常用仪器分析介绍
实验室常用仪器及用途
![实验室常用仪器及用途](https://img.taocdn.com/s3/m/d1ddcd973086bceb19e8b8f67c1cfad6195fe90b.png)
实验室常用仪器及用途实验室常用仪器及用途在实验室中,有许多常用仪器和设备被广泛使用,以帮助科学家和研究人员进行各种实验和研究工作。
以下是一些常见的实验室常用仪器及其用途的例子:1. 显微镜:显微镜用于放大微小物体,从而可以观察和研究细胞、组织和其他微观结构。
它们可以分为光学显微镜和电子显微镜两大类。
2. 均质器:均质器用于将样品彻底混合,并使其达到均匀状态。
这在生化和分子生物学实验中非常有用,例如DNA提取和细胞破碎。
3. 高效液相色谱仪(HPLC):HPLC是一种分离和分析化学物质的技术,常用于药学、食品科学和环境科学等领域。
它可以通过检测样品中不同成分的相对浓度来分析和鉴定化合物。
4. 气相色谱质谱仪(GC-MS):GC-MS是一种结合了气相色谱和质谱技术的仪器,用于分析和鉴定有机化合物。
它可以将复杂的混合物分离,并通过质谱分析来确定化合物的结构和质量。
5. 聚合酶链式反应仪(PCR):PCR仪器用于扩增DNA序列,使其在数量上增加。
这是在分子生物学研究和基因诊断中非常常用的技术。
6. 离心机:离心机通过快速旋转创建高离心力,用于分离悬浮物、沉淀物和液体的固体成分。
这对于分离细胞、沉淀蛋白质和纯化DNA等应用非常重要。
7. 分光光度计:分光光度计用于测量物质对特定波长或波长范围的光吸收能力。
它在分析化学和生物化学中广泛应用于分析物质的浓度和化学反应的动力学等。
8. 傅里叶变换红外光谱仪(FTIR):FTIR利用样品对红外光的吸收和发生的振动来确定物质的结构和化学性质。
它在化学和材料科学中被广泛应用。
9. 核磁共振仪(NMR):NMR是一种用于分析化合物结构和动力学的技术。
它通过测量样品中不同原子核的核磁共振现象来提供信息。
10. 电导仪:电导仪用于测量溶液中的电导率。
这对于分析和监测溶液中的离子浓度和电解质分析非常重要。
11. 恒温槽:恒温槽用于在固定的温度条件下进行实验。
这对于大多数生物化学和生物学实验中都是必需的,因为温度对样品的性质和反应十分重要。
实验室常用仪器介绍
![实验室常用仪器介绍](https://img.taocdn.com/s3/m/469a742fa88271fe910ef12d2af90242a895ab89.png)
实验室常用仪器介绍实验室是科学研究和教学的重要场所,仪器设备在实验室中起着非常重要的作用。
它们可以帮助科学家和研究人员进行实验和测量,帮助他们获取准确和可靠的数据。
在这篇文章中,我将介绍一些实验室中常用的仪器。
1.分光光度计:分光光度计是实验室中常见的一种仪器,用于测量物质对不同波长光的吸收程度。
它可以用于检测物质的浓度、反应动力学研究等,被广泛应用于化学、生物、药学等领域。
2.pH计:pH计用于测量溶液的酸碱度。
它可以通过测量水溶液中氢离子浓度来确定溶液的酸碱度。
pH计常用于实验室中酸碱滴定、溶液配制等实验中。
3.电子天平:电子天平用于测量物体的质量。
相比传统的机械天平,电子天平更加准确和灵敏。
它常用于实验室中对物质的称量,例如固体溶解、反应物的配制等。
4.显微镜:显微镜是用于观察微小物体的一种仪器。
它能够放大细胞、细菌、昆虫等微小物体,使我们能够更清晰地观察它们的结构和特征。
显微镜在生物学、医学、材料科学等领域中得到广泛应用。
5.离心机:离心机利用离心力将溶液或混合物中的不同组分分离开来。
它可以用于细胞沉淀、DNA提取、蛋白质纯化等实验中。
离心机具有调速、定速、定时等功能,可以根据实验要求来进行调整。
6.高效液相色谱仪(HPLC):HPLC是一种用于分离、鉴定和定量化学物质的分析仪器。
它广泛应用于化学、药学等领域。
HPLC可以分离复杂的混合物,并通过不同组分的保留时间来确定各组分的含量。
7.气相色谱仪(GC):GC用于分析气体或液体中的化合物。
它是通过蒸发样品并将其通过色谱柱分离并检测各组分来实现的。
GC常用于分析环境样品、食品样品等。
8.红外光谱仪:红外光谱仪用于分析物质的分子结构。
它通过测量物质对红外光的吸收来确定样品的成分和结构。
除了上述提到的仪器之外,实验室中还有许多其他常用的仪器,如氧浓度计、电动移液器、全自动生化分析仪等。
这些仪器设备有助于实验室进行各种类型的实验和研究。
总的来说,实验室常用仪器的作用是多方面的,它们可以帮助研究人员获取准确和可靠的实验数据,并且提供了许多便利的实验条件和测量手段。
检验科常用仪器设备介绍
![检验科常用仪器设备介绍](https://img.taocdn.com/s3/m/8ae42c5acd7931b765ce0508763231126edb77b9.png)
检验科常用仪器设备介绍在检验科中,常用的仪器设备是必不可少的工具,它们在保障检验工作的准确性和效率方面起着至关重要的作用。
本文将为大家介绍一些检验科常用的仪器设备,帮助大家更加了解这些工具的功能和作用。
一、光谱仪光谱仪是一种能够将物质的光谱信息转化为电信号的仪器,主要用于分析物质的成分和结构。
光谱仪广泛应用于金属材料的成分分析、药物的质量检测、食品的成分分析等领域。
通过光谱仪,我们可以更加准确地了解物质的组成,为后续的检验工作提供参考依据。
二、显微镜显微镜是一种用于放大微观物体的光学仪器,通过显微镜,我们可以观察到肉眼难以分辨的微小结构和细节。
在检验科中,显微镜被广泛应用于金相分析、显微组织观察等领域。
通过显微镜的观察,我们可以更加清晰地了解材料的内部结构,为检验结果的准确性提供保障。
三、电子显微镜电子显微镜是一种利用电子束来放大物体的显微镜,其分辨率比普通显微镜更高,可以观察到更加微小的结构和细节。
电子显微镜在检验科中被广泛应用于纳米材料的表征、微生物的观察等领域。
通过电子显微镜的观察,我们可以更加深入地了解物质的微观结构,为检验数据的准确性提供支持。
