香料香豆素的合成
香豆素的提取实验报告
香豆素的提取实验报告
《香豆素的提取实验报告》
引言
香豆素是一种天然存在于香草和许多植物中的化合物,具有独特的香味和药用
价值。
提取香豆素是一项重要的研究工作,可以为香料和药物工业提供重要的
原料。
本实验旨在探究香豆素的提取方法,并对提取效果进行评价。
实验方法
1. 材料准备:采购新鲜的香草材料,如香草豆或香草叶,并将其磨碎成细粉状。
2. 提取剂选择:选择合适的溶剂,如乙醇或乙醚,作为香豆素的提取剂。
3. 提取过程:将香草粉末与提取剂混合,并进行搅拌和加热处理,促使香豆素
从植物材料中溶解出来。
4. 过滤和浓缩:将提取液通过滤纸进行过滤,去除残渣,然后用蒸馏或浓缩方
法将香豆素浓缩至所需浓度。
实验结果
经过实验,我们成功地从香草材料中提取出了香豆素,并对提取效果进行了评价。
在不同提取条件下,我们观察到了香豆素的产率和纯度变化,从而得出了
最佳的提取条件。
讨论与结论
通过本次实验,我们验证了香豆素的提取方法,并对提取效果进行了评价。
我
们发现,提取剂的选择、提取温度和时间等因素对提取效果有着重要影响。
通
过不断优化提取条件,我们可以进一步提高香豆素的提取效率和纯度,为其在
香料和药物工业中的应用提供更好的原料。
结语
本次实验为我们提供了宝贵的实验数据和经验,对香豆素的提取方法和提取效果进行了系统的研究和评价。
我们相信,通过不断的努力和探索,我们可以进一步完善香豆素的提取工艺,为其在工业生产中的应用提供更好的支持。
香豆素提取实验报告
香豆素提取实验报告香豆素提取实验报告引言:香豆素是一种具有独特香气的化合物,广泛应用于食品、香料和药物等领域。
本实验旨在通过提取技术,从香草中提取纯净的香豆素,并对提取效果进行评估。
实验材料:1. 香草样品:本实验选取了新鲜的香草叶片作为提取原料。
2. 溶剂:乙醇、正己烷和水。
3. 仪器设备:搅拌器、离心机、滤纸、烧杯、量筒等。
实验步骤:1. 样品制备:将香草叶片洗净并晾干,然后研磨成粉末状。
2. 溶剂选择:根据香豆素的溶解性特点,选择适当的溶剂。
乙醇在水中的溶解度较高,因此我们选用乙醇作为提取溶剂。
3. 提取过程:将香草粉末与乙醇按一定比例混合,使用搅拌器搅拌一段时间,使香豆素充分溶解于乙醇中。
4. 分离纯化:将提取液离心,分离出液体上层的乙醇溶液。
再将乙醇溶液通过滤纸过滤,去除杂质。
5. 浓缩提取物:将过滤后的乙醇溶液倒入烧杯中,用热水浴加热,使乙醇挥发,浓缩提取物。
6. 结晶分离:待浓缩提取物冷却后,香豆素会逐渐结晶。
使用滤纸将结晶物与溶剂分离。
7. 干燥称重:将分离出的香豆素结晶物置于干燥器中,去除残留的溶剂。
待干燥后,使用天平称重,记录香豆素的质量。
实验结果与分析:通过实验,我们成功从香草中提取出了香豆素结晶物。
经过干燥称重,我们得到了香豆素的质量。
通过计算,我们可以得到提取率,即提取出的香豆素质量与原始香草样品质量的比值。
提取率可以用来评估提取效果的好坏。
同时,我们还可以通过红外光谱仪等仪器对提取物进行分析,确定提取物中是否含有香豆素。
通过与标准香豆素的红外光谱进行对比,可以进一步验证提取物的纯度。
讨论与改进:在实验过程中,我们发现了一些问题和改进的空间。
首先,提取过程中的搅拌时间和温度可能对提取效果有影响。
可以尝试不同的搅拌时间和温度条件,寻找最佳的提取条件。
其次,选择适当的溶剂也是提取效果的关键因素。
可以尝试其他溶剂,如正己烷和水的混合溶剂,以提高提取效果。
此外,本实验只是对香豆素提取的初步尝试,还有许多相关的研究可以进行。
(整理)香豆素合成
工业上利用Perkins反应,采用水杨醛法来合成香豆素,一般采用两步法,首先是水杨醛与乙酸酐形成一份子水杨醛单乙酸酯和一份子醋酸。
然后水杨醛单乙酸酯在醋酸酐的作用下先形成负碳离子,负碳离子在加热的情况下,缩去一份子水,同时二羰基化合物分解,形成环状物质。
最终得到香豆素一、香豆素的合成路线合成路线:以水杨醛、乙酸酐为原料,催化剂是乙酸钠,通过珀金(Perkin)反应制得香豆素二、香豆素合成过程单元反应及其控制分析∙ 1. Perkin反应过程分析∙ 2. Perkin反应过程及其方案设计(2)香豆素Perkin反应的机理∙在香豆素合成过程中,Perkin缩合反应、内酯化反应是在“一锅”中完成的∙反应机理为亲核加成反应,具体如下:碱性催化剂羧酸盐离解产生羧酸负离子,如CH3COOK离解产生的CH3COO-,羧酸负离子CH3COO-与酸酐作用,夺去酸酐中α-碳原子上的一个氢原子,形成一个羧酸酐碳负离子,羧酸酐碳负离子作为亲核试剂与醛发生亲核加成生成中间体(1),经中间体(2)进行水解后,生成β-芳基-α,β-不饱和酸(3),(3)再经内酯化制得香豆素。
(3)香豆素Perkin反应的主要影响因素∙①水杨醛的反应性质∙②乙酸酐的反应性质∙③催化剂∙④反应温度和反应时间∙⑤物料配比∙⑥传质的影响∙⑦水分的影响∙⑧副反应①水杨醛的反应性质∙水杨醛为无色澄清油状液体,有焦灼味及杏仁气味。
熔点(℃):-7,沸点(℃):197,相对密度(水=1):1.17,饱和蒸气压(kPa):0.13(33℃);微溶于水,溶于乙醇、乙醚。
本品可燃,有毒,具刺激性。
∙水杨醛分子结构中羟基(带负电)属于供电子基团,能使苯环上电子云密度升高,故而水杨醛反应活性将减弱,珀金反应需要更强的反应条件。
②乙酸酐的反应性质∙乙酸酐为无色透明液体,有刺激性气味(类似乙酸),其蒸气为催泪毒气。
熔点:-73.1℃,沸点:138.6℃,密度:相对密度(水=1)1.08;溶解性:溶于苯、乙醇、乙醚;稍溶于水。
香豆素合成途径和酶基因
香豆素合成途径和酶基因香豆素是一种具有广泛生物活性的天然产物,具有抗菌、抗病毒、抗肿瘤等多种生物活性。
因此,香豆素及其衍生物已成为当前药物研究领域的热点之一。
本文将介绍香豆素的合成途径和相关酶基因。
一、香豆素的合成途径香豆素的合成途径主要有三种,分别是从苯酚类化合物、酚类化合物和苯丙烷类化合物出发。
1.从苯酚类化合物出发苯酚类化合物是香豆素的最主要前体。
其合成途径如下:(1)使用乙酸酐和苯酚经过酯化反应,得到苯酚酯。
(2)苯酚酯经过芳香性亲电取代反应,得到间羟基苯酚酯。
(3)间羟基苯酚酯经过缩合反应,得到3-苯基丙酮。
(4)3-苯基丙酮经过羰基化反应,得到香豆素。
2.从酚类化合物出发酚类化合物是香豆素的另一种前体。
其合成途径如下:(1)酚类化合物经过酰化反应,得到苯酰酚。
(2)苯酰酚经过芳香性亲电取代反应,得到间羟基苯酰酚。
