随机过程课后习题
随机过程(北航著)北京航空航天大学出版社第1章习题课后答案
![随机过程(北航著)北京航空航天大学出版社第1章习题课后答案](https://img.taocdn.com/s3/m/071eb6aaf021dd36a32d7375a417866fb84ac001.png)
第一章概论第1题某公共汽车站停放两辆公共汽车A 和B ,从t=1秒开始,每隔1秒有一乘客到达车站。
如果每一乘客以概率21登上A 车,以概率21登上B 车,各乘客登哪一辆车是相互统计独立的,并用j ξ代表t=j 时乘客登上A 车的状态,即乘客登上A 车则j ξ=1,乘客登上B 车则jξ=0,则,21}0{,21}1{====j j P P ξξ当t =n 时在A 车上的乘客数为n n j j n ηξη,1∑==是一个二项式分布的计算过程。
(1)求n η的概率,即;,...,2,1,0?}{n k k P n ===η(2)当公共汽车A 上到达10个乘客时,A 即开车(例如t =21时921=η,且t =22时又有一个乘客乘A 车,则t =22时A 车出发),求A 车的出发时间n 的概率分布。
解(1):nn k n k P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==21}{η 解(2):nn n n P P ⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−2191212191A)10n 9A 1-n (}n A {1名乘客登上车时刻第名乘客;在有时刻,车在开车在时刻车第2题设有一采用脉宽调制以传递信息的简单通信系统。
脉冲的重复周期为T ,每一个周期传递一个值;脉冲宽度受到随机信息的调制,使每个脉冲的宽度均匀分布于(0,T )内,而且不同周期的脉宽是相互统计独立的随机变量;脉冲的幅度为常数A 。
也就是说,这个通信系统传送的信号为随机脉宽等幅度的周期信号,它是以随机过程)(t ξ。
图题1-2画出了它的样本函数。
试求)(t ξ的一维概率密度)(x f t ξ。
解:00(1)()()(){()}{()0}[(1),],(0,){()}{[(1),]}{[(1)]}1(1)(1)1({()0}1{()}t A A n n n Tt n T f x P x A P x P t A P P t P t n T nT n T P t A P t n T nT P t n T d TT t n T T nT t T t n Tt n T T t n P t P t A ξδδξξηξηηηξξ−−=−+====∈−∈==∈−+=>−−=−+−=−==−−−=−−−==−==∫是任意的脉冲宽度01)(1)()()()()(1)()t A T tn T Tf x P x A P x t t n x A n x T T ξδδδδ=−−∴=−+⎛⎞⎛⎞=−−+−−⎜⎟⎜⎟⎝⎠⎝⎠第3题设有一随机过程)(t ξ,它的样本函数为周期性的锯齿波。
(整理)随机过程课后习题
![(整理)随机过程课后习题](https://img.taocdn.com/s3/m/169d675cff4733687e21af45b307e87101f6f8c7.png)
(整理)随机过程课后习题习题⼀1.设随机变量X 服从⼏何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和⽅差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是⼀随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数;(2)Z=ln F()X ,并求()k E Z (k 为⾃然数)。
4.设12,,...,n X X X 相互独⽴,具有相同的⼏何分布,试求的分布。
5.试证函数为⼀特征函数,并求它所对应的随机变量的分布。
6.试证函数为⼀特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独⽴同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协⽅差矩阵,再求的概率密度函数。
8.设X 、Y 相互独⽴,且(1)分别具有参数为(m, p)及(n, p)的⼆项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协⽅差矩阵为B σ?kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独⽴,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独⽴,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --?>?Γ??≤?=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ?+--<(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
随机过程课后习题答案
![随机过程课后习题答案](https://img.taocdn.com/s3/m/0fdbed0c842458fb770bf78a6529647d27283400.png)
随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。
在学习随机过程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。