四、色谱仪色谱仪是一种用于分离、检测和定量化化学物质的仪器,主要应用于物质的成分分析和检测。
色谱仪可以有效地将混合物中的化合物分离出来,然后通过检测器对各个成分进行检测和分析。
色谱仪在检验科中被广泛应用于食品质量检测、环境污染监测等领域。
通过色谱仪的分析,我们可以更加全面地了解物质的组成和性质,为检验工作提供更为详细的数据支持。
五、质谱仪质谱仪是一种利用物质的质量谱进行分析和检测的仪器,主要用于分子结构的鉴定和定量化分析。
质谱仪可以通过样品的分子离子质量比来确定物质的分子结构和组成。
质谱仪在检验科中被广泛应用于食品安全检测、医药物质分析等领域。
通过质谱仪的分析,我们可以更加准确地了解物质的成分和结构,为检验结果的准确性提供保障。
总之,检验科常用的仪器设备在保障检验工作的准确性和效率方面发挥着重要作用。
常见的分析仪器有哪些
![常见的分析仪器有哪些](https://img.taocdn.com/s3/m/eafc0abeaff8941ea76e58fafab069dc51224710.png)
常见的分析仪器有哪些引言在现代科学研究和工业生产中,分析仪器是非常重要的工具。
它们可以用于分离、检测和量化各种物质,从而帮助我们理解和掌握分子、原子和宏观物质的性质与行为。
本文将介绍一些常见的分析仪器及其应用。
1. 液相色谱仪液相色谱仪是一种常用的分离和分析技术。
它通过将样品溶解在流动的溶剂中,然后通过一个固定相柱将样品中的化学物质分离出来。
液相色谱仪可以用于生物分析、环境检测、药物研发等领域。
2. 气相色谱仪气相色谱仪是另一种常见的分离和分析仪器。
它通过将样品蒸发为气相,并通过一个固定相柱将样品中的化学物质分离出来。
气相色谱仪广泛应用于食品安全、环境监测、毒理学研究等领域。
3. 质谱仪质谱仪是一种用于测量样品中化学物质质量和结构的仪器。
它通过将样品中的化学物质离子化,并将其分离出来,然后通过测量它们的质荷比来确定化合物的质量和结构。
质谱仪广泛应用于生物医学研究、环境监测、食品安全等领域。
4. 红外光谱仪红外光谱仪是一种通过测量样品对红外辐射的吸收和散射来分析样品成分和结构的仪器。
它可用于化学物质的定性和定量分析,广泛应用于化学、材料科学、制药等领域。
5. 紫外可见光谱仪紫外可见光谱仪是一种测量样品在紫外和可见光区域吸收光的仪器。
它可以用于分析样品中的化学物质的浓度、结构和反应动力学等。
紫外可见光谱仪在生物化学、有机化学和环境科学研究中有着广泛的应用。
6. 核磁共振仪核磁共振仪是一种运用核磁共振现象来分析样品结构和材料性质的仪器。
它广泛应用于生物医学研究、材料科学、有机化学等领域。
7. 粒度分析仪粒度分析仪是一种用于测量和分析物料颗粒尺寸分布的仪器。
它可以精确地测量颗粒的大小和形状,广泛应用于材料科学、制药工业、土壤科学等领域。
8. 热重分析仪热重分析仪是一种测量样品在不同温度下质量变化的仪器。
它可以用于分析样品的热稳定性、热分解特性、含水率等。
热重分析仪广泛应用于材料科学、药物研发、环境监测等领域。
仪器分析知识点总结大全
![仪器分析知识点总结大全](https://img.taocdn.com/s3/m/511d2f06f4335a8102d276a20029bd64783e62c3.png)
仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。
以下是对常见仪器分析方法的知识点总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。
其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。
原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。
优点:选择性好、灵敏度高、分析范围广、精密度好。
局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。
(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。
原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。
其仪器包括激发光源、分光系统和检测系统。
优点:可同时测定多种元素、分析速度快、选择性好。
缺点:精密度较差、检测限较高。
(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。
原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。
仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。
应用广泛,可用于定量分析、定性分析以及化合物结构研究。
(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。
原理是:分子的振动和转动能级跃迁产生红外吸收。
仪器包括红外光源、样品室、单色器、检测器和记录仪。
常用于有机化合物的结构鉴定。
二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。
包括直接电位法和电位滴定法。
临床实验室仪器分析
![临床实验室仪器分析](https://img.taocdn.com/s3/m/9b88d413f11dc281e53a580216fc700abb6852c2.png)
临床实验室仪器分析临床实验室仪器是现代医学中不可或缺的重要工具,它们能够为医生提供精确的诊断结果和治疗方案。
在临床实验室中,各种仪器的分析能力不同,下面将对几种常见的临床实验室仪器进行详细介绍和分析。
一、血液分析仪器血液分析仪器是临床实验室中最常见也是最基础的仪器之一。
它能够对患者的全血样本进行分析,包括红细胞计数、白细胞计数、血红蛋白浓度、血小板计数等指标。
血液分析仪器的工作原理是通过流式细胞仪原理,将样本中的红细胞、白细胞和血小板等细胞一一计数并测定其浓度。
