物理竞赛所有公式 (2)
初中竞赛物理必背公式
初中竞赛物理必背公式
初中物理竞赛中需要掌握的公式较多,以下是一些核心公式:
1. 速度:$V= \frac{S}{t}$
2. 重力:$G = mg$
3. 密度:$\rho = \frac{m}{V}$
4. 压强:$p = \frac{F}{S}$
5. 液体压强:$p = \rho gh$
6. 浮力:
$F_{浮} = F^{\prime} - F$(压力差)
$F_{浮} = G - F$(视重力)
$F_{浮} = G$(漂浮、悬浮)
阿基米德原理:$F_{浮} = G_{排} = \rho_{液}gV_{排}$
7. 杠杆平衡条件:$F_{1}L_{1} = F_{2}L_{2}$
8. 理想斜面:$\frac{F}{G} = \frac{h}{L}$
9. 理想滑轮:$F = \frac{G}{n}$
10. 实际滑轮:$F = \frac{G + G_{动}}{n}$ (竖直方向)
11. 功:$W = FS = Gh$(把物体举高)
12. 功率:$P = \frac{W}{t} = FV$
13. 功的原理:$W_{手} = W_{机}$
14. 实际机械:$W_{总} = W_{有} + W_{额外}$
15. 机械效率:$\eta = \frac{W_{有}}{W_{总}}$
16. 滑轮组效率:
$\eta = \frac{G}{nF}$ (竖直方向)
$\eta = \frac{G}{G + G_{动}}$ (竖直方向不计摩擦)
$\eta = \frac{f}{nF}$ (水平方向)
以上是初中物理竞赛中必须掌握的公式,建议在理解的基础上进行记忆,以便在解题时能够灵活运用。
高中物理竞赛-联赛公式大全
n
lim
n
i
1
Wi
在数学上,确定元功相当于给出数列通项
式,求总功即求数列n项和当n→∞时的极限.
♠方法 C
这种求功方法依据功对能量变化的量度关系, 只须了解初、未能量状态,得到能量的增量便 是相应的功量.
W E
♠功能关系基本认识 功是力的空间积累作用,能是对物体运动的一种量
度.功的作用效应是使物体的能量状态发生变化,做功
E 0 ve
2GM r
v0
a
e
d
bc
轨道与 能量
轨道与
引力势 能
E
1 2
mv02
GMm r
能量
恒量
示例
两个天体相互作用过程中,如果其它星系离它们很遥远,对它们的作 用可以忽略的话,这两个天体的总动量守恒,两个天体从相距很远到相互 作用直到远离,它们的始末速度满足弹性碰撞的方程组,那么在它们相互 作用的前后相对速度遵守“反射定律”,如果是一维方向上的“弹性碰 撞”,则相对速度等值反向.若一个飞船向外喷气或抛射物体,则系统的 动量守恒而机械能不守恒.
W
0
s
x
♠方法 B
如果在某一位移区间,力随位移变化的关系
为F=f(s) ,求该变力的功通常用微元法,即将位
移区间分成n(n→∞)个小区间s/n,在每个小
区间内将力视为恒定,求其元功Fi·s/n ,由于功 是标量,具有“可加性”,那么总功等于每个
小区间内元功之代数和的极限,即变力在这段
位移中所做的功为:W
质点无引力的作用.
距球心r处所置质点受到引力大小
r3
F
G
R3
M
m
r2
G
全国中学生物理竞赛公式
全国中学生物理竞赛公式全国中学生物理竞赛力学公式一、运动学1.椭圆的曲率半径2.牵连加速度3.等距螺旋线运动的加速度二、牛顿运动定律三、动量1.密舍尔斯基方程〔变质量物体的动力学方程〕()dv dm m F u v dt dt=+-〔其中v 为主体的速度,u 为即将成为主体的一局部的物体的速度〕 四、能量1.重力势能GMm W r=-〔一定有负号,而在电势能中,如果为同种电荷之间的相互作用的电势能,如此应该为正号,但在万有引力的势能中不存在这个问题,一定是负号!!!!〕2.柯尼希定理21''2k k c k kc E E M v E E =+=+〔E k ’为其在质心系中的动能〕 3.约化质量4.资用能〔即可以用于碰撞产生其他能量的动能〔质心的动能不能损失〔由动量守恒决定〕〕〕资用能常用于阈能的计算2212121122kr m m E u u m m μ==+〔u 为两个物体的相对速度〕 5.完全弹性碰撞与恢复系数(1)公式(2)恢复系数来表示完全弹性碰撞112211222112m v m v m u m u u u v v +=+-=-〔用这个方程解比用机械能守恒简单得多〕五、角动量 dL M I dtβ==〔I 为转动惯量〕 3.转动惯量4.常见物体的转动惯量(1)匀质球体225I mr = (2)匀质圆盘〔圆柱〕212I mr =(3)匀质细棒绕端点213I mr =(4)匀质细棒绕中点2112I mr = (5)匀质球壳223I mr =(6)薄板关于中心垂直轴221()12I m a b =+ 5.平行轴定理 2D C I I md =+〔I c 为相对质心且与需要求的轴平行的轴〕6.垂直轴定理(1)推论:一个平面分布的质点组,取z 轴垂直于此平面,x ,y 轴取在平面内,如此三根轴的转动惯量之间有关系 z x y I I I =+〔由此可以推出长方形薄板关于中心垂直轴的转动惯量221()12I m a b =+> 7.天体运动的能量 2GMm E a=-〔a 为椭圆轨道的半长轴,当然,抛物线轨道的能量为0,双曲线轨道的能量大于0〕 8.开普勒第三定律:2234T a GMπ= 六、静力学1.利用矢量的叉乘来解决空间受力平衡问题例如x 方向上的力矩:x y z z y M F r F r F r =⨯=-选一点为轴的话,可以直接列三个力矩平衡的方程来解决问题七、振动与波动1.简谐振动的判定方法2.简谐振动中的量的关系3.驻波min 2x λ=〔x 为相邻的波节或波腹间的距离,即驻波的图形中一个最小重复单位的长度〕4.多普勒效应(1)宏观物体的多普勒效应①观察者运动,波源不动②观察者不动,波源运动③观察者与波源都运动(2)光的多普勒效应注:多普勒效应中的速度的正负单独判断后带入公式中,其实只用记住观察者的运动影响在分子上,而波源运动的影响在分母下.5.