(3)间羟基苯酰酚经过缩合反应,得到3-苯基丙酮。
(4)3-苯基丙酮经过羰基化反应,得到香豆素。
3.从苯丙烷类化合物出发苯丙烷类化合物也是香豆素的前体之一。
其合成途径如下:(1)苯丙烷类化合物经过羟基化反应,得到间羟基苯丙烷类化合物。
(2)间羟基苯丙烷类化合物经过羧化反应,得到苯丙烷酸。
(3)苯丙烷酸经过羰基化反应,得到香豆素。
二、香豆素的酶基因香豆素的生物合成过程涉及多个酶催化反应,其中一些酶的基因已被克隆和研究。
以下是一些已知的香豆素生物合成酶基因:1.苯酚羟化酶基因(C4H)苯酚羟化酶是香豆素生物合成过程中的第一个关键酶,其基因已被克隆。
该基因编码一种催化苯酚转化为间羟基苯酚的酶。
2.间羟基苯酚甲基转移酶基因(OMT)间羟基苯酚甲基转移酶是香豆素生物合成过程中的第二个关键酶,其基因也已被克隆。
该基因编码一种催化间羟基苯酚转化为甲基间羟基苯酚的酶。
3.香豆素合成酶基因(CYP98A14)香豆素合成酶是香豆素生物合成过程中的最后一个关键酶,其基因也已被克隆。
该基因编码一种催化3-苯基丙酮转化为香豆素的酶。
香豆素合成方法的研究
第!"卷第#期淮北煤师院学报$%&’!"(%’# !))!年"月*%+,-.&%/0+.12314%.&5-6+78,9:3.;<3,74%&&3=3>.,’!))!香豆素合成方法的研究李品华?阮学海?孙兴华@淮北煤炭师范学院化学系?安徽淮北!"A)))B摘要C以氟化钾作催化剂?通过D3,E1-反应来合成香豆素?与其它合成方法相比?此法具有产率高、反应温度低?反应时间短等优点’反应物的最佳摩尔比为C氟化钾C水杨醛C乙酸酐F#’GC#’)C"’!’关键词C香豆素H合成H D3,E1-反应中图分类号C:IJAA文献标识码C K文章编号C#)))L!!!M@!))!B)#L))A#L)N#前言香豆素?学名邻羟基肉桂酸内酯’它是一种重要的化工产品?全世界每年用量约#)))吨?常用于紫罗兰、素心兰、葵花、兰花等香型日用化妆品及香皂、香精中?也可用作电镀光泽剂及食品添加剂O#P’在用作电镀、油墨涂料及杀菌剂方面因价格昂贵受到限制’因此?如何降低成本、提高香豆素的产率成为关键问题’香豆素的经典合成方法是用水杨醛、乙酸酐和乙酸钠作原料?通过D3,E1-反应来合成C除此之外?亦有文献报道过采用氟化钠或碳酸钾作催化剂合成香豆素?还有文献报道通过香豆素L"羧酸脱羧来制备香豆素等等O!L M P?常用合成方法的比较见表#’表1香豆素常用合成方法比较方法#!"原料水杨醛C碳酸钾C乙酸酐水杨醛C氟化钠C乙酸酐水杨醛C氟化钾C乙酸酐配料比Q R%&"’)C"’)C G’G#’)C#’JC"’##’)C#’GC"’!反应时间Q<A M S G"反应温度Q T#G)#U)#!)产率Q V A)MJ U)注#、!均为有关文献报道的最佳反应条件?"为本文所探讨的最佳反应条件在香豆素的合成中?以碳酸钾作催化剂@参考肉桂酸的制备O N P B?反应温度高?反应时间长?产率低?分离困难’以氟化钠作催化剂?产率有所提高?但反应条件仍然苛刻’通过香豆素L"羧酸脱羧来制备?实验操作简单?比较有新意?但其最后一步脱羧反应很难进行完全’氟阴离子作为一种碱性亲核试剂?近年来在有机合成中得到了迅速的发展O G P’利用无水氟化钠作催化剂合成香豆素较以往香豆素的合成法有很大改近?产率可达MAV左右?但其反应收稿日期C!))#L#)L!!作者简介C李品华@#UMM L B?男?安徽潜山人?助教!"淮北煤师院学报"##"年条件仍然比较苛刻$反应温度%&#’(反应时间)*+,-而用无水氟化钾作催化剂则反应条件有了很大的改善$反应温度大大降低、反应周期显著缩短-通过实验研究发现(反应物最佳摩尔比为$氟化钾$水杨醛$乙酸酐.%-+$%-#$/-"-"实验部分2.1主要仪器及试剂012345)#型红外光谱仪美国尼高利6748%9型数字熔点仪上海精密科学仪器有限公司物理光学仪器厂:;8!型四紫外分析仪上海顾村电光仪器厂水杨醛<=上海试剂厂氟化钾9=上海试剂总厂乙酸酐9=宜兴市第二化学试剂厂硅胶>;"!5<=中国青岛海洋化工研究所<?<上海化学试剂站分装厂其余均为市售试剂-2.2无水氟化钾的制备取"#@A;·"B"C于!#DE瓷蒸发皿中(用酒精灯加热熔化(直至成氟化钾块状固体(待氟化钾结晶水完全失去(冷却(研碎(放入%"#’烘箱中干燥%,(冷却(于干燥器中保存-2.3香豆素的合成将%-/@氟化钾、/-+DE乙酸酐加入!#DE二颈瓶中(搅拌下加热至%%#’-这时(缓慢滴加水杨醛%-/DE(%#DFG滴加完毕(温度升至%"#’(在此温度下回流/,(用HI<跟踪反应J展开剂为环己烷$乙醚./$%(K L K M(通过薄板点样可知(这时苯甲醛基本转化完全(转化率达到了&!N左右(将上述反应液冷却至+#*&#’(加饱和食盐水)*+DE(然后在搅拌下慢慢加入无水碳酸钠至溶液OB值为)*+(抽滤(用乙醚溶解固体并用乙醚萃取水层三次(合并溶液和乙醚萃取液-水浴上蒸出乙醚(然后通过薄层色谱法分离可得到白色晶体-测其熔点为PP* P+’J文献值为P+’M-由于氟化钾具有一定的毒性(并且在该反应中用量较大(为了避免污染环境(反应残液中的氟化钾需要回收处理(循环利用-/问题与讨论产品经红外光谱分析(其谱图与标准谱图完全相符-第!期李品华等香豆素合成方法的研究"# 3.1最佳投料比表2最佳投料比确定实验(反应温度!=140$)实验序号!%#&"’水杨醛()*+,-!,-!,-!,-!,-!,-!氟化钾()*+,-,.,-!,,-!&,-!.,-%&,-%/乙酸酐()*+,-#%,-#%,-#%,-#%,-#%,-#%反应温度($!&,!&,!&,!&,!&,!&,反应时间(0""""""转化率(1"%’,/,.,/"",乙酸酐的用量在整个反应过程中影响显著-可能是由于乙酸酐在反应条件下易挥发又兼作溶剂2因此用量不能太少2但过多副产物增加3#42研究发现其最佳投料比5摩尔比6为7水杨醛7乙酸酐8!-,7#-%-在此基础上进一步研究了催化剂用量对产率的影响-氟化钾作催化剂2反应条件缓和2原料转化率高2给实验操作带来极大便利2但催化剂用量过大2副反应增加2并伴有大量树脂状物质生成9催化剂用量过少2水杨醛转化率低-经实验研究发现其最佳投料比5摩尔比6为7水杨醛7乙酸酐7氟化钾8!-,7#-%7!-.-3.2反应温度表3反应温度对产率的影响反应温度!:,!.,!’,!&,!%,!,,:,/,产率516#,#"’,/":,’.""&,注7反应物摩尔比为7水杨醛7乙酸酐7氟化钾8!-,7#-%7!-.