这些结果可以为医生提供患者的血液状态,如贫血程度、感染情况等,进而指导临床诊断和治疗。
二、尿液分析仪器尿液分析仪器是用于检测尿液中各种生化指标和微生物信息的重要仪器。
尿液是人体代谢产物的主要排泄物之一,通过对尿液进行分析可以获得很多有用的信息,如肾功能、炎症反应、尿路感染等。
尿液分析仪器的工作原理是通过光学吸收测定、电化学分析等方法,对尿液中的蛋白质、糖类、酸碱度、细菌等进行检测和定量。
这些结果能够为医生提供关于患者的肾功能、尿路感染等疾病的信息,有助于医生进行诊断和治疗。
三、生化分析仪器生化分析仪器可以对人体液体中的各种生化物质进行分析。
它广泛应用于血液、尿液、体液等的生化指标检测,如血糖、血脂、肝功能、肾功能等。
生化分析仪器的工作原理是通过光学吸收法、电化学法、液相色谱法等方法,对样本中的各种生化成分进行分析和测定。
生化分析仪器可以为医生提供患者的生化指标,帮助医生进行疾病的诊断和监测,同时也能够评估治疗效果。
四、免疫分析仪器免疫分析仪器是一类用于检测抗体和抗原反应的仪器。
免疫分析仪器广泛应用于各种疾病的诊断和治疗,如感染性疾病、风湿免疫性疾病、肿瘤标志物检测等。
免疫分析仪器的工作原理是通过酶标记、化学发光、荧光标记等方法,对样本中的抗体和抗原进行测定。
这些结果能够为医生提供关于患者免疫状态、疾病情况以及治疗效果的信息,有助于医生进行个体化的治疗策略。
仪器分析与总结
![仪器分析与总结](https://img.taocdn.com/s3/m/33207f1b68eae009581b6bd97f1922791688bed8.png)
仪器分析与总结仪器分析是一种采用仪器设备进行化学分析的方法。
通过仪器分析可以提高分析的准确性、灵敏度和快速性,减少人为误差。
本文将介绍仪器分析的基本原理和常用的仪器设备,并总结其在现代科学研究和工业生产中的应用。
在仪器分析中,常用的仪器设备包括质谱仪、光谱仪、色谱仪、电化学分析仪等。
这些仪器利用不同的物理原理和技术手段,将待测样品转化为可测量的信号,然后通过信号处理和数据分析得出待测样品的含量、结构等信息。
质谱仪是一种通过对样品中的化学物质进行离子化和分子质量分析的仪器。
它利用质谱仪的离子源将样品中的化合物分解为离子,然后通过质谱仪的离子检测器测量离子的质量和相对丰度,从而确定样品中化合物的分子质量和结构。
光谱仪是一种通过测量样品对光的吸收、发射或散射来分析样品的物理和化学性质的仪器。
常见的光谱仪包括紫外-可见光谱仪、红外光谱仪、核磁共振光谱仪等。
光谱仪利用样品对不同波长或能量的光的吸收、发射或散射的特性来判断样品中的化学成分和结构。
色谱仪是一种通过对样品中化合物的分离和检测来分析样品组分的仪器。
常见的色谱仪有气相色谱仪和液相色谱仪。
色谱仪利用样品在不同固定相(气相或液相)上的分离速度不同的特性来将样品中的化合物分离开来,然后通过检测器检测分离后的化合物,从而得出样品中各组分的含量和结构。
电化学分析仪是一种通过测量样品的电化学特性来分析样品的仪器。
常用的电化学分析仪有电位计、电解质分析仪、电泳仪等。
电化学分析仪利用样品在电场或电势梯度下的电化学反应特性来测量样品的电流、电压、电荷等特性,从而得到样品中的化学成分和电化学活性。
仪器分析在现代科学研究和工业生产中发挥了重要作用。
它可以用于药物研发、环境监测、食品安全、材料分析等领域。
例如,在药物研发中,仪器分析可以帮助科学家确定新药物的结构和活性,进一步优化药物的性能。
在环境监测中,仪器分析可以用于检测大气中的污染物、水中的重金属和有机物等,从而评估环境质量。
常用仪器分析介绍
![常用仪器分析介绍](https://img.taocdn.com/s3/m/30b401868ad63186bceb19e8b8f67c1cfad6eee5.png)
常用仪器分析介绍常用仪器分析是在科学研究、工业生产和质量控制等领域中广泛使用的一种手段。
它通过测量和观察样品的物理、化学和生物特性,来获取样品的定量和定性信息。
常用仪器分析包括光谱仪、色谱仪、质谱仪、电子显微镜和核磁共振仪等。
光谱仪是一种用于测量样品在不同波长下吸收、发射或散射光的仪器。
常见的光谱仪包括紫外可见光谱仪、红外光谱仪和拉曼光谱仪等。
紫外可见光谱仪广泛应用于材料科学、环境监测和生物分析等领域。
红外光谱仪可以用于分析有机物和无机物的结构和组成。
拉曼光谱仪则可以用于分析物质的分子振动频率,从而获得物质的化学成分。
色谱仪是一种用于分离和定性定量分析混合物中的化学物质的仪器。
常见的色谱仪包括气相色谱仪、液相色谱仪和离子色谱仪等。
气相色谱仪通过气相载气将混合物中的化学物质分离,并通过探测器检测化学物质的存在与浓度。
液相色谱仪则是通过在液相载流体中分离混合物中的化学物质,进而进行定性定量分析。
离子色谱仪主要用于分析离子化合物和有机酸等。
质谱仪是一种用于测量样品中不同质荷比的离子的仪器。
常见的质谱仪包括质谱和质谱仪。
质谱是一种用于测量质荷比和质荷比比例的仪器,广泛应用于物质分析、质谱成像和天文学等领域。
质谱仪则是将质谱与其他分析技术相结合,如气相色谱、液相色谱和红外光谱,以获得更准确的化学成分信息。
电子显微镜是一种用于观察样品表面和内部结构的仪器。
常见的电子显微镜有扫描电子显微镜和透射电子显微镜。
扫描电子显微镜通过扫描样品表面的电子束来获取高分辨率的样品表面形貌和成分信息。
透射电子显微镜则可以观察样品的内部结构和组成。
核磁共振仪是一种用于测量样品中原子核共振频率的仪器。
核磁共振仪广泛应用于化学、材料和生物学等领域的研究中。
核磁共振仪通过在强磁场中对样品施加射频脉冲来激发核自旋共振,从而获得关于样品的结构和动力学信息。
总之,常用仪器分析在科学研究和工业生产中起着重要作用。
常见的常用仪器分析包括光谱仪、色谱仪、质谱仪、电子显微镜和核磁共振仪等。
分析化学中的常用仪器和方法
![分析化学中的常用仪器和方法](https://img.taocdn.com/s3/m/fe61881dcdbff121dd36a32d7375a417876fc150.png)