下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。
1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。
解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。
由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。
因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。
根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。
将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。
所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。
2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。
解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。
根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。
根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。
将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。
所以,该过程的均值为μ。
根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。
将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。
随机过程习题和答案
![随机过程习题和答案](https://img.taocdn.com/s3/m/72a697a24afe04a1b171de3c.png)
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
(完整版)随机过程习题答案
![(完整版)随机过程习题答案](https://img.taocdn.com/s3/m/e5734fe49f3143323968011ca300a6c30c22f145.png)
(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程-方兆本-第三版-课后习题答案
![随机过程-方兆本-第三版-课后习题答案](https://img.taocdn.com/s3/m/e7017b964431b90d6c85c7a6.png)
习题4以下如果没有指明变量t 的取值范围,一般视为R t ∈,平稳过程指宽平稳过程。
1. 设Ut t X sin )(=,这里U 为)2,0(π上的均匀分布.(a ) 若 ,2,1=t ,证明},2,1),({ =t t X 是宽平稳但不是严平稳, (b ) 设),0[∞∈t ,证明}0),({≥t t X 既不是严平稳也不是宽平稳过程. 证明:(a )验证宽平稳的性质,2,1,0)cos (2121)sin()sin()(2020==-=•==⎰t Ut tdU Ut Ut E t EX ππππ))cos()(cos(21)sin (sin ))(),((U s t U s t E Us Ut E s X t X COV ---=•=t U s t s t U s t s t πππ21}])[cos(1])[cos(1{212020•+++--= s t ≠=,021Ut Esin ))(),((2==t X t X COV (b) ,)),2cos(1(21)(有关与t t t t EX ππ-=.)2sin(8121DX(t)有关,不平稳,与t t tππ-=2. 设},2,1,{ =n X n 是平稳序列,定义 ,2,1},,2,1,{)(==i n X i n 为,,)1(1)1()2(1)1(---=-=n n n n n n X X X X X X ,证明:这些序列仍是平稳的. 证明:已知,)(),(,,2t X X COV DX m EX t t n n n γσ===+2121)1(1)1()1(2)(,0σγσ≡+=-==-=--n n n n n n X X D DX EX EX EX)1()1()(2),(),(),(),(),(),(111111)1()1(++--=+--=--=--+-+-++--+++t t t X X COV X X COV X X COV X X COV X X X X COV X X COV n t n n t n n t n n t n n n t n t n n t n γγγ显然,)1(n X 为平稳过程.同理可证, ,,)3()2(n n X X 亦为平稳过程.3.设1)nn k k k k Z a n u σ==-∑这里k σ和k a 为正常数,k=1,....n; 1,...n u u 是(0,2π)上独立均匀分布随机变量。
随机过程习题和答案
![随机过程习题和答案](https://img.taocdn.com/s3/m/5c1051da9b89680203d825c3.png)
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