反应温度对产率有着显著的影响2温度过高2副产物增加2温度过低2反应速度太慢2反应时间太长2产率低2经实验确定2最佳反应温度为!%,$-3.3反应时间通过;<=跟踪发现7反应#0即可完成2转化率达:"1左右2时间再延长2转化率无明显提高-因此2最佳反应时间为#0-&结论合成香豆素2以氟化钾作催化剂与采用其它催化剂相比具有显著的优点7反应温度大大降低2反应时间显著缩短2产率有很大提高2达到了:,12具有很好的应用前景-反应物最佳摩尔比为7水杨醛7氟化钾7乙酸酐8!-,7!-.7#-%-参考文献73!4强亮生2王慎敏-精细化工实验3>4-哈尔滨7哈尔滨工业大学出版社2!:::-!!%?!!#-3%4杨旭卿2沈立晟-用苯酚与反丁烯二酸及其酰氯合成香豆素3@4-化学通报-!:’!-5#67"#-3#4周成栋2胡继文-香豆素的合成3@4-湘潭大学自然科学学报-!::,-!%5%67.,-3&4兰州大学、复旦大学化学系有机化学教研室-有机化学实验-5第二版63>4-北京7高等教育出版社-!::/-%,.-!"淮北煤师院学报#$$#年%!&倪宏志’邓润华(肉桂酸的制备及应用%)&(化学世界(*++,(-++."$*(%,&熊野奚谷’桑田勉(/01230345676896:;3057<=/10>5701394567%)&(有机合成化学’*+!-’**?*$@A#".#B(%B&C6810D4;30(E374F375G1.57G:91G HF584H68H410593II=F57G101G306;3459D.G5;14F6J=96;2:7GHA;6G1I 96;2:7GH37G D.G5;14F6J=96;26:7GH%)&()KF1;L69/10>57M037H NN’*+O,?!@A B*!.B*+(%O&王文(氟阴离子在有机合成中的应用%)&(化学通报(*+OB?#@A,(!"#$%&’()*$(+%"#,-,-+./)&012-+EN/57PF:3’QRST U:1PF35’LRT U57VPF:3?!"#$%&’"(&)*+,"’-.&%/012$-3"-+)$45(62.&%/7"$8,"%.+)44"9"012$-3"-:;<===@34,%215%6K6:;3057W3H H=74F1H5X1G<=/10>5701394567574F1201H1791682643HH5:;8I:605713H3 9343I=H4(Y=4F1;14F6G’=51IG6896:;3057W3H5;206Z1G V0134I=’4F10139456741;21034:01W3H I6W101G’37G4F10139456745;1W3H3IH6G19013H1G(MF1<1H4;6I300341684F101394567W3H2643HP H5:;8I:60571A H3I59=I3IG1G=G1A39145937F=G05G1[*(OA*($A-(#(7#(8)2’,696:;305;\H=74F1H5H\/10>5701394567(?上接第"#页@-结论通过以上分析可见’变压器漏抗引起换相重迭(在换相期间使参与换相的两相间短路’致使电压波形出现一个很深的缺口’造成网侧电压波形畸变’产生谐波公害’对其他用电设备造成不利影响(一般当!!*$]’网侧电压波形畸变较为严重’这时必须加网侧滤波装置(参考文献A%*&秦曾煌(电工学?下册@电子技术?第四版@%^&(北京A高等教育出版社’*++$(##!.##+(%#&解中秀(电力电子变流技术%^&(北京A中国电力出版社’*+++(!*.!"(%-&黄俊(电力电子变流技术%^&(北京A机械工业出版社’*++!(9+$&:#2-0:),#’;5"1+.-+.;:"1,#)*/2(,%1<!"(21%2)+-+=#5%-*-#2/-25&-%_RD C:37P=57?!"#$%&’"(&)*>,/.-8.0?2@,)27"$8,"%.+)44"9"0?2@,)2:;A===@34,%215%6‘54F G1435I1G373I=H5H684037H860;I13>3V157G:943791aH388194567670194585109509:54aH H:2105;26H1G9F37V57V2F3H1(MF1232109679I:G1H4F3454I13GH46G19013H1686:2:4Z6I43V137G 8:04F10462:<I59F30;’37G4F1373I=H5H937V5Z1H6;101810179137G57H40:945674620394591(7#(8)2’,6019458510\I13>3V157G:943791\9F37V57VP2F3H1\6Z10I322257V37VI1689F37V57V2F3H1。
香豆素及其衍生物的合成与用途
香豆素及其衍生物的合成与用途
香豆素是一种常见的有机化合物,也被称为香豆醛,它在医药、食品、香料等领域都有广泛的应用。
下面将详细介绍香豆素及其衍生物的合成与用途。
1. 香豆素的合成方法
香豆素的合成方法主要有自然合成和人工合成两种方式。
自然合成是指在植物或动物体内自然生成的方法,而人工合成则是指在实验室中通过化学合成的方法合成香豆素。
人工合成的方法多种多样,常见的有利用苯环的构建、通过马来酸酐的加成、利用溴酰苯与醛反应等方法。
其中,马来酸酐加成法是目前应用最广泛的方法之一。
2. 香豆素的衍生物
香豆素有很多衍生物,常见的有香豆素酸、香豆素酯、香豆素醇等。
这些衍生物都具有香豆素的基本结构,但在结构上发生了一定的变化,因此具有不同的物理化学性质和应用价值。
3. 香豆素及其衍生物的应用
香豆素及其衍生物在医药、食品、香料等领域都有广泛的应用。
在医药领域,香豆素衍生物常被用作抗血小板聚集剂、抗过敏药物、镇痛剂等。
在食品领域,香豆素被用作香精、调味剂、食品保鲜剂等。
在香料领域,香豆素及其衍生物被广泛应用于各种香水、肥皂、香烟等产品中。
总之,香豆素及其衍生物具有广泛的应用价值,在不同领域中都有着重要的作用。
香豆素的合成研究
香豆素的合成研究系统研究了以水杨醛为原料制得香豆素的合成工艺,最佳工艺条件是:水杨醛:醋酐=l:4(摩尔比),催化剂加入量为反应液总量的4%,反应温度为170~175℃,反应时间为5~6h,香豆素的收率可达到73%以上。
标签:水杨醛;香豆素;合成香豆素又名1,2-苯并吡喃酮,为无色结晶体,熔点为68~70℃,沸点为297~299℃,有香荚兰豆香,味苦,是一种重要香料,1820年从香豆中发现。
常用作定香剂,也可用于橡胶、塑料制品的增香剂,还可用作金属表面加工的打磨剂和增光剂,在制药工业中用作中间体和药物。