分析化学中的常用仪器和方法分析化学是化学的一个重要分支,主要研究物质的组成和性质的分析方法。
在分析化学中,常常使用各种仪器和方法来进行样品的分析。
本文将主要介绍一些常用的仪器和方法。
一、光谱仪器光谱仪器是分析化学中广泛应用的仪器之一。
它通过测量样品对辐射的吸收、发射或散射来获取样品的信息。
常用的光谱仪器包括紫外可见分光光度计、红外光谱仪、质谱仪等。
紫外可见分光光度计常用于测定溶液中物质的浓度,红外光谱仪可以用于鉴别有机物的官能团,质谱仪则可以用于确定物质的分子量和结构。
二、气相色谱仪气相色谱仪是一种常用的分离和分析仪器。
它通过将样品中的化合物挥发为气体后,在柱子中进行分离并检测。
气相色谱仪通常由进样装置、柱子和检测器组成。
它广泛应用于药物分析、环境监测和食品安全等领域。
三、液相色谱仪液相色谱仪是另一种常用的分离和分析仪器。
与气相色谱仪不同,液相色谱仪使用液体作为流动相进行分离。
常见的液相色谱仪有高效液相色谱仪和离子色谱仪。
高效液相色谱仪广泛用于药品的分析和纯化,离子色谱仪主要用于离子分析和水质监测。
四、电化学分析方法电化学分析方法是利用电化学现象进行分析的方法。
常见的电化学分析方法包括电位滴定法、伏安法和电导法等。
电位滴定法可用于测定溶液中的氧化还原物质的浓度,伏安法可用于测定溶液中的金属离子的浓度,电导法则可用于测定溶液的电导率。
五、质谱仪器质谱仪器是一种广泛应用于物质分析的仪器。
它通过将样品中的化合物分解为离子,并根据离子在磁场中的运动轨迹进行分析和鉴定。
质谱仪广泛应用于有机物的结构鉴定、代谢物的分析和药物的定量等领域。
六、核磁共振仪核磁共振仪是一种重要的仪器,用于研究原子核的性质。
核磁共振仪利用核自旋的性质来获取样品的信息,广泛应用于有机物的结构鉴定和药物的研究。
分析化学中的仪器和方法众多,上述只是其中的几个常用仪器和方法的简要介绍。
在实际应用中,我们需要根据具体的分析目的和样品特性来选择合适的仪器和方法。
最全的各类分析仪器介绍
![最全的各类分析仪器介绍](https://img.taocdn.com/s3/m/2b0318808ad63186bceb19e8b8f67c1cfbd6ee5a.png)
最全的各类分析仪器介绍1. 光谱仪光谱仪是一种用于测量光的波长和强度的仪器。
它能够将光分解成不同波长的光谱,并测量每个波长的强度。
常见的光谱仪包括分光光度计、分光光度计、紫外可见分光光度计和红外光谱仪等。
2. 质谱仪质谱仪是一种用于分析样品中不同元素和化合物的化学仪器。
它通过将样品转化为离子,并测量离子的质量和丰度来确定样品的组成。
常见的质谱仪有电感耦合等离子体质谱仪、同位素比值质谱仪和飞行时间质谱仪等。
3. 气相色谱仪气相色谱仪是一种用于分离和测定样品中的化合物的分析仪器。
它通过将样品中的化合物分子在气相载体中移动,并根据它们在固定相中的亲和性和分离程度来分离化合物。
常见的气相色谱仪有气相色谱质谱联用仪、气相色谱火焰离子化检测器和气相色谱电子捕获检测器等。
4. 液相色谱仪液相色谱仪是一种用于分离和测定样品中的化合物的分析仪器。
它通过将样品中的化合物溶解在流动相中,并根据化合物在固定相中的亲和性和分离程度来分离化合物。
常见的液相色谱仪有高效液相色谱仪、离子色谱仪和凝胶过滤色谱仪等。
5. 热重分析仪热重分析仪是一种用于测量样品在加热或冷却过程中质量的变化的仪器。
它可以通过测量样品的质量变化来确定样品的热性质、热稳定性和热分解温度等。
常见的热重分析仪有差示热重分析仪、热重仪和维氏硬度试验仪等。
6. 红外光谱仪红外光谱仪是一种用于测量样品在红外光谱范围内吸收和散射光的仪器。
它可以通过测量样品对红外光的吸收和散射来确定样品的分子结构、化学键和功能基团等。
常见的红外光谱仪有红外分光光度计、傅里叶红外光谱仪和拉曼光谱仪等。
7. 核磁共振仪核磁共振仪是一种用于研究样品中原子核的化学环境和分子结构的仪器。
它通过在强磁场中对样品中原子核施加射频脉冲并测量其释放的共振信号来获得样品的核磁共振谱图。
常见的核磁共振仪有核磁共振成像仪、一维核磁共振谱仪和多维核磁共振谱仪等。
8. 粒度分析仪粒度分析仪是一种用于测量样品中颗粒物的大小和分布的仪器。
检验科常用仪器设备介绍
![检验科常用仪器设备介绍](https://img.taocdn.com/s3/m/e31250818ad63186bceb19e8b8f67c1cfbd6ee4d.png)
检验科常用仪器设备介绍现代科学技术的发展,促进了检验科技术的进步,大大提高了产品质量与安全性。
而在检验科中,常用的仪器设备起到了至关重要的作用。
本文将介绍一些常见的检验科常用仪器设备,以期帮助读者对其有更深入的了解。
一、电子式万用表电子式万用表是一种常用的电子测量仪器,具有测量电流、电压、电阻等功能。
它的特点是操作简便、测量精确、量程范围广。
对于检验科而言,电子式万用表是必不可少的仪器设备之一,可用于各种电气检测和测量。
二、红外线热像仪红外线热像仪是一种能够将物体发出的红外辐射转换成可见图像的仪器。
它可以测量物体的表面温度分布,对于某些无法直接测量温度的物体来说,红外线热像仪能够提供及时、准确的温度信息。
在检验科中,红外线热像仪常被用于产品质量检测、故障诊断等领域。
三、质谱仪质谱仪是一种分析仪器,通过对样本中的化学分子进行分析,可以确定其组成和结构。
它的作用非常广泛,例如在食品检验中可以用于检测食品中的有害物质,保证食品的安全性。
质谱仪在医药、环境保护等领域也有广泛的应用。
四、显微镜显微镜是一种光学仪器,可以放大物体的图像,使我们能够观察到微观世界。
在检验科中,显微镜常被用于观察样品的微观结构,如纤维的形状、金属的晶体形态等。
它能够提供珍贵的信息,帮助检验人员进行更准确的判断和分析。
五、液相色谱仪液相色谱仪是一种常用的分析仪器,可以用来分离和检测物质中的各种成分。
它的原理是通过样品溶解在流动相中,经过填充柱分离后被检测器检测。
液相色谱仪在食品、医药、环境等领域都有广泛应用,常被用于检验样品中的有害物质的含量。