有效势能与其应用22()()2eff L V r U r mr=+〔()U r 为传统意义的势能,如引力势能、静电势能、弹性势能,222L mr 是惯性离心力的势能〕振动的角频率满足:ω=〔物体在0r 附近振动,但应该满足''0eff V >,否如此轨道不稳定〕任意物体在0x 附近做简谐振动的条件为:00'()0,''()0U x U x =>其中求简谐振动的角频率的方法为:ω="()k U x =〕 全国中学生物理竞赛电学公式一、静电场:1.高斯定理:4επ∑⎰∑==⋅q q k S d E 封闭面 2.安培环路定理:0=⋅⎰l d E3.均匀带电球壳外表的电场强度:22R kQE =〔在计算相互作用的时候应该用这个公式〕4.无限长直导线产生的电场强度:r k E η2=5.无限大带电平板产生的场强:022εσσπ==k E 6.电偶极矩产生的场强 ①沿着两点连线方向:33rp k r ql kE == ②垂直方向:3322r p k r ql k E ==其中p 为电偶极矩=ql 7.实心球内部电势:322123RQ r k R Q k -=ϕ 8.实心球内部场强:3Qr E kR = 9.同心球形电容器:介电常数指内外球壳之间充满的其中εε)(1221R R k R R C -=即电解质会使电场强度变小但让电容变大10.静电场的能量:2022228E 22121E k C Q QU CU W επω=====电场能量密度为11.电场的极化:kdSC r kQU r Q kQ F E E r r r r r πεεεεε4)1(2210===≥=平行板电容器的电容:点电荷的电势:库仑定律: 对于平行板电容器有:000,Q Q CU S σ==〔不论是否有介质,用这个公式计算出的是自由电荷的密度,而极化电荷密度在平行板电容器中总是满足:01'r rεσσε-=,如果有多个介质在板中串联或并联,将它们分开为许多个电容,然后将电荷密度进展叠加就可以得到最终的自由电荷的密度与极化电荷的密度.〕12.电像法:无限大的接地平板的电像法略接地的球体:q hr q h r h -==','2可以看做将距离和电荷量都乘上一个比例系数hr 只不过电荷的性质相反! 二、稳恒电流 1. 法拉第电解定律:为化合价)为摩尔质量,为电化当量)n M FnMq m k kq m (:)2((:)1(==2. 电阻定律:)1()1(00t R R t ααρρ+=+=即〔t 为摄氏温度〕 3. △-Y 变换:312312233133123121223231231231121YR R R R R R R R R R R R R R R R R R ++=++=++=−→−∆即△-Y 为下求和,Y-△为上求和电容的△-Y 变换与电阻的恰好相反,△-Y 为上求和,Y-△为下求和4. 电流密度的定义:n j SI ∆∆= 5. 欧姆定律的另一表达形式:)1(,ρσ==E σj 6. 焦耳定律的微分形式:ρσ222j j V R I V P p ==== 7. 微观电流neSujS I neuj === 8. 电阻率对电子产生的加速度:9. 晶体三极管的电流分布:三、磁场与电磁感应1. 洛伦兹力B v q F ⨯=2. 毕奥-萨伐尔定律:20cos 4r L I B ϕπμ∆∑= 3. 无限长直流导线产生的磁场:r I r I k B πμ20== 4. 无限长密绕螺线管内部磁场:为单位长度的匝数)n nI B (0μ=5. 安培环路定理:⎰∑=⋅)0内(L I l d B μ〔可用此轻易推出无限长直导线的磁场〕6. 高斯定理:0S (=∆⋅∑)封闭面S B7. 复阻抗:)(1i j Cj X Lj X RX C L R 学中的为单位复数,相当与数ωω===8. 安培力产生的力偶矩:((M m B m m NISn n =⨯=为磁矩)且:为线圈的法向量且方向满足电流的右手螺旋定则)当然力偶矩的大小与所旋转轴无关,甚至所选转轴可以不在线圈平面内,只要满足转轴与力偶矩的方向平行即可〔即与力的方向垂直〕即BISN M =9. 磁矩产生的磁感应强度:032mB x μπ=10. 自感:I L t ε∆=-∆自感磁场能量:212L W LI = 11. 变压器中阻抗变换:2112'()(n R R n n =为原线圈的匝数) 全国中学生物理竞赛 光学 公式一、几何光学1.平面镜反射:2.平面折射〔视深公式〕''n n n n u v R-+=〔圆心在像方半径取正,圆心在物方半径取负〕 以上所有:0,00,0u u v v ><><实物,,虚物实像,,虚像二、波动光学注意关注牛顿环干预的原理,尤其是注意是在球面上反射的光线〔没有半波损失〕与在最低的平面处反射的光线〔有半波损失〕进展干预,而不是在最上面的平面反射的光线进展干预!而且牛顿环作为一种特殊的等厚干预,光在空气层中的路径要计算两次!所以可以得到牛顿环的公式如下: ,3,2,1,0()21(=+=k R k r k λ……〕〔指的是第k 级明纹的位置,中央为暗纹〕22cos 2i h n =∆〔注意等倾干预的半波损失有两种情况〕 〔2i 指的是第一次进入2n 介质的折射角〕6.