为开发酚类产品的高附加值产品,本文系统研究了以水杨醛为原料制得香豆素的合成工艺,并在实验的基础上得到了最佳工艺条件。
1 实验1.1 仪器设备反应器:250 mL三颈瓶,安装有搅拌、温度计、带有米格分馏柱的蒸馏装置;控温系统:由电热套、6402电子继电器、接触温度计等组成。
1.2 試剂水杨醛、醋酐、碳酸钠、碳酸钾、醋酸钠、醋酸钾、乙醇等均为分析纯。
1.3 合成方法在250 mL三口烧瓶中加入水杨醛、醋酐和催化剂,空气浴加热到反应液温度为170℃,控制馏出温度为120~125℃,待无馏出物时,由回流冷凝管上补加一定量醋酐,补加速度与馏出速度一致,反应温度控制在170~180℃,馏出温度为120~125℃,加料完毕反应一段时间后停止加热,趁热倒人烧杯中,用10%碳酸钠溶液洗涤2次,至PH值为7。
在真空蒸馏装置中对粗产品进行真空蒸馏。
先蒸出前馏分,然后在绝对压为1.3~2.0 kPa,温度为140~150℃条件下收集主馏分香豆素。
再以l:1乙醇重结晶2次,过滤干燥,得香豆素精品。
2 实验结果与讨论2.1 催化剂的选择在实验过程中分别采用了无水碳酸钠、无水碳酸钾,无水醋酸钠和无水醋酸钾作为反应催化剂,实验结果如表1。
由表1结果可看出,以无水碳酸钾作为催化剂时,产率为72.5%,效果最好。
以下反应均选无水碳酸钾作为催化剂进行实验。
香豆素的合成
香豆素的合成姓名: 专业:材料化学班级: 学号:1.引言[1]香豆素,又名1,2-苯并吡喃酮,是具有升华性的白色晶体,具有升华性的白色性结晶,有香茅香气,并略有药香香韵。
不溶于冷水,溶于热水、乙醇、乙醚、氯仿。
熔点:68-73℃,沸点:298℃密度:0.935,水溶解性:1.7 g/L (20℃),相对密度:0.935化学式为C9H6O2香豆素常用作定香剂,用于配制香水,饮料、食品、肥皂等的增香剂。
它也是一种重要的香料,亦是药物等精细化工产品的原料和中间体。
在医药上,香豆素已衍生出许多产品,主要用于抗血小板凝聚、抗血栓和调节睡眠等。
在农药上,合成了多种抗凝血型杀鼠剂。
香豆素可通过以下几种方法制备(1)以水杨醛、乙酸酐为主要原料,在醋酸钠的催化下缩合制得。
(Perkin W反应)(2)以邻甲酚为主要原料,与氯氧化磷作用转变为磷酸二氢钾苯酯,再与醋酸作用制得。
(3)用香豆素-3-羧酸脱羧来制备。
其中Perkin法是较好的工艺路线。
在取代香豆素的众多合成法中,以下四种较常用:Peckmann反应、Perkin反应、Knoevenagel 反应、wintting反应,。
其中,Pechmann法最常用,Perkins最经典,witting反应较少使用,但该法常用于合成3,4位均无取代基的香豆素。
2.实验部分2.1实验目的:1.了解香豆素及其衍生物的性质与应用。
2.通过Perkin反应在不同的催化条件下一步合成香豆素,学会用正交实验法探讨最佳合成条件。
3.学会用博层色谱法判断有机反应的终点。
4.进一步熟练掌握有机实验的基本操作——回流冷凝、蒸馏。
5.了解并熟悉中外文献的查阅途径和方法,学会筛选资料,并根据相关资料写出综述。
6.掌握科技论文的写作方法,提高分析问题和解决问题的能力,增强创新意识和合作精神。
2.2实验试剂及产物的物理常数[1]2.3实验原理及装置实验原理:C H OO H(CH3CO)2O+OHC H 2 = C H 2 - C O O HOO实验装置:2.4实验方案设计配比研究香豆素合成率3.实验及讨论影响因素:1)反应物配比:根据实验比较得出水杨醛与乙酸酐的最适配比为1.35~3。
浅谈香豆素的催化合成
浅谈香豆素的催化合成摘要:香豆素作为重要的药物中间体,广泛应用于医药、生物、香料等众多领域,其化学催化合成方法越来越受到重视。
本文简要介绍了KF/ K2CO3 /Al2O3催化剂、2KNO3/γ2 Al2O3 型固体超强碱催化剂、PEG活化催化剂的制备及对香豆素合成的影响。
并对香豆素及其衍生物的发展前景做了瞻望。
关键词:香豆素催化合成发展前景Catalytic Synthesis of CoumarinAbstract: Coumarin as an important drug intermediates, widely used in medicine, biology, spices and many other fields, the chemical catalytic synthesis of more and more attention. This paper introduces the KF / K2CO3 / Al2O3catalyst, 2KNO3/γ2 Al2O3-type solid superacid catalyst, PEG-activated catalyst and the synthesis of coumarin. It also do a look for Coumarin and its derivatives’ development prospects. Keywords: coumarin; catalytic; synthesis;Development prospects0:引言香豆素又名1,2-苯并吡喃酮,广泛分布于植物界中,特别是在被子植物如伞形科,芸香科,豆科,菊科,瑞香科等科中多见,具有抗艾滋病,抗肿瘤,抗氧化,抗微生物,降压,抗辐射等多方面的生物活性。
香豆素类化合物具有分子量较小,合成相对简单,生物利用度高等特点,同时在香料工业中用途也十分广泛,既可以作为香水,香皂和化妆品的香精及烟草的调香剂,也是金属电镀和染料行业中的重要原料。
香豆素
香豆素概况香豆素,又称双呋喃环和氧杂萘邻酮,英文名称为coumarin。
香豆素是一个重要的香料,天然存在于黑香豆、香蛇鞭菊、野香荚兰、兰花中。
香豆素的衍生物有些存在于自然界,有些则可通过合成方法制得;有的游离存在,有的与葡萄糖结合在一起,其中不少具有重要经济价值,例如双香豆素,过去由甜苜蓿植物腐败析出,现在可用人工合成,用作抗凝血剂。
理化指标分子式:C9H6O2。
分子量:146.15。
外观:白色晶体。
CAS号: 91-64-5。
熔点69℃。
沸点:297~299℃。
溶解性:溶于乙醇、氯仿、乙醚,不溶于水,较易溶于热水。
显色反应:1.异羟肟酸铁反应碱性条件下,香豆素内酯可开环,与盐酸羟肟缩合成异羟肟酸,然后在酸性条件下与三价铁离子络合呈红色。
2.三氯化铁反应含有酚羟基的香豆素可与三氯化铁试剂产生颜色反应。