六、高效液相色谱仪高效液相色谱仪(HPLC)也是一种分析仪器,与液相色谱仪相比,它在分离效果和分析速度上有较大的提升。
HPLC可以用于分离和检测样品中微量的有机化合物,例如在药物研发中,HPLC可以用于分析药物的纯度和含量。
七、电子显微镜电子显微镜是一种利用电子束来观察样品微观结构的仪器。
相较于光学显微镜,电子显微镜具有更高的放大倍数和更好的分辨率。
分析化学常用实验仪器设备概述
![分析化学常用实验仪器设备概述](https://img.taocdn.com/s3/m/febf3de9185f312b3169a45177232f60ddcce7b2.png)
分析化学常用实验仪器设备概述分析化学是化学学科中的一个重要分支,通过使用各种实验仪器和设备来进行物质成分和性质的分析。
实验仪器和设备在分析过程中扮演了重要的角色,它们能够帮助化学家们快速、准确地获得所需的数据和结果。
本文将对分析化学中常用的实验仪器设备进行概述。
1. 分光光度计:分光光度计是一种能够测量物质吸收或发射光能力的仪器。
它利用了物质对不同波长的光的吸收特性来定量分析目标物质的含量。
根据测量原理的不同,分光光度计可以分为紫外可见分光光度计、红外分光光度计和荧光光度计等。
它的广泛应用使得分光光度计成为化学分析实验室中必备的设备之一。
2. 气相色谱仪:气相色谱仪是一种用于分离和分析混合气体和揮发性液体样品成分的仪器。
它的工作原理是将样品分子移动到固定相或液体移动相中,通过分离和测定它们在移动相中的相对运动速度来实现分析。
气相色谱仪广泛应用于食品安全、环境监测、药物分析等领域。
3. 液相色谱仪:液相色谱仪是一种用于分析溶液中化合物的浓度和纯度的仪器。
它的工作原理是将样品在液体流动相中与固定相相互作用,根据它们在流动相中的相对吸附性能差异来分离和测定各组分的含量。
液相色谱仪在生化分析、药物分析和环境监测等领域具有重要应用价值。
4. 电化学分析仪器:电化学分析仪器用于测量和研究物质的电化学行为。
常见的电化学分析仪器有电位滴定仪、电位计和电解池等。
它们可以用于测定物质的离子浓度、氧化还原电位和电导率等参数,广泛应用于环境污染监测、电化学合成和电子材料表征等领域。
5. 质谱仪:质谱仪是一种用于分析物质的化学组成和结构的仪器。
它的工作原理是将样品中的化合物分子转化为带电离子,然后根据它们在电磁场中根据质荷比的不同而产生的偏转来分析其质量和相对含量。
质谱仪在食品安全、药物研发和环境检测等领域发挥着重要作用。
除了以上列举的常用实验仪器设备,还有许多其他仪器设备在分析化学实验中得到广泛应用,如红外光谱仪、核磁共振仪、热分析仪和电子天平等。
化学分析仪器与设备介绍
![化学分析仪器与设备介绍](https://img.taocdn.com/s3/m/d34e8df364ce0508763231126edb6f1aff00712a.png)
化学分析仪器与设备介绍化学分析仪器与设备是现代化学实验室中必不可少的工具。
它们具有精准度高、操作简便等优势,能够帮助化学工作者进行定量和定性分析。
本文将为您介绍几种常见的化学分析仪器与设备。
一、光谱仪器光谱仪器是化学分析的重要工具之一,主要用于测量样品吸收、发射或散射光的强度和频率。
常见的光谱仪器有紫外-可见吸收光谱仪、红外光谱仪和质谱仪。
紫外-可见吸收光谱仪可用于分析化合物的结构和化学键,红外光谱仪适用于分析物质的官能团,质谱仪则可用于分析化合物的分子质量和结构。
二、色谱仪器色谱仪器主要用于物质的分离与分析,常见的有气相色谱仪和液相色谱仪。
气相色谱仪通过样品的升华和显色反应来实现物质的分离和检测,液相色谱仪则通过样品在固相填充物上的分配作用来实现分离。
色谱仪器广泛应用于环境监测、药物分析、食品安全等领域。
三、质谱仪器质谱仪器是一种能够分析物质组成、结构和分子量的仪器。
通过将样品中的分子离子化并加速,在质谱仪中进行分析。
质谱仪分为质量分析仪和质谱成像仪两种。
前者可用于化合物定性和定量分析,后者则可用于分析样品中分子的空间分布。
四、电化学仪器电化学仪器主要用于测量电化学反应的电流、电压和电导率等参数。
电位计、电解槽和电导仪是电化学仪器中常见的设备。
它们广泛应用于电池、电解液和腐蚀等领域的研究。
五、光学显微镜光学显微镜是一种用于观察样品微观结构的仪器。
通过透射光或反射光的成像,可以观察到样品的细微结构和形态。
光学显微镜在材料科学、生物学和医学等领域具有重要的应用价值。
六、热分析仪器热分析仪器用于研究材料在加热过程中的物理和化学性质的变化。
常见的热分析仪器有差示扫描量热仪和热重分析仪。
差示扫描量热仪能够测量样品在加热或冷却过程中释放或吸收的热量,热重分析仪则可以测量样品在加热过程中质量的变化。
综上所述,化学分析仪器与设备在化学研究和实验中起着重要的作用。
通过使用这些仪器,化学工作者可以准确、快速地进行分析,并得到可靠的结果。
化学实验室中的分析仪器
![化学实验室中的分析仪器](https://img.taocdn.com/s3/m/8aca495c2379168884868762caaedd3383c4b508.png)
化学实验室中的分析仪器化学实验室是进行科学研究和分析的重要场所,而分析仪器是帮助化学实验室完成各种分析任务的关键工具。
本文将介绍化学实验室中常见的几种分析仪器及其原理与应用。
一、红外光谱仪(Infrared Spectrometer)红外光谱仪是一种能够分析和识别物质中化学键种类和结构的仪器。
其基本原理是利用物质中的化学键在红外光作用下的振动和转动引起的特定频率的吸收现象。
红外光谱仪的应用非常广泛,包括有机物的鉴定、药物分析、环境监测等领域。
二、气相色谱质谱联用仪(Gas Chromatography-Mass Spectrometry)气相色谱质谱联用仪结合了气相色谱仪和质谱仪的功能,能够实现物质的分离和鉴定。
气相色谱质谱联用仪将物质先经过气相色谱柱进行分离,然后将被分离的物质的组分进行质谱分析。
这种仪器在食品安全、环境监测、药物分析等领域具有重要应用价值。