《随机过程》课后习题解答
![《随机过程》课后习题解答](https://img.taocdn.com/s3/m/3457b8a0dd3383c4bb4cd241.png)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2
i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)
x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )
f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt
3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n
李晓峰应用随机过程课后习题_随机过程答案CH1
![李晓峰应用随机过程课后习题_随机过程答案CH1](https://img.taocdn.com/s3/m/1ee93942a36925c52cc58bd63186bceb19e8edc7.png)
习 题一、习题编号本次作业:1,2, 7,9,12,17,18,19,23,25 二、习题解答1.1 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的概率空间(),,P Ω。
解1.1: 样本空间:Ω = {HH, HT, TH, TT}集类:F = { Ø, Ω, {HH}, {HT}, {TH}, {TT},{HH,HT}, {HH, TH}, {HH,TT}, {HT, TH}, {HT, TT}, {TH, TT}, {HH, HT, TH}, {HH, HT, TT}, {HT, TH, TT}, {TH, TT, HH}, }概率:P: P{HH} = P{HT} = P{TH} = P{TT} = 1/41.2 设,A B ∈Ω,集类{},A B =。
试求:()σ的所有元素。
解1.2:因为:{},A B =所以:(){},,,σ=∅Ω1.3 设四个黑球与两个白球随机地等分为A 与B 两组,记A 组中白球的数目为X ;然后随机交换A 与B 中一个球,再记交换后A 组中白球的数目为Y 。
试求:(1)X 的分布律;(2)Y|X 的分布律;(3)Y 的分布律。
解1.3:(1)总计有2个白球,因此,X 的取值为0,1,2。
等分共有36C 种分法,等分后,X 取值分别为0,1,2的概率为:3211244242333666012012131()()555XX C C C C C P X P X C C C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2)交换一个球后,1)如果X 中没有白球,则交换后Y 可能取值为0、1 2)如果X 中有一个白球,则交换后Y 可能取值为0、1、2 3)如果X 中有两个白球,则交换后Y 可能取值为1、2|0|01|00|11|12|11|22|21225221(|)3399933Y XP Y X ⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)20()(|)()i P Y P Y X i P X i ====∑2(0)(0|)()1123359515i P Y P Y X i P X i =======⨯+⨯=∑2(1)(1|)()21532135953535i P Y P Y X i P X i =======⨯+⨯+⨯=∑2(2)(2|)()23110953515i P Y P Y X i P X i =======+⨯+⨯=∑故Y 的分布律为:012131()555YP Y ⎛⎫ ⎪ ⎪⎪⎝⎭1.4 设A 与B 是概率空间(),,P Ω上的事件,且()01P B <<,试证明:A 与B独立的充要条件为:()()|=|P A B P A B 。
钱敏平-龚光鲁-随机过程答案(部分)
![钱敏平-龚光鲁-随机过程答案(部分)](https://img.taocdn.com/s3/m/79421e0cba1aa8114431d992.png)
随机过程课后习题答案第一章第二题:已知一列一维分布{();1}n F x n ≥,试构造一个概率空间及其上的一个相互独立的随机变量序列{(,);1}n n ξ⋅≥使得(,)n ξ⋅的分布函数为()n F x 。
解:有引理:设ξ为[0, 1]上均匀分布的随机变量,F(x)为某一随机变量的分布函数,且F(x)连续,那么1()F x η-=是以F(x)为分布的随机变量。
所以可以假设有相互独立的随机变量12,,...,n θθθ服从u[0, 1]分布,另有分布{()}n F x , 如果令1(,)()n n n F ξθ-⋅=,则有(,)n ξ⋅为服从分布()n F x 的随机变量。
又由假设条件可知,随机变量{(,),1}n n ξ⋅≥之间相互独立,则其中任意有限个随机变量12(,),(,),...,(,)n i i i ξξξ⋅⋅⋅的联合分布为:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i x i x i x F x F x F x ξξξ⋅≤⋅≤⋅≤=⋅⋅⋅⋅再令112{,,...,,...},,{|()[0,1],1,2,...}n i i i i w w w w A A x F x i -Ω=∈=∈=,令F 为Ω所有柱集的σ代数,则由Kolmogorov 定理可知,存在F 上唯一的概率测度P 使得:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i w i w i w F w F w F w ξξξ⋅≤⋅≤⋅≤=⋅⋅⋅⋅则所构造的概率空间为(Ω,F , P)。