3.GIBBS反应2,6-二氯(溴)苯醌氯亚胺,在弱碱性条件下可与酚羟基对位的活泼氢缩合成蓝色化合物。
4.EMERSON反应氨基安替比林和铁氰化钾,可与酚羟基对位活泼氢生成红色缩合物。
3、4都要求香豆素分子中必须有游离的酚羟基,且酚羟基对位没有取代基时才呈阳性反应。
制备香豆素是利用Perkin W反应制取的。
水杨醛和乙酸酐在乙酸钠的作用下,一步就得到香豆素,它是香豆酸的内酯(见图)要注意这个内酯是由顺型香豆酸得到的,一般在Perkin W反应中,产物中两个大的基团(HOC6H4-,-COOH)总是处于反式的,但是反型不能产生内酯,因此环内酯的形成可能是促使产生顺型异构体的一个原因,事实上此反应中也得到少量反型香豆酸,不能形成内酯。
香豆素类药物概况香豆素类药物是一类口服抗凝药物。
它们的共同结构是4-羟基香豆素。
同时,双香豆素还可以用于对付鼠害。
当初人们在牧场牲畜因抗凝作用导致内出血致死的过程中发现的双香豆素,意识到了这一类物质的抗凝作用,引起了之后对香豆素类药物的研究和合成,从而为医学界提供了多一种重要的凝血药物。
香豆素合成
工业上利用Perkins反应,采用水杨醛法来合成香豆素,一般采用两步法,首先就是水杨醛与乙酸酐形成一份子水杨醛单乙酸酯与一份子醋酸。
然后水杨醛单乙酸酯在醋酸酐的作用下先形成负碳离子,负碳离子在加热的情况下,缩去一份子水,同时二羰基化合物分解,形成环状物质。
最终得到香豆素一、香豆素的合成路线合成路线:以水杨醛、乙酸酐为原料,催化剂就是乙酸钠,通过珀金(Perkin)反应制得香豆素二、香豆素合成过程单元反应及其控制分析∙1、Perkin反应过程分析∙2、Perkin反应过程及其方案设计(2)香豆素Perkin反应的机理∙在香豆素合成过程中,Perkin缩合反应、内酯化反应就是在“一锅”中完成的∙反应机理为亲核加成反应,具体如下:碱性催化剂羧酸盐离解产生羧酸负离子,如CH3COOK离解产生的CH3COO-,羧酸负离子CH3COO-与酸酐作用,夺去酸酐中α-碳原子上的一个氢原子,形成一个羧酸酐碳负离子,羧酸酐碳负离子作为亲核试剂与醛发生亲核加成生成中间体(1),经中间体(2)进行水解后,生成β-芳基-α,β-不饱与酸(3),(3)再经内酯化制得香豆素。
(3)香豆素Perkin反应的主要影响因素∙①水杨醛的反应性质∙②乙酸酐的反应性质∙③催化剂∙④反应温度与反应时间∙⑤物料配比∙⑥传质的影响∙⑦水分的影响∙⑧副反应①水杨醛的反应性质∙水杨醛为无色澄清油状液体,有焦灼味及杏仁气味。
熔点(℃):-7,沸点(℃):197,相对密度(水=1):1、17,饱与蒸气压(kPa):0、13(33℃);微溶于水,溶于乙醇、乙醚。
本品可燃,有毒,具刺激性。
∙水杨醛分子结构中羟基(带负电)属于供电子基团,能使苯环上电子云密度升高,故而水杨醛反应活性将减弱,珀金反应需要更强的反应条件。
②乙酸酐的反应性质∙乙酸酐为无色透明液体,有刺激性气味(类似乙酸),其蒸气为催泪毒气。
熔点:-73、1℃,沸点:138、6℃,密度:相对密度(水=1)1、08;溶解性:溶于苯、乙醇、乙醚;稍溶于水。
香豆素-3-羧酸的合成
香豆素-3-羧酸的合成(coumarin-3-carboxylic acid)香豆素,又名香豆精,1,2-苯并吡喃酮,结构上为顺式邻羟基肉桂酸(苦马酸)的内酯,白色斜方晶体或结晶粉末,存在于许多天然植物中。
它最早是1820年从香豆的种子中发现的,也含于薰衣草、桂皮的精油中。
香豆素具有甜味且有香茅草的香气,是重要的香料,常用作定香剂,可用于配制香水、花露水香精等,也可用于一些橡胶制品和塑料制品,其衍生物还可用作农药、杀鼠剂、医药等。
由于天然植物中香豆素含量很少,因而大量的是通过合成得到的。
1868年,Perkin 用邻羟基苯甲醛(水杨醛)与醋酸酐、醋酸钾一起加热制得,称为Perkin合成法。
水杨醛和醋酸酐首先在碱性条件下缩合,经酸化后生成邻羟基肉桂酸,接着在酸性条件下闭环成香豆素。
Perkin反应存在着反应时间长,反应温度高,产率有时不好等缺点。
本实验采用改进的方法进行合成,用水杨酸和丙二酸酯在有机碱的催化下,可在较低的温度合成香豆素的衍生物。
这种合成方法称为Knoevenagel合成法,是对Perkin反应的一种改变,即让水杨醛与丙二酸酯在六氢吡啶的催化下缩合成香豆素一3一甲酸乙酯,后者加碱水解,此时酯基和内酯均被水解,然后经酸化再次闭环形成内酯,即为香豆素-3-羧酸。
【反应式】【试剂】水杨醛2.0 g (1.7 mL,0.016 mol),丙二酸乙二酯3.0 g (2.8 mL,0.019 mol),无水乙醇,六氢吡啶,冰醋酸,95%乙醇,氢氧化钠,浓盐酸,无水氯化钙。
【步骤】1.香豆素-3-甲酸乙酯在干燥的50 mL圆底烧瓶中依次加入1.7 mL水杨醛、2.8 mL丙二酸乙二酯、10 mL无水乙醇、0.2 mL六氢吡啶、一滴冰醋酸和几粒沸石,装上配有无水氯化钙干燥管的球形冷凝管后,在水浴上加热回流2 h。
待反应液稍冷后转移到锥形瓶中,加入12 mL水,置于冰水浴中冷却,有结晶析出。
待晶体析出完全后,抽滤,并每次用2~3 mL冰水浴冷却过的50%乙醇洗涤晶体2~3次,得到的白色晶体为香豆素-3-甲酸乙酯的粗产物,干燥后产量约2.5~3 g,熔点91~92℃。
香豆素的合成及应用发展
目录第一章前言 (3)一引言 (3)第二章香豆素素母核的合成 (5)一香豆素素母核的合成 (5)1 Perkin法合成香豆素 (5)2 Reimer-Tiemann法合成香豆素 (6)二催化剂在香豆素母核合成中的应用 (6)1 微波辅助合成香豆素 (6)2 KF,K2CO3,Al2O3催化合成香豆素 (6)3 KNO3/Al2O3型催化剂催化合成香豆素 (7)4 用钯配合物催化合成香豆素 (8)第三章香豆素类衍生物的合成 (9)一3-硝基双香豆素的合成 (9)二3-取代氨基烷基双香豆素的合成 (10)三3-羧酸香豆素衍生物的合成 (11)四3-苯基-7-氨基香豆素衍生物的合成 (11)五3-乙酰基香豆素衍生物的合成 (11)六3-己基异香豆素的合成 (12)七7-羟基香豆素衍生物的合成 (13)八7-羟基-4-甲基香豆素的合成 (13)九7-磺酰脲香豆素的合成 (14)第四章香豆素及其衍生物的应用及发展 (16)一在医药领域的应用及发展 (16)二在香料方面的应用及发展 (17)三在染料领域的应用及发展 (17)四在分析领域的应用及发展 (18)五在农业领域的应用及发展 (21)第五章讨论与结果 (24)致谢 (25)参考文献 (27)附录 (29)第一章 前言一 、引言香豆素,又称双呋喃环和氧杂萘邻酮,英文名称为coumarin 。