三、高效液相色谱仪(High Performance Liquid Chromatography)高效液相色谱仪是一种利用不同化学物质在液相中的相互作用引起的分离现象,来分析和鉴定样品中化合物的仪器。
它可以用于分析和鉴定有机物、无机物、生物大分子等样品,具有分离效率高、分析速度快的优点。
高效液相色谱仪在医药、食品、化工等领域的应用非常广泛。
四、原子吸收光谱仪(Atomic Absorption Spectrometer)原子吸收光谱仪利用物质中原子的吸收特定波长的光的原理,对样品中的金属元素进行定性和定量分析。
原子吸收光谱仪具有灵敏度高、选择性好的特点,可以用于分析和鉴定环境样品、食品中的微量金属元素等。
它在环境保护、食品安全等领域发挥了重要作用。
五、质谱仪(Mass Spectrometer)质谱仪是一种可以对化合物进行鉴定和结构分析的仪器。
它通过将物质中的化合物分解成离子,并根据离子的质量与电荷比进行分离和检测,从而确定物质的质量、分子结构和组成。
常用分析仪器知识
![常用分析仪器知识](https://img.taocdn.com/s3/m/b92dd82bae1ffc4ffe4733687e21af45b307fe07.png)
常用分析仪器知识导言:在科学研究和工业生产中,分析仪器的使用至关重要。
分析仪器是利用特定的原理和技术手段来检测、测量、分析和判断物质组成、结构、性能和变化规律的仪器。
本文将介绍一些常用的分析仪器及其原理和应用。
一、光谱仪光谱仪是一种用于测量光谱的仪器,可以分析物质的色散性质以及其组成、结构和性质。
常见的光谱仪有紫外可见光谱仪、红外光谱仪和质谱仪。
紫外可见光谱仪利用物质对紫外和可见光的吸收、散射和反射等现象来分析样品成分。
它通常由光源、样品室、光栅、光电转换器、电路和显示器等组成。
红外光谱仪则利用物质对红外光的吸收来分析物质的结构和组成。
它主要由光源、样品室、分光器、探测器和显示器等组件构成。
质谱仪是一种用于测量样品的质量和性质的分析仪器。
它通常由离子源、荧光屏、检测器和数据处理系统等部分组成。
质谱仪可以用于测量分子的分子量、结构以及化合物的定性定量分析。
二、色谱仪色谱仪是一种用于分离和分析复杂化合物的仪器。
常见的色谱仪有气相色谱仪、液相色谱仪和高效液相色谱仪。
气相色谱仪是一种利用气体作为流动相的色谱仪,主要用于分离和测定气体和挥发性化合物。
它由气相输送系统、色谱柱、检测器和数据处理系统等组成。
液相色谱仪是一种利用液态流动相的色谱仪,主要用于分离、检测和鉴定液体和溶液中的化合物。
它由液相输送系统、色谱柱、检测器和数据处理系统等构成。
高效液相色谱仪是一种用于分离和测定样品中的有机和无机化合物的色谱仪。
它主要由泵浦系统、进样器、发生器、柱温箱、检测器和电子系统等组成。
三、质量分析仪器质谱仪是一种用于测量和分析样品中化学物质的质量和组成的仪器。
质谱仪可以通过测量样品中质子、中性原子或离子的比率来确定样品的成分和结构。
质谱仪主要由离子源、荧光屏、检测器和数据处理系统等组成。
四、电化学分析仪器电化学分析仪器主要用于测量和分析样品中的电化学性质和电化学反应。
常用的电化学分析仪器有电导计、pH计、电化学工作站和电化学电池测试仪等。
试验室常用分析仪器及检测内容
![试验室常用分析仪器及检测内容](https://img.taocdn.com/s3/m/6f425f9929ea81c758f5f61fb7360b4c2f3f2a42.png)
试验室常用分析仪器及检测内容试验室是科学研究和工程设计中进行实验和检测的重要场所,常用分析仪器用于对样品的性质、成分、质量和化学反应等进行分析和检测。
下面将介绍试验室常用的分析仪器及其检测内容。
1.紫外可见分光光度计:紫外可见分光光度计是一种用于测量物质吸光度或透射率的仪器。
它可以提供样品在紫外光和可见光波段范围内的吸光度数据。
这些数据对于反映一些物质的分子结构和化学性质非常重要,例如颜料、药物、有机物的含量测定等。
2.原子吸收光谱仪:原子吸收光谱仪是用于测量样品中金属元素含量的仪器。
它基于金属元素在特定波长的可见光或紫外光下的吸收现象。
原子吸收光谱仪广泛应用于环境监测、食品安全、质量控制等领域,常用于检测水和土壤中的金属元素含量。
3.气相色谱仪:气相色谱仪是一种用于分离和测量混合气体或液体中各个成分的仪器。
它通过将样品分子在固定或液态载体中的分配行为来实现分离,然后利用检测器对分离后的组分进行定量分析。
气相色谱仪广泛应用于化学、环境、食品、医药等领域,常用于检测香精、食品添加剂以及有机物的残留等。
4.液相色谱仪:液相色谱仪是一种将混合物中各个化合物分离并检测的仪器。
它利用样品溶解于流动液相中,通过选择性的分配和吸附分离物质,然后通过检测器进行定量分析。
液相色谱仪广泛用于食品、环境、药品等领域,常用于检测糖类、氨基酸、激素、药物等物质。
5.质谱仪:质谱仪是一种用于分析样品中分子及离子结构的仪器。
它通过将样品中分子或离子分解成带有信息的片段,然后测量和分析这些片段的质量和相对丰度,以确定要分析的物质的分子结构。
质谱仪广泛应用于有机物及无机物的分析、新药研发、环境污染物的检测等领域。
6.核磁共振仪:核磁共振仪是一种用于分析样品中原子或分子核的类型、化学环境和相互作用的仪器。
它利用样品中原子核在磁场中的特定共振频率进行分析,获得有关样品组成和结构的信息。
核磁共振仪广泛应用于化学、药物、生物学等领域,常用于有机物和小分子的结构鉴定。
常见检验科实验室设备介绍
![常见检验科实验室设备介绍](https://img.taocdn.com/s3/m/081084713868011ca300a6c30c2259010202f334.png)
常见检验科实验室设备介绍实验室设备是科学研究和实验检验的基础工具,它们的性能和精度直接影响到实验结果的准确性和科研工作的进展。
以下是常见检验科实验室设备的介绍。
1. 光谱仪光谱仪是一种用于测量和分析物质的光谱特性的仪器。
它可以通过将物质激发至高能级,然后测量其发射或吸收的光谱,来确定物质的成分和特性。