等厚干预〔略〕''ff xx =〔其中x 与'x 为以焦距计算的物距和像距〕对于物方与像方折射率一样的透镜有牛顿公式的符号规如此为:以物方焦点的远离光心的距离为牛顿物距〔即当经典物距小于焦距的物体的牛顿物距小于零〕;以像方焦点的远离光心的距离为牛顿像距.x d D针对于玻璃球而言A 为齐明点,R n n AO 12=〔即从任何位置看A 点的像在同一位置〕1.22d λθ=〔即艾里斑〕全国中学生物理竞赛 近代物理学 公式一、洛伦兹变换与其推论:2222121222011''1cv c v t t t t t cv l l -∆=--=-=∆-=τ钟慢效应:尺缩效应:〔这两个公式最好不要用,最好用最根底的洛伦兹变换来进展推导,否如此容易在确定不变量的时候出现问题〕小心推导钟慢效应与尺缩效应的时候不要弄反了一定要分析到底在哪一个参考系中x 或者t 是不变的速度变换:〔这个可以由洛伦兹变换求导推出〕<系的速度系相对为S S v '> 正向:222222211'11'1'cvu c v u u c vu c v u u c vu vu u x z z x y y x x x --=--=--= 逆向:2222222'11''11''1'c v u c v u u cv u c v u u cv u v u u x z z xy y xx x +-=+-=++= 时间与空间距离变换:二、相对论力学:动量:0p mv m v γ===能量:2220=E mc m c γ== 动能满足:202c m mc E k -=又有:224202c p c m E +=全国中学生物理竞赛 热学 公式一、理想气体1.理想气体状态方程2.平均平动动能与温度的关系3.能均分定理二、固体液体气体和热传导方式4.热传导定律5.辐射6.膨胀7.外表X 力8.液体形成的球形空泡〔两面都是空气〕由于外表X 力产生的附加压强为:三、特殊准静态过程<1>状态方程〔泊松方程〕 完整的应为:)(,111Const T P Const PT Const TVConstPV ====---γγγγγγ <2>做功 2122111d ()1V V W p V p V p V γ==--⎰〔整个方程实际的意义就是:V W nC T =∆,本来是很简单的,所以对于绝热过程来说,一般不要乱用泊松方程,否如此会误入歧途,因为泊松方程好似与热力学第一定律加上理想气体状态方程完全等效〕 W Q U +=∆〔Q 指系统吸收的热量,W 指外界对系统做的功〕开尔文表述:不可能从单一热源吸收热量,使之完全变为有用功而不产生其他影响.〔第二类永动机是不可能造成的〕 克劳修斯表述:不可能把热量从低温物体传到高温物体而不引起其他变化.全国中学生物理竞赛原子物理 公式1.波尔相关理论:o11212120.53A 53pm13.6n n r E eVn m r r ZMZ M E E n m ===-==〔m 为电子的质量,M 为相当于电子的粒子的质量,比如μ-子〕12212(th M M E Q M M M +=为运动粒子质量,为静止粒子的质量)〔最好用资用能来进展推导,这个比拟保险,公式容易记错〕1.p x h ∆∆≥2.E t h ∆∆≥ 〔另有说法为,44hhp x E t ππ∆∆>∆∆>〕 5.光电效应光子携带能量:E h ν= 光电子的动能:k E h W ν=-逸出功 反向截止电压:k h W E V e eν-==逸出功[附]三角函数公式。
物理竞赛 联赛公式大全
相对于惯性系以加速度a运动的参考系称 非惯性参考系. 牛顿运动定律在非惯性参考系中不能适用 a
Fi ma
小球不受外 力而向我加 速
ma m a
小球不受外 力而静止
为了使牛顿定律在非惯性系中具有与惯性系相同的形式,我们可以引入 一个虚拟的力叫惯性力使牛顿第二定律形式为
可适用于非惯性系. 惯性力与物体实际受到的力(按性质命名的力)不同,它是虚构的,没 有施力物,不属于哪种
FN Ff v
mg
mg
查阅
h L0 将珠子的运动等效为从高 处水平抛出、射程为 2
L h 、初速度为 v0
2 0 2
L2 h2 0 L0 h 2 g
g L0 h
的平抛运动
v0
v 对轨迹上的P点: g sin
而v
2 2 v0
v2 y
2T0 sin mg sin m
则珠子速度
L0 h g L0 h 2 g 2 2 L0 y sin 2 gy sin
y y
h L0 2
v
L2 h2 0
g
v 2 gy
L0 2T0 mg 2 L0 y y 2T0 gL0 2T0 mg
地球质量M 太阳质量MS 地球半径R 日地距离r 物体质量m 2 v1 GMm GM 第一宇宙速度v1: 由 m v1 7.9 km/s R R2 (地球环绕速度) R GMm 1 2 第二宇宙速度v2: 由能量守恒 mv2 R 2 2GM (地球逃逸速度) v2 11.2 km/s R 第三宇宙速度v3: 原处于太阳系中地球轨道位臵的物体离 (太阳逃逸速度) 开太阳系所需“逃逸速度”
物理竞赛公式大全
2.18 L mvr sin 同上
2.21 M Fd Fr sin F 对参考点的力矩
1.43 胡克定律 F= — kx (k 是比例常数,称为弹簧的劲度 系数 )
1.44 最大静摩擦力 f 最大=μ 0N ( μ 0 静摩擦系数)
2.22 M r F 力矩
2.24 M
dL
作用在质点上的合外力矩等于质点角动
v2
an=
R
(Rω) 2 R
Rω2
a
dv
t=
dω R
Rα
dt dt
牛顿第一定律: 任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律: 物体受到外力作用时, 所获得的加速 度 a 的大小与外力 F 的大小成正比, 与物体的质量 m成反 比;加速度的方向与外力的方向相同。 1.37 F=ma
牛顿第三定律:若物体 A 以力 F1 作用与物体 B,则同 时物体 B 必以力 F2 作用与物体 A;这两个力的大小相等、 方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互吸 引力, 其大小与两质点质量的乘积成正比, 与两质点间的 距离的二次方成反比;引力的方向沿两质点的连线
1.39
2.33 Mdt dL 冲量距
(m1v10+m2 v20) 左面为系统所受的外力的总动量,第一项为系统的
t
L
2.34 Mdt
dL L L0 I I 0
t0
L0
末动量,二为初动量
2.35 L I 常量
n
2.13 质点系的动量定理:
Fi △t
i1
n
mi vi
i1
n
mi vi 0
全国中学生物理竞赛公式定理
1.波尔相关理论:
(m为电子的质量,M为相当于电子的粒子的质量,比如 子)
2.阈能
(最好用资用能来进行推导,这个比较保险,公式容易记错)
3.康普顿散射
4.不确定关系
1. 2.