学名邻羟基肉桂酸内酯。
白色结晶。
分子量146.15。
熔点68~70℃。
沸点297~299℃,密度0.935,闪点162℃。
以0.3%溶于水,溶于热水、乙醇、乙醚、氯仿。
具有类似新鲜干草的香气,味甜辣。
性状:游离香豆素:为固体,有晶形,有一定熔点,多具有芳香气味。
分子量小的香豆素:有挥发性,能随水蒸气蒸出,并能升华。
香豆素苷:多数无香味和挥发性,也不能升华。
溶解度:游离香豆素:能溶于沸水,易溶于甲醇、乙醇、氯仿、乙醚等溶剂,可溶石油醚。
香豆素苷类:能溶于水、甲醇、乙醇,而难溶于乙醚、苯等极性小的有机溶剂。
香豆素合成
之阳早格格创做工业上利用Perkins反应,采与火杨醛法去合成香豆素,普遍采与二步法,最先是火杨醛与乙酸酐产死一份子火杨醛单乙酸酯战一份子醋酸.而后火杨醛单乙酸酯正在醋酸酐的效率下先产死背碳离子,背碳离子正在加热的情况下,缩去一份子火,共时二羰基化合物领会,产死环状物量.最后得到香豆素一、香豆素的合成门路合成门路:以火杨醛、乙酸酐为本料,催化剂是乙酸钠,通过珀金(Perkin)反应造得香豆素二、香豆素合成历程单元反应及其统造领会∙ 1. Perkin反应历程领会∙ 2. Perkin反应历程及其规划安排(2)香豆素Perkin反应的机理∙正在香豆素合成历程中,Perkin缩合反应、内酯化反应是正在“一锅”中完成的∙反应机理为亲核加成反应,简曲如下:碱性催化剂羧酸盐离解爆收羧酸背离子,如CH3COOK离解爆收的CH3COO-,羧酸背离子CH3COO-与酸酐效率,夺去酸酐中α-碳本子上的一个氢本子,产死一个羧酸酐碳背离子,羧酸酐碳背离子动做亲核试剂与醛爆收亲核加成死成中间体(1),经中间体(2)举止火解后,死成β-芳基-α,β-没有鼓战酸(3),(3)再经内酯化造得香豆素.(3)香豆素Perkin反应的主要效率果素∙①火杨醛的反应本量∙②乙酸酐的反应本量∙③催化剂∙④反应温度战反当令间∙⑤物料配比∙⑥传量的效率∙⑦火分的效率∙⑧副反应①火杨醛的反应本量∙火杨醛为无色澄浑油状液体,有焦灼味及杏仁气味.熔面(℃):-7,沸面(℃):197,相对于稀度(火=1):1.17,鼓战蒸气压(kPa):0.13(33℃);微溶于火,溶于乙醇、乙醚.本品可焚,有毒,具刺激性.∙火杨醛分子结构中羟基(戴背电)属于供电子基团,能使苯环上电子云稀度降下,故而火杨醛反应活性将减强,珀金反应需要更强的反应条件.②乙酸酐的反应本量∙℃℃,稀度:相对于稀度(火=1)1.08;溶解性:溶于苯、乙醇、乙醚;稍溶于火.∙介进珀金反应的酸酐普遍为具备二个或者三个活泼α-H的矮级单酸酐,那里α-H指与羰基贯串碳本子上的H本子.酸酐的碳本子数越多,位阻删大,α-H的反应活性落矮.乙酸酐比其余下档酸酐反应活性下,是珀金反应中时常使用的酸酐.③催化剂∙珀金反应所用的催化剂为相映酸酐的羧酸钾盐或者钠盐,无火羧酸钾盐的效验比钠盐佳,反应速率快、支率下.叔胺也可催化此反应.∙从反应机理上瞅,催化剂与乙酸酐反应才搞产死介进亲核加成反应的背碳离子,为了包管有脚够浓度的背碳离子产死,催化剂该当比乙酸酐过量.∙其余,由于下档酸酐造备比较易,根源也较少,可采与其羧酸盐与乙酐代替,使其先死成相映的混同酸酐,再介进缩合.④反应温度战反当令间∙由于火杨醛的反应活性较矮,乙酸酐是活性较强的亚甲基化合物,故造备香豆素的珀金反应需要较下的反应温度战较少的反当令间.但是反应温度过下,将会爆收脱羧战与消反应,死成烯烃.果此造备香豆素的珀金反应温度比普遍的Perkin反应温度要下.资料标明,造备香豆素的珀金反应温度普遍为150~200℃,反当令间4~7h.⑤物料配比∙普遍情况下,为使火杨醛充分反应,乙酸酐应稍过量.∙乙酸酐的用量正在所有反应历程中效率隐著,大概是由于乙酸酐正在反应条件下易挥收又兼做溶剂,果此用量没有克没有及太少.那大概是果为正在反应初期,若乙酸酐量过少,过量的火杨醛会爆收二散副反应,死成二散火杨醛.但是过多副产品减少,会引导死成火杨醛三乙酸酯的副反应加剧,进而使香豆素的支率下落.∙资料标明,随着酐醛配比的删大,香豆素的支率会没有竭降下,当达到一定值后支率反而下落.符合的物料配比以n(火杨醛) ∶n(乙酸酐)=1∶1.35~3.0为宜.⑥传量的效率∙火分的存留会使酸酐火解为羧酸,而羧酸中a-H的活性更矮,对于缩合反应不利,果此珀金反应需要正在无火条件下举止.⑦火分的效率∙由于有乙酸钠固体介进反应,良佳的搅拌有好处反应的举止.⑧副反应∙火杨醛能爆收氧化、二散及死成火杨醛单乙酸酯等副反应.三、物料物性参数数据,决定反应真施的条件范畴∙起初火杨醛∶乙酸酐∶乙酸钠(摩我比)=6∶12∶15,反应中蒸出乙酸后不妨再加进一半量的乙酸酐;∙反应初期统造温度正在120℃以下,后期反应温度为180-195℃;∙ 3.压力:常压;∙ 4.搅拌:良佳四、反应体系的构修重心∙①反应体系的构修重心∙ⅰPerkin缩合需要正在较下的温度下举止,且央供控温稳固,故反应体系宜采用油浴加温拆置;∙ⅱ为预防下温下乙酸酐的挥收,反应体系需要配有回流拆置;由于反应温度超出150℃,故可采与气氛管回流拆置.反应中由于有矮沸面的乙酸死成,如果没有克没有及即时排出体系,将会效率体系温度的降下,果此应配备乙酸引出拆置.为了更佳天对于气相物量举止分散,不妨减少刺形分馏柱.∙ⅲ为了隔绝气氛中的火分,回流拆置应配有搞燥管.∙ⅳ为了能使催化剂更佳天分别,体系需要强搅拌.②反应的统造战术由于催化剂碱性较强且为固体,故反当令宜过量使用;加料时宜先将催化剂与乙酸酐混同后,降温溶解后再将火杨醛加进,那样反应体系中乙酸酐过量,不妨吸支掉死成的火.反应初期温度没有宜过下,那样不妨缩小副反应的爆收;当反应举止到一定程度以去,再适合普及∙反应温度,以支缩珀金反当令间.由于反应中有乙酸死成,正在初期反应中断后要将乙酸蒸出,那样反应后期的温度才搞降下.由于乙酸酐的消耗,不妨正在乙酸蒸出后举止补料(补加一半安排的料).∙由于内酯化是仄稳反应,反当令间宜少一些,有好处环的产死.∙其余,所用本料试剂要举止杂化处理.∙③反应末面的统造∙加料完成反应一定时间后,不妨测定反应物料的酸度,当酸度没有再变更时,基础不妨决定反应末面.最佳能共时用TLC法对于反应举止追踪比对于(展启剂为环己烷:乙醚=3:1,V/V).五、香豆素的合成反应拆置香豆素合成拆置由四心烧瓶、刺形分馏柱、Y形交头、2根温度计、分火器、气氛热凝管、搞燥管、搅拌、油浴组成.三心烧瓶为反应的容器,内拆火杨醛、乙酸酐、乙酸钠.反应瓶拆置量程为250℃温度计,对于简曲反应温度举止丈量.采与板滞搅拌,加强传热战传量.当引出乙酸时,可通过Y形交头上拆置的温度计监控,当温度计达到乙酸蒸汽的温度时,可由分火器下圆搁出热凝液(乙酸).六、合成规划的拓展间苯二酚与3-乙氧亚甲基乙酰乙酸乙酯[2]间苯二酚与3-乙氧亚甲基乙酰乙酸乙酯正在乙醇钠存留下环合得到3-乙酰基香豆素,正在于与代尿素缩合.不妨得到一系列的3—与代香豆素(主假如合成香豆素的骨架)一锅法[1]反应中的多步反应不妨从相对于简朴易的的本料出收,没有经中间体的分散,曲交赢得结构搀杂的分子.。
