。

实验过程中,我们记录下了溶液的质量、溶解过程中的温度变化,并绘制了温度变化曲线。

根据实验数据,我们可以使用以下公式计算溶解热(ΔH):ΔH = q / m其中,q为溶解过程中吸收或释放的热量,m为溶质的质量。

通过实验测得的数据和计算,我们得到了氯化钠的溶解热为X kJ/mol。

这个结果与文献值进行对比后,发现两者相差不大,说明实验结果较为准确。

讨论与分析:在实验过程中,我们注意到溶解过程中的温度变化曲线呈现出两个阶段。

在溶解开始时,温度下降较快,后期则趋于平稳。

这是因为溶解过程中吸收了大量的热量,导致温度下降。

随着溶解的进行,溶质与溶剂之间的相互作用力逐渐增强,温度变化逐渐减小,最终趋于稳定。

实验中可能存在的误差主要来自以下几个方面:1. 实验器材的误差:包括温度计的精度、烧杯的热容等。

2. 操作误差:在溶解过程中,温度的测量和记录可能存在一定的误差。

3. 环境误差:实验室环境的温度变化等因素也可能对实验结果产生一定的影响。

为了减小误差,我们可以采取以下措施:1. 使用精确度较高的实验器材和仪器,确保测量的准确性。

2. 在实验过程中,尽量减小外界环境对实验的干扰,例如控制实验室的温度稳定。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告一、实验目的1、掌握量热法测定物质溶解热的原理和方法。

2、了解温度和浓度对溶解热的影响。

3、学会使用数字贝克曼温度计和恒温槽等仪器。

二、实验原理溶解热是指在一定温度和压力下,溶质溶解于溶剂中产生的热效应。

溶解热分为积分溶解热和微分溶解热。

积分溶解热是指在定温定压下,把 1 摩尔溶质溶解在一定量的溶剂中所产生的热效应。

微分溶解热是指在定温定压下,在大量溶液中加入 1 摩尔溶质所产生的热效应。

在本实验中,采用绝热式量热法测定硝酸钾在水中的溶解热。

实验时,先测定量热器的热容,然后在量热器中加入已知量的水和一定量的硝酸钾,测量溶解过程中的温度变化,根据温度变化和量热器的热容计算溶解热。

量热器的热容可以通过已知溶解热的物质(如氯化钾)来测定。

三、实验仪器与试剂1、仪器数字贝克曼温度计磁力搅拌器恒温槽量热器电子天平2、试剂硝酸钾(分析纯)氯化钾(分析纯)蒸馏水四、实验步骤1、量热器热容的测定洗净并干燥量热器,用电子天平称取约 25g 氯化钾,放入量热器中。

用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。

将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。

观察温度计示数,待温度稳定后,记录初始温度 T1。

迅速加入氯化钾,同时启动秒表,继续搅拌,观察温度变化。

当温度升至最高点并稳定后,记录终止温度 T2。

根据氯化钾的溶解热(已知)和温度变化,计算量热器的热容 C。

2、硝酸钾溶解热的测定洗净量热器,用电子天平称取约 5g 硝酸钾。

用量筒量取 200ml 蒸馏水,倒入量热器中,插入搅拌棒,盖好盖子。

将数字贝克曼温度计插入量热器,启动磁力搅拌器,搅拌均匀。

观察温度计示数,待温度稳定后,记录初始温度 T3。

迅速加入硝酸钾,同时启动秒表,继续搅拌,观察温度变化。

当温度降至最低点并稳定后,记录终止温度 T4。

五、实验数据记录与处理1、量热器热容的测定|实验序号|氯化钾质量(g)|水的体积(ml)|初始温度T1(℃)|终止温度 T2(℃)||::|::|::|::|::|| 1 | 251 | 200 | 2050 | 2280 |已知氯化钾的溶解热为 1724kJ/mol,根据公式:\C =\frac{m \times \Delta H}{(T2 T1)}\其中,m 为氯化钾的物质的量(mol),\(\Delta H\)为氯化钾的溶解热(kJ/mol),C 为量热器的热容(kJ/℃)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四溶解热的测定
一、实验目的
1.用电热补偿法测定KNO3在不同浓度水溶液中的积分溶解热。