(另有说法为 )
5.光电效应
光子携带能量:
光电子的动能:
反向截止电压:
[附]三角函数公式
3.能均分定理
二、固体液体气体和热传导方式
4.热传导定律
5.辐射
6.膨胀
7.表面张力
8.液体形成的球形空泡(两面都是空气)由于表面张力产生的附加压强为:
3、特殊准静态过程
9.等容过程
10.等压过程
11.等温过程
12.绝热过程
(1)状态方程(泊松方程)
完整的应为:
(2)做功
(整个方程实际的意义就是: ,本来是很简单的,所以对于绝热过程来说,一般不要乱用泊松方程,否则会误入歧途,因为泊松方程好像与热力学第一定律加上理想气体状态方程完全等效)
……)(指的是第k级明纹的位置,中央为暗纹)
5.等倾干涉
(注意等倾干涉的半波损失有两种情况)
( 指的是第一次进入 介质的折射角)
6.等厚干涉(略)
7.牛顿物像公式
(其中 与 为以焦距计算的物距和像距)
对于物方与像方折射率相同的透镜有
牛顿公式的符号规则为:
以物方焦点的远离光心的距离为牛顿物距(即当经典物距小于焦距的物体的牛顿物距小于零);以像方焦点的远离光心的距离为牛顿像距。
13.热力学第一定律
( 指系统吸收的热量, 指外界对系统做的功)
14.特殊过程的有关关系列表如下:
特殊过程
关于物理竞赛所有公式
22轨迹方程 y=xtga — 2gx22v 02 cos 2a1.25 加速度数值 a= a t 2 a n 21.26 法向加速度和匀速圆周运动的向心x v 0 cosa t1y v 0 sina t gt21.19 射程X=v0 sin2a g 1.20射高Y=v 02s 2in g 2aa t =dv R d ωR αdt dt牛顿第一定律:任何物体都保持静止 或匀速直线运动状态,除非它受到作用力 而被迫改变这种状态。
牛顿第二定律:物体受到外力作用 时,所获得的加速度 a 的大小与外力 F的 大小成正比,与物体的质量 m 成反比;加 速度的方向与外力的方向相同。
1.37 F=ma 牛顿第三定律:若物体 A 以力 F 1作用 与物体 B ,则同时物体 B 必以力 F 2作用与第一 章 质点运动 学 和牛 顿运动定 律1.21 飞行时间 y=xtga — gx g 1.2 瞬时速度 v= lim △r =dr△t =dt1.23 2向心加速度 a=vR1. 3 速度v=△rl △im t 0 △t l △im t 0 ds dt1.24 法向加速度矢量和 a=a t +a n圆周运动加速度等于切向加速度与 1.7瞬时加速度(加速度)a=lim△t 0△v △t dvdt 2加速度相同 a n =vR 1.82瞬时加速度 a=dv =d rdt dt 1.11 1.12 匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v0+at 1.13 变速运动质点坐标 x=x 0+v 0t+ 1at 22 标变化公 1.27 切向加速 度只改 变速度的 大小 dv a t =dt ds d Φ v R R ω dt dt 角速度ω d φ dt 1.28 1.29 1.14 式 :v 2-v 02=2a(x-x 0) 1.15 自由落体运动 1.17 抛 体 运速度随 1.30 1.16 动 竖直上抛运动 速度分量 角加速度 α d d ωt d 2φ dt 21.31 系 角加速度 a 与线加速度 a n 、a t 间的关 v x v 0 cosa v y v 0 sina gt a n = 1.18 抛 体 运距离分量 22v (Rω) 2 R ω RR △r 1.1 平均速度 v = △r1.22 1.6 △v 平均加速度 a =△△v t物体A;这两个力的大小相等、方向相反,而且沿同一直线。
物理竞赛必备公式整理
物理竞赛必备公式整理在物理竞赛中,公式是解题过程中不可或缺的工具。
有一个良好的公式整理能够帮助竞赛选手迅速回忆和应用相关公式,提高解题效率。
本文对物理竞赛中常见的公式进行整理,希望对竞赛选手有所帮助。
1. 力学1.1 牛顿第二定律:F = m × a1.2 万有引力定律:F = G × (m₁ × m₂) / r²1.3 动能定理:E_k = 1/2 × m × v²1.4 动量定理:F × Δt = m × Δv1.5 弹性势能:E_p = 1/2 × k × x²2. 热学2.1 热传导:Q = k × A × ΔT / d2.2 热容量:Q = m × c × ΔT2.3 理想气体状态方程:P × V = n × R × T2.4 等温过程:Q = W2.5 绝热过程:P₁ × V₁^γ = P₂ × V₂^γ(γ为绝热指数)3. 光学3.1 光速:c = 3.00 × 10^8 m/s3.2 光的折射定律:n₁ × sin(θ₁) = n₂ × sin(θ₂)3.3 薄透镜公式:1/f = 1/d₁ + 1/d₂3.4 光的衍射公式:nλ = d × sin(θ)3.5 球面镜公式:1/f = 1/d₁ + 1/d₂4. 电学4.1 电流定义:I = Q / Δt4.2 电阻定律:R = V / I4.3 欧姆定律:V = I × R4.4 等效电阻(串联):R = R₁ + R₂ + R₃ + ...4.5 等效电阻(并联):1/R = 1/R₁ + 1/R₂ + 1/R₃ + ...5. 声学5.1 声速:v = √(γ × p / ρ)5.2 管道共振频率:f = n × v / (2L)5.3 波长与频率关系:v = f × λ5.4 声强:I = P / A5.5 声级:β = 10 × log(I / I₀)6. 原子物理6.1 瑞利-里斯公式:1/λ = R × (1/n₁² - 1/n₂²)6.2 能级间距:ΔE = hf6.3 波粒二象性:p = h / λ6.4 库仑定律:F = k × (q₁ × q₂) / r²6.5 阻尼振动的衰减:A = A₀ × e^(-bt)以上只是物理竞赛中常见的一些公式整理,希望能对您有所帮助。