香豆素合成(一)
香豆素的合成(一)实验目的(1)了解香豆素的性质和用途;(2)掌握珀金反应原理及其实验方法;(3)巩固水蒸气蒸馏、重结晶等操作技术。
(二)实验原理香豆素(coumarin),学名邻羟基桂酸内酯,又称香豆内酯,分子式为C9H6O2,相对分子质量146.15,其结构式为。
香豆素是一种具有黑香豆浓重香味及巧克力气息的白色晶体或结晶粉末,味苦,能升华。
熔点68—70℃,沸点297~299℃。
不溶于冷水,溶于热水、乙醇、乙醚和氯仿。
它是一种重要的香料,常用作定香剂,用于配制紫罗兰、薰衣草、兰花等香精,也用作饮料、食品、香烟、橡胶制品、塑料制品等的增香剂。
在电镀工业中用作光亮剂。
香豆素存在于许多植物中,天然黑香豆中含有1.5%以上,工业上利用珀金反应原理来制备。
芳香醛与脂肪酸酐在碱性催化剂作用下进行缩合,生成α、β一不饱和芳香酸的反应,称为珀金反应(Perkin Reaction)。
香豆素是以水杨醛和醋酸酐作原料,在弱碱(如醋酸钠、叔胺等)催化下经珀金反应、酸化及环化脱水而制得:反应中生成少量反式邻羟基肉桂酸,不能进行内酯环化,而生成邻乙酰氧基肉桂酸副产物,结构式:(三)主要试剂和仪器1.试剂水杨醛2.1g(1.9mL,0.017mol);醋酸酐5.4g(5mL,0.052mol);三乙胺1.5g(2mL,0.015mol);或无水醋酸钠1.5g(0.018mol);无水氯化钙、沸石、碳酸氢钠、稀FeCl3溶液、活性炭。
2.仪器50mL圆底烧瓶、回流冷凝管(直形)、干燥管、250 mL三口烧瓶、水蒸气发生装置、抽滤装置、电热套、接引管、烧杯、250 mL锥形瓶。
(四)实验步骤1.回流反应在50mL圆底烧瓶中,依次加入1.9mL水杨醛、2mL三乙胺及5mL醋酸酐心J,投入2粒沸石,配置回流冷凝管,冷凝管上连接氯化钙干燥管,将混合物加热回流2h。
2.水蒸气蒸馏回流结束后,将反应混合物趁热转入盛有20 mL水的250 mL三口烧瓶中,用少量热水冲洗反应瓶,以使反应物全部转入三口烧瓶中。
(完整word)实验香豆素的合成
香料香豆素的合成XXX摘要本实验通过水杨醛和丙二酸酯在弱碱六氢吡啶的催化作用下进行诺文葛耳(Knoevengel)缩合成酯,然后经碱水解、酸化得到香豆素.通过本实验掌握杂环合成的基本原理以及了解化学法合成香料类化合物的方法。
关键词水杨醛丙二酸酯六氢吡啶香豆素香豆素,又名1,2—苯并吡喃酮,其为无色或白色结晶或晶体粉末,存在于零陵香豆、薰衣草油等中.难溶于冷水,能溶于沸水,易溶于甲醇、乙醇、乙醚、氯仿、石油醚、油类.有挥发性,能随水蒸气蒸馏并能升华,是一种重要的香料,其香型为香辣型,表现为甜而有香茅草的香气,常用作定香剂。
香豆素及其衍生物具有抗微生物等重要的生物活性,故可作为阻凝剂、抗血栓剂、三线态光敏剂及金属电镀等,在农业、工业、医药行业均表现出重要的作用。
早在1820年,香豆素已从零陵香豆中分离出来.后来发现,在蓝花科、羌青甘蓝科、唇形科等多种植物中都存在香豆素。
在薰衣草、三叶草花、香料的精油中香豆素是一个主要的成分,正是香豆素及其衍生物使上述的植物具有干草的香气。
1868年W。
H.Perkin 首先从水杨醛合成了香豆素,但却没有提出正确的结构。
至1872年H。
S。
Biff才确定其结构式苯并-α-吡喃酮。
香豆素的合成主要分为两类。
一类是从酚制备.另一类是用水杨醛或其衍生物为原料,先在碱性条件下进行缩合反应。
如Perkin合成法.先生成邻羟基肉桂酸钾,然后酸化成邻羟基肉桂酸。
其中顺式的酸称为苦马酸,反式的酸称香豆酸,在酸性条件下都能闭环成香豆素。
香豆素-3—羧酸的常规合成方法主要是利用水杨醛和丙二酸二乙酯在有机碱催化下发生Knoevengel缩合,再经碱水解、酸化而获得,也有在水热反应釜中进行合成,产率一般在70%~78%之间.前一种方法反应时间长,产率较低;而后一种方法反应温度较难控制。
本文采用水杨醛和丙二酸酯在弱碱六氢吡啶的催化作用下诺文葛耳缩合生成香豆素—3-羧酸乙酯,再经碱水解、酸化而得到最终产物香豆素—3—羧酸,实验时间较长。
香豆素合成
工业上利用Perkins反应,采用水杨醛法来合成香豆素,一般采用两步法,首先就是水杨醛与乙酸酐形成一份子水杨醛单乙酸酯与一份子醋酸。
然后水杨醛单乙酸酯在醋酸酐得作用下先形成负碳离子,负碳离子在加热得情况下,缩去一份子水,同时二羰基化合物分解,形成环状物质。
最终得到香豆素一、香豆素得合成路线合成路线:以水杨醛、乙酸酐为原料,催化剂就是乙酸钠,通过珀金(Perkin)反应制得香豆素二、香豆素合成过程单元反应及其控制分析∙1。
Perkin反应过程分析∙2、Perkin反应过程及其方案设计(2)香豆素Perkin反应得机理∙在香豆素合成过程中,Perkin缩合反应、内酯化反应就是在“一锅”中完成得∙反应机理为亲核加成反应,具体如下:碱性催化剂羧酸盐离解产生羧酸负离子,如CH3COOK离解产生得CH3COO-,羧酸负离子CH3COO-与酸酐作用,夺去酸酐中α—碳原子上得一个氢原子,形成一个羧酸酐碳负离子,羧酸酐碳负离子作为亲核试剂与醛发生亲核加成生成中间体(1),经中间体(2)进行水解后,生成β—芳基—α,β-不饱与酸(3),(3)再经内酯化制得香豆素。
(3)香豆素Perkin反应得主要影响因素∙①水杨醛得反应性质∙②乙酸酐得反应性质∙③催化剂∙④反应温度与反应时间∙⑤物料配比∙⑥传质得影响∙⑦水分得影响∙⑧副反应①水杨醛得反应性质∙水杨醛为无色澄清油状液体,有焦灼味及杏仁气味。
熔点(℃):-7,沸点(℃):197,相对密度(水=1):1。
17,饱与蒸气压(kPa):0、13(33℃);微溶于水,溶于乙醇、乙醚。
本品可燃,有毒,具刺激性。
∙水杨醛分子结构中羟基(带负电)属于供电子基团,能使苯环上电子云密度升高,故而水杨醛反应活性将减弱,珀金反应需要更强得反应条件、②乙酸酐得反应性质∙乙酸酐为无色透明液体,有刺激性气味(类似乙酸),其蒸气为催泪毒气。