第八题:令{};1n X n ≥是一列相互独立且服从(0,1)N (正态分布)的随机变量。
又令1n n S X X =++22(1)n S n n ξ+=1(,,)n n F X X σ=试证明:,;1n n F n ξ≥()是下鞅(参见23题)。
(完整版)随机过程习题和答案
![(完整版)随机过程习题和答案](https://img.taocdn.com/s3/m/a2cd384d6f1aff00bfd51e70.png)
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程习题和答案.doc
![随机过程习题和答案.doc](https://img.taocdn.com/s3/m/854b98ff011ca300a7c39014.png)
一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t对应随机变量X(t)t3te如果对如果对t时取得红球t时取得白球试求这个随机过程的一维分布函数族.设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
设随机过程X(t)U cos2t U E(U)5,D(U)5.求:,其中是随机变量,且(1)均值函数;(2)协方差函数;(3)方差函数.设有两个随机过程X(t)Ut2Y(t)Ut3,U随机变量,且D(U)5.,其中是试求它们的互协方差函数。
设A,B,X(t)At3B t T(,)的均值是两个随机变量试求随机过程,函数和自相关函数.A,B,~(1,4),~(0,2),()(,)若相互独立且A N B U则m X t及R X t1t2为多少?一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令N(t)表示(0,t)时间内的体检人数,则N(t)为参数为30的poisson过程。
以小时为单位。
则E(N(1))30。
40k(30) P(N(1)40)ek!k030。
在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1,2,当1路公共汽车有N人乘坐后出发;2路公共汽车1在有N2人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当N1=N,1=22时,计算上述概率。
随机过程习题及部分解答(共享).docx
![随机过程习题及部分解答(共享).docx](https://img.taocdn.com/s3/m/ea6c470204a1b0717ed5dd79.png)
随机过程习题及部分解答习题一1.若随机过程X(/)为X(0 = A?,-oo<r<+oo,式中4为(0, 1)上均匀分布的随机变量,求X(/)的一维概率密度Px(x;t)。
2.设随机过程X(/) = 4cos(初+ 其中振幅A及角频率①均为常数,相位&是在[-兀,刃上服从均匀分布的随机变量,求X(/)的一维分布。
习题二1.若随机过程X(/)为X(t)=At -00 < r < +00 ,式中4为(0,1)上均匀分布的随机变量,求E[xa)],7?xa』2)2.给定一随机过程X(/)和常数Q,试以X(/)的相关函数表示随机过程y(0 = X(/ + a) —X(/)的自相关函数。
3.已知随机过程X(/)的均值阪⑴和协方差函数Cx (爪© , 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)的均值和协方差函数。
4.设X(t) = A cos at + B sin at,其中A, B是相互独立且服从同一高斯(正态)分布N(0Q2)的随机变量,a为常数,试求X(/)的值与相关函数。
习题三1.试证3.1节均方收敛的性质。
2.证明:若X(t),twT;Y(t),twT均方可微,a0为任意常数,则aX(t) + bY(t) 也是均方可微,且有[aX (?) + b Y(/)]' = aX'(/) + b Y'(/)3.证明:若X⑴,twT均方可微,/X/)是普通的可微函数,则f(Z)X(Z)均方可微且[f(ox(or-/w(o+/(ox,(o4.证明:设X⑴在[a,b]上均方可微,且X0)在[a,切上均方连续,则有X'⑴ dt = X(b) — X(a)J a5•证明,设X(t\t eT =[a,b];Y{t\t eT = [a,b]为两个随机过程,且在T上均方可积,a和0为常数,则有(*b (*b (*bf [aX(/) + 0Y(/)M = a [ Xit)dt + /3\ Y⑴ dtJ a J a J aeb rc rbaX (t)dt = X (t)dt + XQ) dt,aWcWbJ a J a Jc6.求随机微分方程X'(/) + aX ⑴二丫⑴ze[0,+oo]'X(0) = 0的X(t)数学期望E [X(0]。
(完整版)随机过程习题.doc
![(完整版)随机过程习题.doc](https://img.taocdn.com/s3/m/9e74e66dc1c708a1284a44c9.png)
随机过程复习一、回答: 1 、 什么是宽平稳随机过程?2 、 平稳随机过程自相关函数与功率谱的关系?3 、 窄带随机过程的相位服从什么分布?包络服从什么分布?4 、什么是白噪声?性质?二、计算:1 、随机过程 X (t) Acos t + Bsin t ,其中 是常数, A 、B 是相互独 立统计的高斯变量, 并且 E[A]=E[B]=0 , A2 ]=E[ B 2 ]= 2 。