高中物理竞赛公式及结论
高中物理竞赛公式及结论物理学作为一门自然科学,研究物质及其运动规律,是高中学生必修的一门学科。
在高中物理竞赛中,掌握并灵活运用物理公式是取得好成绩的关键。
本文将介绍一些常见的高中物理竞赛公式及结论,并简要解释其应用。
1. 力学部分1.1 动力学动力学研究物体的运动规律,其中最基本的公式是牛顿第二定律:F = ma其中F表示物体所受的力,m表示物体的质量,a表示物体的加速度。
这个公式表明,物体受到的力越大,加速度也越大;物体的质量越大,加速度越小。
1.2 动量守恒定律在弹性碰撞中,动量守恒定律适用:m1v1 + m2v2 = m1v1' + m2v2'其中m1和m2分别是两个物体的质量,v1和v2是碰撞前的速度,v1'和v2'是碰撞后的速度。
这个公式表明,两个物体在碰撞前后的总动量保持不变。
2. 热学部分2.1 热力学第一定律热力学第一定律也被称为能量守恒定律,它表明能量在物理系统中是守恒的。
对于一个封闭系统,它的内能变化等于吸收的热量减去对外做的功:ΔU = Q - W其中ΔU表示内能的变化,Q表示吸收的热量,W表示对外做的功。
2.2 热力学第二定律热力学第二定律主要描述了热能的自发传递方式,即热量只能从高温物体传递到低温物体。
其中最著名的表达方式是卡诺循环的效率公式:η = 1 - T2 / T1其中η表示卡诺循环的效率,T2表示低温物体的温度,T1表示高温物体的温度。
这个公式表明,卡诺循环的效率随着温差的增大而增大。
3. 电磁学部分3.1 电场强度电场强度描述了单位正电荷所受到的力的大小,电场强度的公式为:E = k * Q / r^2其中E表示电场强度,k表示电场强度与电荷之间的比例常数,Q表示电荷的大小,r表示距离电荷的距离。
3.2 电势差电势差描述了单位正电荷从一个点移动到另一个点所做的功,电势差的公式为:ΔV = W / q其中ΔV表示电势差,W表示从一个点到另一个点移动电荷所做的功,q表示电荷的大小。
大学物理竞赛辅导-力学
l. 水平轻绳跨过固定在质量为m 1的水平物块的一个小圆柱棒后,斜向下连接质量为m 2的小物块,设系统处处无摩擦,将系统从静止状态自由释放,假设两物块的运动方向恒如图所示,即绳与水平桌面的夹角α始终不变,试求α.21,,a a α1a .2a 1a 1m 2mα1a .2a 1a 1m 2m 解:画隔离体图,受力分析α1a 1m TT1a .2a 2m T例7. 光滑水平面上有一半径为R 的固定圆环,长为l 2的匀质细杆AB 开始时绕着C 点旋转,C 点靠在环上,且无初速度.假设而后细杆可无相对滑动地绕着圆环外侧运动,直至细杆的B 端与环接触后彼此分离,已知细杆与圆环间的摩擦系数μ处处相同,试求μ的取值范围.Rl lABC 解:设初始时细杆的旋转角速度为0ω,转过θ角后角速度为ω.由于摩擦力并不作功,故细杆和圆环构成的系统机械能守恒例8. 两个均质圆盘转动惯量分别为1J 和2J 开始时第一个圆盘以10ω的角速度旋转,第二个圆盘静止,然后使两盘水平轴接近,求:当接触点处无相对滑动时,两圆盘的角速度10ω1r 2r解:受力分析:1r 2r 10ω1N gm 1ffgm 22N 1o 2o 无竖直方向上的运动g m f N 11+=gm f N 22=+以O 1点为参考点,计算系统的外力矩:))((2122r r g m N M +-=0)(21≠+-=r r f例9: 质量为2m,半径为R 的均质圆盘形滑轮,挂质量分别为m 和2m 的物体,绳与滑轮之间的摩擦系数为μ,问μ为何值时绳与滑轮之间无相对滑动.解: 受力分析:mg1T mg22T m 2m2T 1Tββθ。
关于物理竞赛所有公式
关于物理竞赛所有公式物理竞赛涵盖了广泛的物理知识和各种公式。
以下是一些与常见物理竞赛相关的公式:力学:1. 牛顿第二定律:F = ma,表示力的大小等于物体质量乘以加速度。
2. 动能公式:K = 1/2mv^2,表示物体的动能等于其质量乘以速度的平方的一半。
3. 势能公式:Ep = mgh,表示物体的势能等于其质量乘以重力加速度乘以高度。
4.弹簧振动的周期公式:T=2π√(m/k),表示弹簧振动的周期等于2π乘以根号下质量除以弹簧常数。
5.牛顿万有引力定律:F=G(m1m2/r^2),表示两个物体之间的引力等于两物体质量乘积除以两物体距离的平方,乘以万有引力常数G。
热学:1.热力学第一定律:ΔU=Q-W,表示系统内部能量的改变等于吸收的热量减去对外做功。
2.理想气体状态方程:PV=nRT,表示理想气体的压强乘以体积等于物质的摩尔数乘以理想气体常数乘以温度。
3.热传导公式:Q=kA(ΔT/Δx),表示热传导的热量等于热导率乘以传导面积乘以温度差除以传导距离。
电磁学:1.电流公式:I=Q/t,表示电流等于电荷通过其中一点的数量除以通过的时间。
2.电阻与电流关系:V=IR,表示电压等于电阻乘以电流。
3.欧姆定律:V=IR,表示电压等于电阻乘以电流。
4.电容器公式:C=Q/V,表示电容等于电荷与电压的比值。
5.电场强度公式:E=F/q,表示电场强度等于电力与电荷的比值。
光学:1.光速公式:c=λf,表示光速等于波长乘以频率。
2. 折射定律:n₁sinθ₁ = n₂sinθ₂,表示入射角的正弦乘以第一介质的折射率等于出射角的正弦乘以第二介质的折射率。
3.薄透镜公式:1/f=1/u+1/v,表示薄透镜的焦距的倒数等于物距的倒数加上像距的倒数。
以上是一些常见的物理竞赛公式,但物理竞赛的内容广泛且多样化,所以学习和掌握更多的公式和背景知识对于竞赛取得好成绩非常有帮助。
物理竞赛所有公式