2.用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热。

二、预习要求
1.复习溶解过程热效应的几个基本概念。

2.掌握电热补偿法测定热效应的基本原理。

3.了解如何从实验所得数据求KNO3的积分溶解热及其它三种热效应。

4.了解影响本实验结果的因素有那些。

三、实验原理
1.在热化学中,关于溶解过程的热效应,引进下列几个基本概念。

溶解热在恒温恒压下,n2摩尔溶质溶于n1摩尔溶剂(或溶于某浓度的溶液)中产生的热效应,用Q表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。

积分溶解热在恒温恒压下,一摩尔溶质溶于n0摩尔溶剂中产生的热效应,用Q s表示。

微分溶解热在恒温恒压下,一摩尔溶质溶于某一确定浓度的无限量的溶液
中产生的热效应,以表示,简写为。

冲淡热在恒温恒压下,一摩尔溶剂加到某浓度的溶液中使之冲淡所产生的热效应。

冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。

积分冲淡热在恒温恒压下,把原含一摩尔溶质及n01摩尔溶剂的溶液冲淡到含溶剂为n02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以Qd表示。

微分冲淡热在恒温恒压下,一摩尔溶剂加入某一确定浓度的无限量的溶液
中产生的热效应,以表示,简写为。

2.积分溶解热(Q S)可由实验直接测定,其它三种热效应则通过Q S—n0曲线求得。

设纯溶剂和纯溶质的摩尔焓分别为H m(1)和H m(2),当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为H1,m和H2,m,对于由n1摩尔溶剂和n2摩尔溶质组成的体系,在溶解前体系总焓为H。

H=n1H m(1)+n2H m(2) (1)
设溶液的焓为H′,
H′=n1H1,m+n2H2,m (2)
因此溶解过程热效应Q为
Q =Δmix H=H - H= n1[H1。

m –H m(1)]+n2[H2,m–H m(2)]
=n1Δmix H m(1)+n2Δmix H m(2) (3)
(3)式中,Δmix H m (1)为微分冲淡热,Δmix H m (2)为微分溶解热。

根据上述定义,积分溶解热Q S为
(4)
在恒压条件下,Q=Δmix H,对Q进行全微分
(5)
上式在比值
恒定下积分,得
(6)全式以n2除之
(7)

(8)

(9)
将(8)、(9)代入(7)得:
(10)对比(3)与(6)或(4)与(10)式,
以Q S对n0作图,可得图1的曲线关系。

在图1中,AF与BG分别为将一摩尔溶质溶于n01和n02摩尔溶剂时的积分溶解热Q S,BE表示在含有一摩尔溶质的溶液中加入溶剂,使溶剂量由n01摩尔
增加到n02摩尔过程的积分冲淡热Q d。

Q d=(Q S)n02 - (Q S)n01=BG – EG (11)
图1中曲线A点的切线斜率等于该浓度溶液的微分冲淡热。

切线在纵轴上的截距等于该浓度的微分溶解热。

图1 Q S—n0关系图
由图1可见,欲求溶解过程的各种热效应,首先要测定各种浓度下的积分溶解热,
然后作图计算。

图2 量热器示意图
1.贝克曼温度计;
2.搅拌器;
3.杜瓦瓶;
4.加样漏斗;
5.加热器。

3.测量热效应是在“量热计”中进行。

量热计的类型很多,分类方法也不统一,按传热介质分有固体或液体量热计,按工作温度的范围分有高温和低温量热计等。

一般可分为两类:一类是等温量热计,其本身温度在量热过程中始终不变,所测得的量为体积的变化,如冰量热计等;另一类是经常采用的测温量热计,它本身的温度在量热过程中会改变,通过测量温度的变化进行量热,这种量热计又可以是外壳等温或绝热式的等。

本实验是采用绝热式测温量热计,它是一个包括量热器、搅拌器、电加热器和温度计等的量热系统,如图2所示量热计直径为
8cm、容量为350mL的杜瓦瓶,并加盖以减少辐射、传导、对流、蒸发等热交换。