求: X (t)E[ 的数学期望和自相关函数?2 、判断随机过程 X (t )A cos( t) 是否平稳?其中 是常数,A 、 分别为均匀分布和瑞利分布的随机变量,且相互独立。
af ( )12;f A ( a)a2e 2 2a 023 、求随机相位正弦函数 X (t)A cos( 0 t) 的功率谱密度, 其中 A 、 0是常数, 为[0,2 ]内均匀分布的随机变量。
4 、求用 X (t ) 自相关函数及功率谱表示的 Y (t ) X (t) cos(0 t)的自相关函数及谱密度。
其中, 为[0,2 ]内均匀分布的随机变量, X (t ) 是与 相互独立的随机过程。
5 、设随机过程 { X (t ) Acos( 0t Y),t} ,其中 0 是常数, A 与 Y是相互独立的随机变量, Y 服从区间 (0,2 ) 上的均匀分布, A 服从瑞利分布,其概率密度为x 2x2e 2 2x 0f A (x)0 x 0试证明 X (t ) 为宽平稳过程。
解:( 1) m X (t) E{ Acos(0 t Y)} E( A)E{cos( 0t Y )}x 2x22e 2 2 dxy)dy 0 与 t 无关2 cos( 0t 0( 2) X 2 (t)E{ X 2 (t )}E{ A cos( 0t Y)}2E( A 2 ) E{cos 2 ( 0t Y )} E( A 2 )3x2tE( A 2)x1 2t2e 2 2dt , 2 e 22dx2tttte 2 2|0e 2 2 dt2 2e 2 2|0 22所以X2(t )E{ X 2 (t )}(3) R X (t 1,t 2 ) E{[ A cos( 0t 1 Y)][ A cos( 0t 2 Y )]}E[ A 2] E{cos(0t1Y ) cos( 0t 2 Y)}22 2 10t10t 2 y) cos 0 (t 2 t 1)] 1 dy[cos(222cos 0(t 2 t 1 )只与时间间隔有关,所以 X (t ) 为宽平稳过程。
随机过程习题和答案
![随机过程习题和答案](https://img.taocdn.com/s3/m/259da5b46294dd88d0d26ba8.png)
、1.1设二维随机变量(X , F)的联合概率密度函数为:=—i—[l241-ι>⅛= "k"QTh Xl-JF)1.2 设离散型随机变量X服从几何分布:Hm=(Ip)HPJt=U-试求/的特征函数,并以此求其期望E(X)与方差I K X)¾0 = Efr ir) = ∑e⅛ = *)解:一=⅛α-ri M P=√^∑^α-p)t U O-P) ⅛J1—(I-JI)1—q/(O)=α⅛24(1-小丄0<y<x<l苴它试求:在OJu <■ 1时,求I『F)解:J;240 H)JKfc0<y<l Jj2Jf(I_y)3 0<JF<1P 其它^{θ其它当OJXI 时,Aw)2OT(Xy)y<x<l其它所以:-⅛(0)二丄f PZUr=J Er3-(JEIf)3=^^-^=4PPp2.1袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t 对应随机变量x(t^3如果对t时取得红球e t如果对t时取得白球试求这个随机过程的一维分布函数族2.2设随机过程 W 加吨MIF)∙ gZ I叫,其中吗是常数,/与F是相互独立的随机变量,F服从区间(°2刘上的均匀分布,/服从瑞利分布,其概率密度为x>0x≤0试证明Xu)为宽平稳过程。
解:( 1)⑷+F)} q啊诚如+ f)}= 与无关(2)枚F(M 仪加血I(Q/伽说如")汁F(才),f _ t t⅛(Q) =-J PQ ÷g)= -te^t∣Γ÷p ^dt =-2σ1e^i∣Γ=2σ3所以必U)啟0⑴卜"(3)R lM壊M∞¼⅛+Hl∕∞Ψ⅛+y)]}=豺]£{oKs(A +Γ)∞<β(A +Γ)}=2^Jtt 2{α≈(0A + β⅛+ y)-rasfflfc A)I^⅛心’皿叫仏Z L)只与时间间隔有关,所以XU)为宽平稳过程2.3设随机过程 X(t)=Ucos2t,其中U是随机变量,且 E(U)= 5, D(U)= 5.求: (1)均值函数;(2)协方差函数;(3)方差函数2.4设有两个随机过程 X(t)=Ut2, Y(t)=Ut3,其中U是随机变量,且D(U) = 5.试求它们的互协方差函数2.5设代B是两个随机变量,试求随机过程X(t) =At ∙3B,t∙ T =(」:「:)的均值函数和自相关函数若A, B相互独立,且A~ N(1,4), B ~U (0,2),则mχ (t)及Rχ(t1,t2)为多少?3.1 一队学生顺次等候体检。
随机过程课后试题答案
![随机过程课后试题答案](https://img.taocdn.com/s3/m/5683420476232f60ddccda38376baf1ffd4fe311.png)
随机过程课后试题答案1. 题目:简述离散时间马尔可夫链和连续时间马尔可夫链的基本概念和性质。
答案:离散时间马尔可夫链(Discrete-time Markov Chain)是指在时间上的变化是离散的、状态空间是有限或可列无限的马尔可夫链。
其基本概念和性质如下:1.1 基本概念:- 状态空间:马尔可夫链的状态空间是指系统可能处于的状态集合,记作S。
离散时间马尔可夫链的状态空间可以是有限集合或可列无限集合。
- 转移概率:转移概率是指在给定前一个状态的条件下,系统转移到下一个状态的概率。
用P(i, j)表示系统从状态i转移到状态j的概率,其中i和j属于状态空间S。