物理竞赛所有公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第一章 质点运动学和牛顿运动定律平均速度 v =t△△r瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dtds ==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度(加速度)a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at 变速运动质点坐标x=x 0+v 0t+21at 2速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=gav 2sin 20射高Y=gav 22sin 20飞行时间y=xtga —ggx2轨迹方程y=xtga —av gx 2202cos 2 向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dt φωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
物理竞赛所有公式
第一章质点运动学和牛顿运动定律1.1平均速度v =t△△r1.2瞬时速度v=lim△t →△t △r =dtdr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6a 1.71.81.111.121.131.141.151.171.181.19射程X=g 01.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25加速度数值a=22n t a a +1.26法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2dvαR = B ,的大小相等、方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G221r m m G 为万有引力称量=6.67×10-11N ∙m 2/kg 21.40重力P=mg(g 重力加速度)1.41重力P=G 2rMm1.42有上两式重力加速度g=G2rM(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)1.43胡克定律F=—kx(k 是比例常数,称为弹簧的劲度系数) 1.44最大静摩擦力f 最大=μ0N (μ0静摩擦系数) 1.45滑动摩擦系数f=μN(μ滑动摩擦系数略小于μ0)第二章 守恒定律 2.1动量2.22.3动2.4⎰21t t Fdt 2.5冲量I=2.62.72.92.12—(m 1v 10+m 2v 2.13质∑∑∑===-=n i i i i n i ii ivm v m t F 111△作用在系统上的外力的总冲量等于系统总动量的增量2.14质点系的动量守恒定律(系统不受外力或外力矢量和为零)∑=n i ii v m 1=∑=ni i i vm 1=常矢量2.16mvR R p L =∙=圆周运动角动量R 为半径 2.17mvd d p L =∙=非圆周运动,d 为参考点o到p 点的垂直距离 2.18φsin mvr L =同上2.21 φsin Fr Fd M ==F 对参考点的力矩 2.22F r M ∙=力矩2.24dtdLM =作用在质点上的合外力矩等于质点角动量的时间变化率2.26⎪⎪⎬⎫==常矢量L dt dL 0如果对于某一固定参考点,质为相应2.36θcos Fr W =2.37r F W ∙=力的功等于力沿质点位移方向的分量与质点位移大小的乘积2.38ds F dr F dW W b L a b L a b L a ab θcos )()()(⎰=∙⎰=⎰=2.39n b L a b L a WW W dr F F F dr F W +++=∙++⎰=∙⎰= 2121)()()(合力的功等于各分力功的代数和2.40tWN ∆∆=功率等于功比上时间2.41dtdWt W N t =∆∆=→∆0lim2.42v F v F tsF N t ∙==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积2.4320221210mv mv mvdv W v v -=⎰=功等于动能的增量2.44221mv E k =物体的动能2.450k k E E W -=合力对物体所作的功等于物体动能的增量(动能定理) 2.46)(ab h h mg W -=重力做的功 2.47ab W 2.48ab W 功2.49W ab 保2.50E p =2.51E p =2.52E p =2.53W 外2.54W 外保守内力2.55p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量2.56)()(00p k p k E E E E W W +-+=+非内外 2.57p k E E E +=系统的动能k 和势能p 之和称为系统的机械能2.580E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)2.59常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。
高中物理竞赛公式总结
dW = ba F • dr = ba F cos θds
( L) ( L)
F △t = m v − m v
i i i i =1 i =1 i =1
n
n
n
i i0
W = ba F • dr = ba ( F1 + F2 + Λ Fn ) • dr = W1 + W2 + Λ +
Mdt =
t0
t
L
L0
dL = L − L0 = Iω − Iω 0
2.35 L = I ω = 常量 2.36 W = Fr cos θ 2.37 W = F • r 力的功等于力沿质点位移方向的分量与 质点位移大小的乘积 2.38 Wab = 2.39
b a ( L)
2.12 质 点 系 的 动 量 定 理 (F1+F2) △ t=(m1v1+m2v2) — (m1v10+m2v20) 左面为系统所受的外力的总动量,第一项为系统的 末动量,二为初动量 2.13 质点系的动量定理:
( L) ( L)
作用在系统上的外力的总冲量等于系统总动量的增 量 2.14 质点系的动量守恒定律 (系统不受外力或外力矢量和 为零)
gx 2 2 2v 0 cos 2 a
1.23 向心加速度 a=
v2 R
1.45 滑动摩擦系数 f=μN (μ滑动摩擦系数略小于μ0) 第二章 守恒定律 2.1 动量 P=mv 2.2 牛顿第二定律 F= 2.3
动量保持不变。质点系的角动量守恒定律 2.28 I =
Δm r
i
2
i i
刚体对给定转轴的转动惯量
v = v 0 − gt 1 2 y = v 0 t − gt 2 2 2 v = v − 2 gy 0
数学物理竞赛知识点总结
数学物理竞赛知识点总结一、数学竞赛知识点总结1. 不等式(1) 已知不等式性质(2) 不等式的计算(3) 不等式的应用(如证明、应用)2. 函数(1) 函数的性质(2) 函数的运算(如复合函数、反函数)(3) 函数的图像与性质(如一次函数、二次函数、三角函数)3. 数列(1) 等差数列和等比数列的性质(2) 数列的求和(3) 数列的应用(如证明、应用)4. 极限(1) 极限的概念及性质(2) 极限的运算规则(3) 极限的应用(如证明、变量法)5. 微分与积分(1) 微分的概念及性质(2) 积分的概念及性质(3) 微分与积分的应用(如证明、变量法)6. 组合与排列(1) 组合与排列的概念及性质(2) 组合与排列的公式与计算(3) 组合与排列的应用(如证明、变量法)7. 概率(1) 概率的概念及性质(2) 概率的计算公式(3) 概率的应用(如证明、变量法)8. 数论(1) 数论的基本概念(2) 数论的性质与定理(3) 数论的应用(如证明、变量法)9. 平面几何(1) 平面几何的基本概念(2) 平面几何的性质与定理(3) 平面几何的应用(如证明、变量法)10. 空间几何(1) 空间几何的基本概念(2) 空间几何的性质与定理(3) 空间几何的应用(如证明、变量法)11. 解析几何(1) 解析几何的基本概念(2) 解析几何的性质与定理(3) 解析几何的应用(如证明、变量法)12. 复变函数(1) 复变函数的基本概念(2) 复变函数的性质与定理(3) 复变函数的应用(如证明、变量法)13. 加速度表达式(1) 加速度表达式的概念及性质(2) 加速度表达式的计算规则(3) 加速度表达式的应用(如证明、变量法)14. 群论(1) 群论的基本概念(2) 群论的性质与定理(3) 群论的应用(如证明、变量法)15. 常数(1) 常数的概念及性质(2) 常数的计算规则(3) 常数的应用(如证明、变量法)二、物理竞赛知识点总结1. 运动学(1) 位移、速度、加速度的等物理量的概念及性质(2) 运动图象的绘制及分析(3) 运动规律的应用2. 动力学(1) 牛顿定律的表述及应用(2) 动量、动能、功率的概念及计算(3) 动力学定律的应用3. 静力学(1) 物体的平衡条件(2) 施力与受力的关系(3) 静力学的应用(如证明、变量法)4. 物态方程(1) 理想气体状态方程的概念及性质(2) 理想气体状态方程的计算及应用(3) 理想气体状态方程的变化规律5. 热力学(1) 热力学的基本概念(2) 热力学的性质与定理(3) 热力学的应用(如证明、变量法)6. 电学(1) 电荷、电场、电势的概念及性质(2) 电路、电流、电阻的计算(3) 电学的应用(如证明、变量法)7. 光学(1) 几何光学与波动光学的基本概念(2) 光学现象的分析与计算(3) 光学的应用(如证明、变量法)8. 声学(1) 声波的基本概念(2) 声学现象的分析与计算(3) 声学的应用(如证明、变量法)9. 原子物理(1) 原子结构的基本概念(2) 原子核的结构及性质(3) 原子物理的应用(如证明、变量法)10. 核物理(1) 核反应的基本概念(2) 放射性物质的性质及应用(3) 核物理的应用(如证明、变量法)11. 量子物理(1) 量子力学的基本概念(2) 量子物理的性质与定理(3) 量子物理的应用(如证明、变量法)12. 统计物理(1) 统计物理的基本概念(2) 统计物理的性质与定理(3) 统计物理的应用(如证明、变量法)13. 电磁学(1) 电场、磁场、电磁感应的基本概念(2) 电磁学现象的应用与计算(3) 电磁学的应用(如证明、变量法)14. 物理实验(1) 实验的设计及操作(2) 实验结果的分析及应用(3) 实验的应用(如证明、变量法)15. 分子物理(1) 分子结构的基本概念(2) 分子物理的性质及应用(3) 分子物理的应用(如证明、变量法)总结:数学物理竞赛知识点包括数学和物理两个方面,内容涉及不等式、函数、数列、极限、微分与积分、组合与排列、概率、数论、平面几何、空间几何、解析几何、复变函数、加速度表达式、群论、常数等数学知识,运动学、动力学、静力学、物态方程、热力学、电学、光学、声学、原子物理、核物理、量子物理、统计物理、电磁学、物理实验、分子物理等物理知识。
高二物理竞赛洛伦兹力公式与载流直导线课件
m ISen
由毕-萨定律得出的结论
方向:矢量直接叉乘得到或用右手定则判断 任一圆弧载流导线在中心o产生的磁场 (3)导线及其延长线上 (1)若线圈有 匝 (3)导线及其延长线上 任一圆弧载流导线在中心o产生的磁场 (1)若线圈有 匝
B
0m
2 π x3
(1)若线圈有 匝
若线圈有N匝 (1)无限长载流长直导线产生的磁场
方向垂直于圆形导线平面沿ox轴正方向
右手定则:右手弯曲的四指代替圆线圈中的电流方向, 则姆指将沿轴上B的方向。
讨 论
(1)若线圈有 N 匝 B
(2)x 0
B 0I
2R
N
(2 x2
0 IR2 R2)32
任一圆弧载流导线在
中心o产生的磁场
R
o
r
x
*pB x
B0
0I 2R
. 2
I
B0
0I 2R
例2 圆形载流导线轴线上的磁场. (4)载流圆线圈在中心产生的磁场
例2 圆形载流导线轴线上的磁场.