常见的光谱仪有紫外可见光谱仪、红外光谱仪和荧光光谱仪等。
2. 电子显微镜电子显微镜是一种利用电子束作为探测器来观察和分析物质的微观结构的仪器。
相比于光学显微镜,电子显微镜的分辨率更高,可以观察到更小的颗粒和更详细的结构。
常见的电子显微镜有透射电子显微镜(TEM)和扫描电子显微镜(SEM)等。
3. 气相色谱-质谱联用仪气相色谱-质谱联用仪(GC-MS)是一种结合了气相色谱和质谱技术的仪器,用于分离和分析复杂混合物中的化合物。
气相色谱用于分离样品中的化合物,而质谱则用于鉴定和定量分析分离出的化合物。
GC-MS在食品安全、环境监测和药物分析等领域有广泛应用。
4. 离心机离心机是一种用于离心分离和提取物质的仪器。
它通过加速旋转,产生离心力,将样品中的悬浮物或混合物分离开来。
离心机在生物医学研究、生化实验和临床诊断中常用于细胞分离、DNA提取和药物离心浓缩等。
5. 恒温培养箱恒温培养箱是一种用于提供恒定温度和湿度条件的设备,用于培养和生长微生物、细胞和组织等。
恒温培养箱可以调节温度和湿度,提供合适的生长环境,促进生物实验的进行。
它在微生物学、细胞生物学和组织工程等领域被广泛使用。
6. 试剂仪试剂仪是一种用于自动配制和处理试剂的仪器。
它可以根据设定的配比和容量,自动加入试剂和反应物,并控制反应的时间和温度来完成化学反应。
试剂仪通常应用于化学分析和有机合成等实验中。
7. pH计pH计是一种用于测量溶液酸碱性的仪器。
它通过测量溶液中氢离子浓度的负对数,来确定溶液的酸碱性。
pH计广泛应用于化学、生物学和环境科学等领域,用于溶液的测量和调节。
化学分析的仪器设备
![化学分析的仪器设备](https://img.taocdn.com/s3/m/a185125bfd4ffe4733687e21af45b307e971f962.png)
第16课云南的歌会【导学目标】1.通过反复朗读,揣摩体会文章语言,感受文中流露出来的乡土气息。
2.深入体会和感受文章质朴的语言美。
【课时计划】2课时学生齐读导学目标,圈点关键词,做到对学习任务心中有数。
教法指导:1.自主学习让学生围绕“自主学习”中的知识点进行自主学习。
(1)带着导学目标,认真阅读课文及相关参考资料,捕捉课文中的关键段落、句子、词语,尽量独立完成“自主学习”中的思考题,准备展示交流。
(2)记录疑难问题,将自主学习没有解决的问题记录下来,用于合作探究时解决。
2.合作学习(1)每个小组派1~2名代表展示“自主学习”中的答案,同小组内其他成员在小组长的统一安排下合作完成“合作探究”中的思考题。
(2)同桌之间互相讨论,有分歧不能达成一致的,小组讨论;小组内不能达成一致的,组长记录下来,以备全班讨论时交流。
(3)全班讨论时,教师不能一下子给出答案,在学生思维的火花充分碰撞后,再点拨引导,达到启发思维的目的。
情景导入激发兴趣在云南一些少数民族聚居的地区,每逢集会或节日,人们聚集在一起,即兴歌唱,互相问答,游戏传情。
这种古老的歌会形式,饱含着浓郁的民间文化气息。
今天,让我们一起走进《云南的歌会》,去感受那里的民风民俗。
自主学习展示交流步骤一知识梳理夯实基础1.生难字词(1)字音柞.木(zuò) 迤.(yǐ)西譬.(pì)喻糯.(nuò)米铁箍.(ɡū) 阉.鸡(yān)蹲.(dūn)踞忌讳.(huì) 矗.(chù)龙吟凤哕.(huì)(2)词义譬喻:打比方。
引经据典:引用经典中的语句或故事作为立论的依据。
忌讳:因风俗习惯和畏惧权势而对某些不吉利的语言或举动有所顾忌。
扶摇而上:形容直往上升。
生面别开:另外开展新的局面或创造新的形式。
酬和:本意敬酒,引申为交际往来。
悠游自在:快活的样子。
若无其事:好像没有那么回事似的,形容不动声色或漠不关心。
各种仪器分析及原理
![各种仪器分析及原理](https://img.taocdn.com/s3/m/0dc0bb62580102020740be1e650e52ea5518ce15.png)
各种仪器分析及原理仪器分析是通过使用各种仪器设备来进行物质分析的一种方法。
不同的仪器有不同的原理和应用,下面将介绍几种常见的仪器及其原理。
一、光谱仪器1.紫外-可见分光光度计:利用物质吸收可见光或紫外光的特性测定溶液中物质的浓度。
原理是测定物质在特定波长下的吸光度与浓度之间的关系。
2.红外光谱仪:通过测量物质在红外辐射下的吸收或散射特性来确定物质的结构和组成。
原理是不同化学键振动或分子转动会引起特定波长的吸收。
3.质谱仪:通过将物质分子离子化,并根据它们的质量电荷比进行分析。
原理是通过加速带电粒子在磁场中的运动轨迹和速度来测量粒子的质量。
二、电化学仪器1.pH计:通过测量溶液中氢离子浓度的变化来测定溶液的酸度或碱度。
原理是利用玻璃电极和参比电极在溶液中的电势差来计算酸碱度。
2.电位差计:用于测量两个电极之间电势差的仪器。
原理是通过测量两个电极之间的电势差,来确定水溶液或其他溶液中的电离物质浓度。
3.电导仪:测量电解质溶液中电导率的仪器。
原理是通过测量电流在导体中的传导来计算电解质的浓度。
三、色谱仪器1.气相色谱仪:通过将混合物分离为组分,并利用物质在固定相和移动相之间的分配系数进行测定。
原理是利用气相中组分分配的不同,从而分离和测量混合物中的各种组分。
2.液相色谱仪:通过将混合物分离为组分,并利用物质在固定相和移动相之间的分配系数进行测定。
原理是利用液相中组分分配的不同,从而分离和测量混合物中的各种组分。
四、质谱仪质谱仪是一种用于分析样品中各种化学物质的仪器,它通过将样品中的化合物离子化,并根据它们在电磁场中的差异来分析。
原理是将离子加速到高速,通过电磁场的转向来分离出质量差异较大的粒子。
五、核磁共振仪核磁共振仪是一种用于分析样品结构的仪器,它利用核自旋在外部磁场中的共振吸收信号来测量样品的性质。
原理是通过给定外部磁场和射频辐射下,观察样品反馈的核磁共振信号,从而分析样品的结构和组成。
六、质量分析仪质量分析仪是一种用于测量样品中不同质量的分子的仪器。
十四种材料组分分析常用化学分析仪器及设备详解!