- 转移概率矩阵:转移概率矩阵P是指表示从任一状态i到任一状态j的转移概率的矩阵。
对于离散时间马尔可夫链,转移概率矩阵是一个方形矩阵,维数与状态空间大小相同。
- 平稳概率分布:对于离散时间马尔可夫链,如果存在一个概率分布π,满足π = πP,其中π是一个行向量,P是转移概率矩阵,则称π为马尔可夫链的平稳概率分布。
1.2 性质:- 马尔可夫性:离散时间马尔可夫链具有马尔可夫性,即将来状态的发展只与当前状态有关,与过去的状态无关。
- 遍历性:若马尔可夫链中任意两个状态之间都存在路径使得概率大于零,则称该马尔可夫链是遍历的。
遍历性保证了马尔可夫链具有长期稳定的性质。
- 正常概率性:对于离散时间马尔可夫链,转移概率矩阵P的元素都是非负的,并且每一行的元素之和等于1。
- 可约性和不可约性:如果一个马尔可夫链中的所有状态彼此之间都是可达的,则称该马尔可夫链是不可约的。
反之,则称它是可约的。
不可约性保证了任意状态之间都可以相互转移。
- 周期性:对于不可约的离散时间马尔可夫链,如果存在某个状态,从该状态出发回到该状态所需的步数的最大公约数大于1,则称该状态是周期的。
若所有状态都是非周期的则称该马尔可夫链是非周期的。
2. 题目:连续时间马尔可夫链的定义和性质有哪些?答案:连续时间马尔可夫链(Continuous-time Markov Chain)是指在时间上的变化是连续的、状态空间是有限或可列无限的马尔可夫链。
随机过程课后习题答案
![随机过程课后习题答案](https://img.taocdn.com/s3/m/9b4f03e0aeaad1f346933faf.png)
标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。
求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。
解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。
随机过程(汪荣鑫版)第一、二、四章习题答案.pdf
![随机过程(汪荣鑫版)第一、二、四章习题答案.pdf](https://img.taocdn.com/s3/m/f36c8cfd172ded630b1cb6c4.png)
第一章随机过程的基本概念1.设随机过程X(t)=X cosω0t,-∞ <t< +∞,其中ω0是正常数,而X是标准正态变量。
试求X(t)的一维概率分布解:∵当cosω0t=0 即ω0 t =(k + 1)π 即t=1(k+1)π时2 ω0 2p{x(t)=0}=1若 c o ωs0t≠ 0 即t ≠1 (k+ 1 )π时2ω0F (x, t)= P{X (x)≤ x}= P{X cosω0t ≤ x} 当 c o ωs0t> 0 时此时若 c o ωs0t同理有⎧ x ⎫ 1 x - ξ 22F (x, t)= P⎨X ≤ ⎬ = cosω0t e dξ⎩ cosω0t ⎭ 2π⎰0∂F (x, t ) 1 - x2 1f (x, t)= = e 2 c o 2sω 0t⋅∂x c o sω0tπ< 0 时⎧ x ⎫ ⎧ x ⎫F (x, t)= P⎨X ≥ ⎬ = 1 -P⎨x< ⎬⎩ cosω0t⎭ ⎩ cosω0t⎭1 x e- ξ 2= 1 - cosω0t 2 dξ⎰0- x21f (x, t)= - 2 c o 2sω t ⋅c o ωs0t综上当:cosω0t≠0 即t ≠1 (k+ 1 )π时ω0 21 1 - x2f (x, t) e 2 cos2 ω0t| cosω0 t |π2.利用投掷一枚硬币的试验,定义随机过程为⎧cos πt , 出现正面X (t ) = ⎨⎩ 2t , 出现反面1假定“出现正面”和“出现反面”的概率各为 1 2 。
试确定 X (t ) 的一维分布函数 F (x , 2)和 F (x ,1) ,以及二维分布函数 F (x 1 , x 2 ;12 ,1)解:(1)先求 F (x , 1 )2⎧ π 出现正面 ⎧0⎛ 1 ⎫ ⎪cos 2 , 出现正面显然 X⎪ = ⎨= ⎨1出现反面 ⎝ 2 ⎭ ⎪2 - , 出现反面 ⎩12⎩⎛ 1 ⎫随机变量 X ⎪ 的可能取值只有 0,1 两种可能,于是⎝ 2 ⎭⎧ ⎛ 1 ⎫ ⎫ 1⎧ ⎛ 1 ⎫⎫ 1 P ⎨X⎪ = 0⎬ =P ⎨X⎪ = 1⎬ =⎩ ⎝ 2 ⎭⎭ 2 ⎩ ⎝ 2 ⎭⎭ 2所以⎧ 0 x < 0⎛1 ⎫ ⎪ 1F x ,⎪ =⎨ 0 ≤ x < 1⎝2 ⎭ 2⎪1 x ≥ 1⎩再求 F (x ,1)⎧cos π 出现正面 ⎧-1 出现正面显然 X (1) = ⎨= ⎨⎩2出现反面 ⎩2出现反面p {X (1) = -1}= p {X (1) = 2}= 12所以⎧0x < -1⎪ 1F (x ,1) = ⎪-1 ≤ x < 2⎨ 2⎪⎪1x ≥ 2⎩1(2) 计算 F (x 1 , x 2 ; 2 ,1)1 0 出现正面-1 出现正面X () = ⎨出现反面, X (1) = ⎨出现反面2⎩1⎩2于是⎛ 1 ⎫⎧ ⎛ 1 ⎫ ⎫ F x x 1 , x 2 ; ,1⎪ =p ⎨X ⎪ ≤ x 1 ; X (1) ≤ x 2 ⎬⎝2 ⎭⎩⎝ 2 ⎭⎭⎧0 x 1 < 0- ∞ < x 2 < +∞⎪或 x 1 ≥ 0, x 2 < -1⎪⎪ 10 ≤ x 1 < 1, 2 ≤ x 2= ⎨2 ⎪ 或 x 1> 1,⎪ -1 ≤ x 2 < 2⎪⎩1x 1 > 1,x 2 ≥ 23.设随机过程 {X (t ),-∞ < t < +∞}共有三条样本曲线X (t,ϖ1 ) = 1, X (t,ϖ 2 ) = sin t , X (t,ϖ 3 ) = cos t且 p(ϖ1 ) = p(ϖ 2 ) = p(ϖ 3 ) = 1 , 试求随机过程 X (t ) 数学期望 EX(t) 和相关函数3 R x (t 1,t 2)。