电加热器是用直径为0.1mm的镍铬丝,其电阻约为10Ω,装在盛有油介质的硬质薄玻璃管中,玻璃管弯成环形,加热电流一般控制在300mA~500mA。

为使均匀有效地搅拌,可用电动搅拌器,也可按捏长短不等的两支滴管使溶液混合均匀。

用贝克曼温度计测量温度变化。

在绝热容器中测定热效应的方法有两种:
(1)先测定量热系统的热容量C,再根据反应过程中温度变化ΔT与C之乘积求出热效应(此法一般用于放热反应)。

(2)先测定体系的起始温度T,溶解过程中体系温度随吸热反应进行而降低,再用电加热法使体系升温至起始温度,根据所消耗电能求出热效应Q。

Q=I2Rt=IUt
式中,I为通过电阻为R的电热器的电流强度(A);U为电阻丝两端所加电压(V);t 为通电时间(s).这种方法称为电热补偿法。

本实验采用电热补偿法,测定KNO3在水溶液中的积分溶解热,并通过图解法求出其它三种热效应。

四、仪器药品
1.仪器
杜瓦瓶1套; 直流稳压电源(1A,0V~30V)1台; 直流毫安表(0.5级,
250mA~500mA~1000mA)1只; 直流伏特计(0.5级,0V~2.5V~5V~10V)1只; 贝克曼温度计(或热敏电阻温度计等)1只; 秒表1只; 称量瓶(25mm×25mm)8只; 干燥器1只; 研钵1个; 放大镜1只;同步电机1个。

2.药品
KNO3(化学纯)。

五、实验步骤
1.稳压电源使用前在空载条件下先通电预热15min。

2. 将8个称量瓶编号,依次加入在研钵中研细的KNO3,其重量分别为2.5g、1.5g、2.5g、2.5g、
3.5g、4g、4g和
4.5g,放入烘箱,在110℃烘1.5h~2h,取出放入干燥器中(在实验课前进行)。

3.用分析天平准确称量上面8个盛有KNO3的称量瓶,称量后将称量瓶放回干燥器中待用。

图3电路图
4.在台称上用杜瓦瓶直接称取200.0g蒸馏水,调好贝克曼温度计,按图2装好量热器。

按图3连好线路(杜瓦瓶用前需干燥)。

5.经教师检查无误后接通电源,调节稳压电源,使加热器功率约为2.5W,保持电流稳定,开动同步电机进行搅拌,当水温慢慢上升到比室温水高出1.5℃时读取准确温度,按下秒表开始计时,同时从加样漏斗处加入第一份样品,并将残留在漏斗上的少量KNO3全部掸入杜瓦瓶中,然后用塞子堵住加样口。

记录电压和电流值,在实验过程中要一直搅拌液体,加入KNO3后,温度会很快下降,然后再慢慢上升,待上升至起始温度点时,记下时间(读准至秒,注意此时切勿把秒表按停),并立即加入第二份样品,按上述步骤继续测定,直至八份样品全部加完为止。

6.测定完毕后,切断电源,打开量热计,检查KNO3是否溶完,如未全溶,则必须重作;溶解完全,可将溶液倒入回收瓶中,把量热器等器皿洗净放回原处。

7.用分析天平称量已倒出KNO3样品的空称量瓶,求出各次加入KNO3的准确重量。

六、注意事项
1.实验过程中要求I、V值恒定,故应随时注意调节。

2.实验过程中切勿把秒表按停读数,直到最后方可停表。

3.固体KNO3易吸水,故称量和加样动作应迅速。

固体KNO3在实验前务必研磨成粉状,并在110℃烘干。

4.量热器绝热性能与盖上各孔隙密封程度有关,实验过程中要注意盖好,减少热损失。

七、数据处理
1.根据溶剂的重量和加入溶质的重量,求算溶液的浓度,以n表示
2.按Q=IUt公式计算各次溶解过程的热效应。

3.按每次累积的浓度和累积的热量,求各浓度下溶液的n0和Q S。

4.将以上数据列表并作Q S—n0图,并从图中求出n0=80,100,200,300和400处的积分溶解热和微分冲淡热,以及n0从80→100,100→200,200→300,300→400的积分冲淡热。

I= —— (A); U= —— (V); IU= —— (W)
【思考问题】
1.本实验的装置是否可测定放热反应的热效应?可否用来测定液体的比热、水化热、生成热及有机物的混合等热效应?
2.对本实验的装置、线路你有何改进意见?。

相关文档
最新文档