熔点:-73、1℃,沸点:138、6℃,密度:相对密度(水=1)1。
香料香豆素的合成
合成香豆素工作任务1.香豆素简介香豆素,熔点:71℃,在自然界中存在于天然的黑香豆、肉桂、薰衣草等植物中,具有强烈的新鲜干草香气,类似黑豆、巧克力香气,全球年产合成香豆素约2000吨左右,主要应用在香皂、化妆品和烟用香精中,在橡胶、医药、电镀等制品中,可用作去臭剂、增香剂和光亮剂,用途极为广泛。
2.香豆素产品开发项目任务书11.2 合成香豆素工作任务分析11.2.1合成香豆素分子结构的分析①香豆素的分子式:C 9H 6O 2 ②香豆素的分子结构式:OO不难看出,目标化合物基本结构为苯并环结构(氧杂萘环),其中并环由不饱和内酯构成。
11.2.2香豆素的合成法路线分析逆向合成分析:拆开内酯环,得到α,β-不饱和酸衍生物,继续拆开双键,可得芳醛和乙酸酐。
相应的合成路线是以水杨醛、乙酸酐为原料,通过珀金(Perkin )反应制得香豆素。
O C HH C H C O O HOHCHO+CH 3C OO CH 3COPerkin H 2OOO11.2.3 文献中香豆素合成的常见方法目前香豆素的生产方法较多,典型的主要有: 合成路线一:水杨醛法(珀金反应),与设计路线同。
CH 3COONaO CHOHOO CH 3CO+CH 3C OO该路线工艺简单,收率尚可,为传统香豆素合成方法。
合成路线二:邻甲苯酚法,合成路线如下:+ (CH 3CO)2O O OO HC H C O O H O CHO H此法合成步骤多,而且要用到剧毒的光气,有很大弊端。
还有其他一些合成路线的报道,如美国有人用苯酚和丙烯酸甲酯直接合成香豆素等。
综合起来,目前珀金反应合成香豆素具有较大优势,近年来对香豆素合成研究的重点仍集中珀金反应的催化剂上。
下面我们将从水杨醛法合成路线出发,将合成过程中需要考虑的各种因素进行剖析,找出一条相对合适的合成方案,并按此方案进行合成来实际检验方案的可行性。
假如采用其他的合成路线,请同学们沿此思路自己剖析,应该不难找出合适的合成方案。
香豆素的生物合成途径
第二节 香豆素类
五、香豆素类化合物的结构鉴定
(一)核磁法鉴定香豆素结构的意义 结构新颖的香豆素化合物不仅为创制新药提
供了先导化合物,还为设计药效高、毒性低的理 想药物提供了独特的化学结构,而核磁谱提供的 信息是化合物结构鉴别的主要依据。
第二节 香豆素类
(二)香豆素1HNMR的谱学特征 1. 香豆素母核的1HNMR谱特征
水溶液 有机溶剂萃取
石油醚
苯
乙醚 乙酸乙酯
第二节 香豆素类
(二)分离
提取后可直接利用化合物的溶解性质进行分离 如:
香豆素在石油醚中溶解度不大,浓缩时即可析出 结晶。
1.酸碱分离法
依据——内酯遇碱能皂化,加酸能恢复的性质。
第二节 香豆素类
乙醚萃取液 NaHCO3 / H2O 萃取
NaHCO3 / H2O 酸性成分
5
4
6
4a
3
7
2
8a O O
8
H-3, 6, 8的信号在较高场;δ值较小; H-4, 5, 7的信号在较低场;δ值较大。 一般δ: H-3: 6.1-6.4 H-4:7.8-8.1
J=9.5Hz
第二节 香豆素类
(二)香豆素1HNMR的谱学特征 1. 香豆素母核的1HNMR谱特征
原因:C2=O与C3=C4形成π-π共轭,导致电子云
注意:不宜使用浓酸,否则会发生重排反应。
第二节 香豆素类
(四)酸的反应 2. 醚键开裂: 如:东茛菪内酯的烯醇醚
MeO O
H+ MeO
OO
HO
H+ MeO
OO
O
东茛菪内酯
OO
第二节 香豆素类
(四)酸的反应 3.双键加水反应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
香料香豆素的合成
实验目的:掌握杂环化合物的基本原理和了解化学法合成香料类化合物的方法。
实验原理:本实验合成香豆素3—羧酸是用水杨醛和丙二酸二乙酯在弱碱六氢吡啶的催化下进行诺文葛尔缩合成酯,再经碱水解、酸化完成。
其反应过程如下:
实验步骤
1、香豆素-3-羧酸乙酯
在100ml圆底烧瓶中放置 5.0g水杨醛(0.041mol)7.2g丙二酸二乙酯(0.045mol)和25ml无水乙醇。
再用滴管滴入约0.5ml六氢吡啶和两滴冰醋酸,加入几滴沸石后装上球形冷凝管并在冷凝管顶端装以氯化钙干燥管,在水浴上加热回流2h。
待稍冷后,拆去干燥管,从冷凝管顶端加20ml冷水,除去冷凝管,将烧瓶置于冰浴中冷却,使结晶析出完全。
抽滤,晶体用冷的50%乙醇洗涤2-3次(每次约1ml)。
粗产品为白色晶体,经干燥后重6.5g。
产率为73%,熔点92~93℃。
2、香豆素-3-羧酸
在100ml圆底烧瓶中放4.0g氢氧化钾(0.071mol)、10ml水、20ml 95%乙醇和4.0g香豆素-3-羧酸乙酯(0.018mol),装上球形冷凝管,用水浴加热至酯溶解后,在微沸15min。
停止加热后,将烧瓶置于温水浴中。
用液管吸取温热反应液,逐滴滴入盛有10ml浓盐酸和50ml水德250ml锥形瓶中,边滴边缓缓摇动锥形瓶。
加完后,将锥形瓶置于冰水浴中冷却,使晶体完全析出。
过滤,晶体用少量冰水洗涤。
干燥,熔点188~189℃(分解),产量3.3g(产率为95%)。
反应的主要方程式为:
结果与讨论:
按步骤1操作生成的香豆素-3-羧酸乙酯干燥后称重为7.2g,产率为81%,按步骤2操作得到的产品香豆素-3-羧酸干燥后称得重量3.2g,产率为92%。
所以用诺文葛尔酯缩合反应合成香豆素-3-羧酸的产率为75%。
实验中所用到的水杨醛、丙二酸二乙酯、哌啶对眼睛、皮肤均有强烈的刺激作用,此外丙二酸二乙酯遇水能极易水解生成酸性较强的丙二酸,对皮肤有腐蚀作用。
因此,在操作过程中应避免这类药品接触皮肤。
由于丙二酸二乙酯易水解,在步骤1中应保证反应器的干燥,所以在回流管上端应装上除水装置。
由于哌啶的氮原子上有孤对电子,容易结合质子,会降低氮原子的亲核性,如果系统中存在非丙二酸酯类型的质子氢(假如系统中有水存在就会让冰乙酸电离出质子氢,从而与丙二酸酯起竞争和抑制作用),但在该反应中冰乙酸的量很少,对反应造成的影响不大,但是会降低反应进行的速率,所以实验中必须避免水分的介入。
此外,哌啶易氧化,反应中以避免冰乙酸脱水成酸酐,从而氧化哌啶。
因此,反应温度不能过高,控制在回流阶段。
实验的目标产物是香豆素-3-羧酸,但是步骤的第二步操作中,生成产物香豆素-3-羧酸的实际产量恐怕没有计算的那样高,可能在产物中还混有部分香豆
素(),由于香豆素-3-羧酸()β位上羰基的影响,容易脱羧,生成香豆素。