(整理)随机过程课后习题
![(整理)随机过程课后习题](https://img.taocdn.com/s3/m/257b666ede80d4d8d15a4f9d.png)
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nkk X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
随机过程课后试题答案
![随机过程课后试题答案](https://img.taocdn.com/s3/m/6879f351591b6bd97f192279168884868762b8ba.png)
随机过程课后试题答案一、选择题1. 随机过程的基本定义中,样本空间通常表示为:A. 一个集合B. 一个函数集合C. 一个概率空间D. 一个参数集合答案:A2. 若随机过程的样本轨迹几乎是连续的,则该过程是:A. 离散时间随机过程B. 连续时间随机过程C. 泊松过程D. 马尔可夫过程答案:B3. 马尔可夫性质的含义是未来的状态只依赖于当前状态,而与过去的状态无关。
这一性质不适用于:A. 泊松过程B. 布朗运动C. 马尔可夫链D. 所有随机过程答案:D4. 在随机过程中,如果两个随机变量的联合分布可以表示为它们各自的边缘分布的乘积,则这两个随机变量是:A. 独立的B. 相关的C. 正相关的D. 负相关的答案:A5. 随机游走的期望步长是:A. 1B. 2C. 依赖于起始点D. 依赖于步长分布答案:D二、填空题1. 一个随机过程的样本函数是定义在参数集合上的_________函数。
答案:实值或随机2. 在随机过程中,如果给定当前状态,下一状态的条件概率分布仅依赖于当前状态而不依赖于之前的状态,那么该过程是一个_________过程。
答案:马尔可夫3. 随机过程的均值函数(或称数学期望函数)是描述过程长期行为的重要工具,它是一个关于_________的函数。
答案:时间4. 布朗运动是一种连续时间随机过程,其样本轨迹具有_________性质。
答案:无处处可微5. 泊松过程是一种描述事件在时间上随机发生的随机过程,其特点是事件在任意两个不重叠时间区间内发生是_________的。
答案:相互独立三、计算题1. 假设有一个离散时间马尔可夫链,其状态转移矩阵为:\[P = \begin{bmatrix}0.7 & 0.3 \\0.4 & 0.6\end{bmatrix}\]求该马尔可夫链在第二时刻的状态概率分布,给定初始状态概率分布为:\\[\pi_0 = \begin{bmatrix}0.5 \\0.5\end{bmatrix}\]解:首先计算\( P^2 \),即状态转移矩阵的二次幂,然后利用\( \pi_0 \)和\( P^2 \)来计算第二时刻的状态概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nk k X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11ni i X X n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
13.设(X 1, X 2, X 3)服从三维正太分布(0,)N B ,其中协方差矩阵为33B σ⨯ld =(),且2112233σσσσ===。
试求222222123[()()()]E X X X σσσ---。
14.设12,,...,n X X X 相互独立同服从正态分布2(0,)N σ。
试求 的期望。
15.设X 、Y 是相互独立同分布的(0,1)N 随机变量,讨论22U X Y =+和 的独立性。
16.设X 、Y 是相互独立同服从参数为1的指数分布的随机变量,讨论U X Y=+和 的独立性。
17.设二维随机变量(,)X Y 的概率密度函数分别如下,试求(|)E X Y y =。
(1) (2)18.设X 、Y 是两个相互独立同分布的随机变量,X 服从区间[0, 1]上的均匀分布,Y 服从参数为λ的指数分布。
求(1)X 与X+Y 的联合概率密度函数;(2)D(X|Y=y)。
19.设X n ,n=1,±1,±2,…是一列随机变量,且 ,其中K 是正常数。
试求: (1)当K>1时,X n 几乎肯定收敛于0; (2)当K>2时,X n 均方收敛于0; (3)当K>3时,X n 不均方收敛于0。
20.设,p p n n X a Y b −−→−−→,试证明pn n X Y a b ±−−→±。
习题二1.设X(i = 1, 2, 3,…)是独立随机变量列,且有相同的两点分布 ,令 (0)0Y =, ,试求: 21exp()nn i i Y X ==-∑XV Y=X V X Y=+1,0,0(,)0,xy yex y p x y y--⎧>>⎪=⎨⎪⎩其他2,0(,)0,x e y xp x y λλ-⎧<<=⎨⎩其他0~1211n K K K n n X nn n -⎛⎫ ⎪ ⎪- ⎪⎝⎭111122-⎛⎫⎪ ⎪⎝⎭1()n i i Y n X ==∑(1)随机过程{Y(n), n = 0, 1, 2, …}的一个样本函数;(2)P[Y(1)=k]及P[Y(2)=k]之值; (3)P[Y(n)=k]; (4)均值函数; (5)协方差函数。