m NISen
I m S en
m
en
I S
适用于任意形状的载流平面线圈
由毕-萨定律得出的结论
(1)无限长载流长直导线产生的磁场
B 0I
2 π r0
(2)半无限长载流长直导线产生的磁场
B 0I
4 π r0
(3)导线及其延长线上 B 0
10
(4)载流圆线圈在中心产生的磁场
B
0I 2R
若线圈有 N 匝
B
N0I 2R
(5)任一圆弧载流导线在中心o产生的磁场
B0
0I 2R
. 2
I
R1
R2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学和牛顿运动定律平均速度 v =t △△r瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dt ds ==→→lim lim△t 0△t △t △r平均加速度a =△t△v 瞬时加速度(加速度)a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=g av 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —g gx 2轨迹方程y=xtga —av gx 2202cos 2向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线F=G221rm m G 为万有引力称量=×10-11N •m 2/kg 2重力 P=mg (g 重力加速度)重力 P=G 2r Mm有上两式重力加速度g=G2r M(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)胡克定律 F=—kx (k 是比例常数,称为弹簧的劲度系数) 最大静摩擦力 f 最大=μ0N (μ0静摩擦系数)滑动摩擦系数 f=μN (μ滑动摩擦系数略小于μ0) 第二章 守恒定律 动量P=mv牛顿第二定律F=dtdP dt mv d =)( 动量定理的微分形式 Fdt=mdv=d(mv) F=ma=m dt dv⎰21t t Fdt =⎰21)(v v mv d =mv 2-mv 1冲量 I=⎰21t t Fdt动量定理 I=P 2-P 1 平均冲力F 与冲量 I=⎰21t t Fdt =F (t 2-t 1)平均冲力F =12t t I-=1221t t Fdtt t -⎰=1212t t mv mv -- 质点系的动量定理 (F 1+F 2)△t=(m 1v 1+m 2v 2)—(m 1v 10+m 2v 20)左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量质点系的动量定理:∑∑∑===-=ni ni i i ni i i i v m v m t F 1101△作用在系统上的外力的总冲量等于系统总动量的增量质点系的动量守恒定律(系统不受外力或外力矢量和为零)∑=n i ii v m 1=∑=ni i i vm 1=常矢量mvR R p L =•=圆周运动角动量 R 为半径 mvd d p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离 φsin mvr L = 同上φsin Fr Fd M == F 对参考点的力矩F r M •= 力矩dtdL M = 作用在质点上的合外力矩等于质点角动量的时间变化率⎪⎭⎪⎬⎫==常矢量L dtdL 0如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。
质点系的角动量守恒定律 ∑∆=i i i r m I 2 刚体对给定转轴的转动惯量αI M = (刚体的合外力矩)刚体在外力矩M的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律。
⎰⎰==vmdv r dm r I ρ22 转动惯量 (dv 为相应质元dm 的体积元,p 为体积元dv 处的密度)ωI L = 角动量dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量 dL Mdt =冲量距000ωωI I L L dL Mdt LL tt -=-==⎰⎰常量==ωI Lθcos Fr W =r F W •=力的功等于力沿质点位移方向的分量与质点位移大小的乘积ds F dr F dW W b L a b L a b L a ab θcos )()()(⎰=•⎰=⎰=n b L a b L a WW W dr F F F dr F W +++=•++⎰=•⎰=ΛΛ2121)()()(合力的功等于各分力功的代数和tW N ∆∆=功率等于功比上时间dtdWt W N t =∆∆=→∆0lim v F v F tsF N t •==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积20221210mv mv mvdv W v v -=⎰=功等于动能的增量 221mv E k =物体的动能0k k E E W -=合力对物体所作的功等于物体动能的增量(动能定理))(b a ab h h mg W -=重力做的功 )()(ba b a ab r GMmr GMm dr F W ---=•⎰=万有引力做的功222121b a b a ab kx kx dr F W -=•⎰=弹性力做的功p p p E E E W b a ab ∆-=-=保势能定义 mgh E p =重力的势能表达式 rGMmE p -=万有引力势能 221kx E p =弹性势能表达式 0k k E E W W -=+内外质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理)0k k E E W W W -=++非内保内外保守内力和不保守内力p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量)()(00p k p k E E E E W W +-+=+非内外p k E E E +=系统的动能k 和势能p 之和称为系统的机械能0E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。
02022121mgh mv mgh mv +=+重力作用下机械能守恒的一个特例 202022********kx mv kx mv +=+弹性力作用下的机械能守恒第三章 气体动理论1毫米汞柱等于 1mmHg=1标准大气压等户760毫米汞柱1atm=760mmHg=×105Pa 热力学温度 T=+t气体定律 ==222111T V P T V P 常量 即 T V P =常量 阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同。
在标准状态下,即压强P 0=1atm 、温度T 0=时,1摩尔的任何气体体积均为v 0= L/mol 罗常量 N a =1023 mol -1 普适气体常量R 00T v P ≡国际单位制为: J/ 压强用大气压,体积用升×10-2 理想气体的状态方程: PV=RT M M mol v=molM M(质量为M ,摩尔质量为M mol 的气体中包含的摩尔数)(R 为与气体无关的普适常量,称为普适气体常量)理想气体压强公式 P=231v mn (n=VN为单位体积中的平均分字数,称为分子数密度;m 为每个分子的质量,v 为分子热运动的速率) P=VNn nkT T N R V N mV N NmRT V M MRT A A mol ====(为气体分子密度,R 和N A 都是普适常量,二者之比称为波尔兹常量k=K J N RA/1038.123-⨯= 气体动理论温度公式:平均动能kT t 23=ε(平均动能只与温度有关)完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度。
双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度)分子自由度数越大,其热运动平均动能越大。
每个具有相同的品均动能kT 21kT it 2=ε i 为自由度数,上面3/2为一个原子分子自由度1摩尔理想气体的内能为:E 0=RT ikT N N A A 221==ε质量为M ,摩尔质量为M mol 的理想气体能能为E=RT iM M E M M E mol mol 200==υ 气体分子热运动速率的三种统计平均值 最概然速率(就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在p υ附近的单位速率间隔内的分子数百分比最大)mkTm kT p 41.12≈=υ(温度越高,p υ越大,分子质量m 越大p υ)因为k=A N R和mNA=Mmol 所以上式可表示为molmol A p M RTM RT mN RTmkT41.1222≈===υ 平均速率molmol M RTM RT m kT v 60.188≈==ππ 方均根速率molmol M RTM RT v 73.132≈=三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章 热力学基础热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W ’和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E 2-E 1W ’+Q= E 2-E 1Q= E 2-E 1+W 注意这里为W 同一过程中系统对外界所做的功(Q>0系统从外界吸收热量;Q<0表示系统向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功) dQ=dE+dW (系统从外界吸收微小热量dQ ,内能增加微小两dE,对外界做微量功dW平衡过程功的计算dW=PS dl =P dV W=⎰21V V PdV平衡过程中热量的计算 Q=)(12T T C M Mmol-(C 为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的热量)等压过程:)(12T T C M MQ p molp -= 定压摩尔热容量 等容过程:)(12T T C M MQ v molv -=定容摩尔热容量内能增量E 2-E 1=)(212T T R iM M mol -RdT iM M dE mol 2=等容过程2211 T P T P V RM M T P mol ===或常量 Q v =E 2-E 1=)(12T T C M Mv mol-等容过程系统不对外界做功;等容过程内能变化等压过程2211 T V T V P RM M T V mol ===或常量 )()(121221T T R M MV V P PdV W V V mol⎰-=-== W E E Q P +-=12(等压膨胀过程中,系统从外界吸收的热量中只有一部分用于增加系统 的内能,其余部分对于外部功)R C C v p =- (1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R 的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功。