2.设()c o s s i nX t A t B t ωω=-,其中A 、B 是相互独立且有相同的2(0,)N σ分布的随机变量,ω是常数,(,)t ∈-∞∞,试求:(1)X(t)的一个样本函数; (2)X(t)的一维概率密度函数; (3)均值函数和协方差函数。
3.设随机过程 。
其中12,,...,n Y Y Y ,12,,...,n Z Z Z 是相互独立的随机变量,且2,~(0,),1,2,...,k k k Y Z N k n σ=。
(1)求{X(t)}的均值函数和相关函数;(2)证明{ X(t)}是正太过程。
4.设{(),0}Wt t ≥是参数2σ的Wiener 过程,求下列过程的均值函数和相关函数:(1)2()(),0X t W t t =≥; (2) ;(3)12()(),0X t c W c t t -=≥; (4)()()(),01X t W t tW t t =-≤≤。
5.设到达某商店的顾客组成强度为λ的Poisson 流,每个顾客购买商品的概率为p ,且与其他顾客是否购买商品无关,若{(),0}Y t t ≥是购买商品的顾客流,证明{(),0}Y t t ≥是强度为p λ的Poisson 流。
6.在题5中,进一步设{(),0}Z t t ≥是不购买商品的顾客流,试证明{(),0}Y t t ≥与{(),0}Z t t ≥是强度分别为p λ和(1)p λ-的相互独立的Poisson 流。
7.设1{(),0}N t t ≥和2{(),0}N t t ≥分别是强度为1λ和2λ的独立Poisson 流。
试证明:(1)12{(),0}N N t t +≥是强度为12λλ+的Poisson 流;(2)在1{(),0}N t t ≥的任一到达时间间隔内,2{(),0}N t t ≥恰有k 个时间发生的概率为8.设{(),0}N t t ≥是Poisson 过程,n τ和n T 分别是{(),0}N t t ≥的第n 个时间的到达时间和点间距距离。
试证明:(1)()(),1,2,...n n E nE T n τ==; (2)()(),1,2,...n n D nD T n τ==。
1()(cos sin ),0nk k k k k X t Y t Z t t ωω==+≥∑1()(),0X t tW t t =>121212(),0,1,2,...k k p k λλλλλλ=∙=++9.设某电报局接收的电报数()N t 组成Poisson 流,平均每小时接到3次电报,求:(1)一上午(8点到12点)没有接到电报的概率; (2)下午第一个电报的到达时间的分布。
10.设1{(),0}N t t ≥和2{(),0}N t t ≥分别是强度为1λ和2λ的独立Poisson 过程,令12()()(),0X t N t N t t =-≥,求{(),0}X t t ≥的均值函数与相关函数。
11.设{(),0}N t t ≥是强度为λ的Poisson 过程,T 是服从参数为γ的指数分布的随即变量,且与{()N t }独立,求[0,T]内事件数N 的分布律。
习题三1. 证明Poisson 随机变量序列的均方极限是Poisson 随机变量。
2. 设,1,2,...n X n =,是独立同分布的随机变量序列,均值为μ,方差为1,定义11nn i i Y X n ==∑。
证明lim n n X μ→∞=。
3. 研究下列随机过程的均方连续性、均方可导性和均方可积性。
(1)()X t At B =+,其中A 、B 是相互独立的二阶矩随机变量,均值为a 、b ,方差为21s 、22s ;(2)2()X t At Bt C =++,其中A 、B 、C 是相互独立的二阶矩随机变量,均值为a 、b 、c ,方差为21s 、22s 、23s ; (3){(),0}N t t ≥是Poisson 过程; (4){(),0}W t t ≥是Wiener 过程.4. 试研究上题中过程的均方可导性,当均方可导时,试求均方导数过程的均值函数和相关函数。
5. 求下列随机过程的均值函数和相关函数,从而判断其均方连续性和均方可微性。
(1)()cos()X t t ω=+Θ,其中ω是常数,Θ服从[0,2π]上的均匀分布; (2)1(),0X t tW t t ⎛⎫=> ⎪⎝⎭, 其中()W t 是参数为1的Wiener 过程; (3)()2(),0X t Wt t =≥,其中()W t 是参数为2s 的Wiener 过程。
6. 均值函数为()5sin x m t t =、相关函数为20.5()(,)3t s x R s t e --=的随机过程输入微分电路,该电路输出随机过程()()Y t X t '=,试求()Y t 的均值函数、相关函数、()X t 与()Y t 的互相关函数。
7. 试求第3题中可积过程的如下积分:01()()t Y t X u du t =⎰,1()()t LtZ t X u du L +=⎰的均值函数和相关函数。
8. 设随机过程3()cos2t X t Ve t =,其中V 是均值为5、方差为1的随机变量,试求随机过程0()()TY t X s ds =⎰的均值函数、相关函数、协方差函数与方差函数。
9. 设{(),0}W t t ≥是参数为2s 的Wiener 过程,求下列随机过程的均值函数和相关函数。
(1)0()(),0tX t W s ds t =≥⎰;(2)0()(),0tX t sW s ds t =≥⎰;(3)()[()()],0t ltX t W s W t ds t +=-≥⎰。
10. 求一阶线性随机微分方程0()()0,0(0)(0)X t aX t t a X X '+=≥⎧>⎨=⎩的解及解的均值函数、相关函数及解的一维概率密度函数,其中0X 是均值为0、方差为2s 的正态随机变量。