![十四种材料组分分析常用化学分析仪器及设备详解!](https://img.taocdn.com/s3/m/996b443a4b7302768e9951e79b89680203d86b85.png)
十四种材料组分分析常用化学分析仪器及设备详解!一、前言随着材料科学与技术的发展,越来越多的材料用于各种应用,然而材料的组分分析对于保证材料质量和开发新材料有着至关重要的作用。
本文将介绍14种材料组分分析常用的化学分析仪器及设备,以供参考。
二、元素分析仪元素分析仪是一种用于分析固体、液体样品中化学元素含量的仪器。
其工作原理主要是将样品转化为气相或溶液,使用光谱等方法来分析其中的元素成分。
常见的元素分析仪有以下几种:(一)ICP-MSICP-MS全称为电感耦合等离子体质谱仪,是一种能够实现元素分析的高灵敏度、高分辨率和多元素分析的无痕元素分析技术,广泛应用于分析很多领域中的有机和无机样品。
其主要特点是精准、快速、准确、灵敏,可同时检测多种元素,仪器高度自动化,操作简单。
(二)XRFXRF全称为X射线荧光光谱仪,是一种分析固体、液体、气体元素组成的无损测试仪器,主要用于矿物、土壤、金属、玻璃、陶瓷等应用领域。
其主要特点是便携、快速、无需破坏性样品制备、精度高、准确度高。
(三)AASAAS全称为原子吸收光谱仪,是一种高精度、高灵敏、结构简单的原子分析仪器,用于定量测定样品中的单一金属元素,主要应用于制药、食品、工业、化学等领域。
其主要特点是精度高、分析速度快、可重复性好。
三、元素成分分析仪元素成分分析仪是一种通过对样品中的化学成分进行分析,进而测定其组成的仪器。
如下:(一)红外光谱仪红外光谱仪是一种测量样品中化学键振动能量的光谱仪器,广泛应用于制药、化学、食品、石油、橡胶等行业。
其主要特点是简单易用、反应灵敏、快速、可以分析多种样品。
(二)NMRNMR是核磁共振光谱仪,是一种测量样品种核磁共振信号的仪器。
其应用领域很广泛,主要用于化学、制药、生物技术、地质、材料科学等领域。
其主要特点是能够分析定量测定样品的物理、化学和结构性质。
(三)MSMS全称为质谱仪,是一种用来确定化合物分子量、化合物结构和化合物分子结构的仪器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代分析仪器及其发展(一)(北京普析通用仪器有限责任公司分析中心北京 100081)Recent Analysis Instruments and Development Beijing Purking General InstrumentCo.,Lt Analytical Centre近代分析仪器的发展促进了分析化学向纵深发展,并在国民经济各个领域获得了广泛的应用,从航天材料、食品安全、环境污染、医疗卫生、地质勘探、工业生产、农业生产、检验检疫诸多方面都离不开分析仪器。
现代分析化学的发展趋势是高灵敏度、高选择性(复杂体系)、智能化、快速、自动、简便、经济。
对分析仪器而言,一方面要降低仪器的信噪比,另一方面是各类分析仪器的联用,特别是分离仪器和检测器的连用,如色谱仪 (气相色谱、液相色谱或超临界流体色谱仪、多维色谱仪等)和各种分析仪器(质谱、核磁共振波谱、傅立叶红外光谱、原子吸收光谱和原子发射光谱)的联用,利用前者的优异的分离功能,将组分分离后由后者加以识别,进行定性和定量分析。
此外,近红外光谱化学计量学软件设计及其在各行业的应用软件 (包括建模、校准、评价、数据优化等软件和软件包)的开发和完善也将成为国内外分析仪器发展的另一个热点。
1 原子光谱分析法1.1 原子发射光谱分析法(AES)21世纪新兴的原子光谱分析光源是等离子体光源(plasma source),分为直流等离子体 (DCP)、高频电感耦合等离子体(ICP)和微波等离子体 (MP)。
直流等离子体是最早用于原子光谱分析的一种等离子体光源,功率较ICP低,雾化器不易堵塞,总氩气的用量只及 ICP耗气量的一半,无高频辐射,检出限与ICP相近或稍差,精密度不如ICP好,线性范围比ICP窄,基体效应比 ICP严重,电极易污染。
ICP具有优良的分析特性,被测元素能有效的进行原子化和消除化学干扰,工作曲线有较宽的线性范围,达 4~6个数量级,信噪比高,可快速进行多元素的同时测定。
微波等离子体包括电容耦合微波等离子体(CMP)和诱导微波等离子体 (MIP),常用微波频率为 2450 MHz,主要优点是激发能力强,以He气为工作气体时,可以测定包括卤素在内的几乎所有元素,有很好的检出限。
AES法广泛应用于钢铁、合金、有色金属、地质、石化等领域的分析。
1.2 原子吸收光谱法(AAS)按照所用的原子化方法的不同,可分为火焰原子吸收法(FAAS)、石墨炉原子吸收法 (GFAAS)和石英炉原子化法,可以在较低的温度下原子化,包括汞蒸气原子化、氢化物原子化和挥发物原子化。
背景校正器有氘灯背景校正器、塞曼效应背景校正器、自吸背景校正器。
原子吸收法的优点是检出限低,FAAS为 10-6~10-9 g/mL,GFAAS为10-10~10-14g/mL。
目前,1.3 原子荧光光谱法(AFS)原子荧光光谱在元素及其形态分析方面有着广泛的应用,特别是与氢化物发生进样技术的结合,在测定地质样品、钢铁合金、环境样品、食品、生物样品等中的 Ge、Sn、Pb、As、Sb、Bi、Se、Te、Hg和 Cd等元素都有很好的效果。
原子荧光光谱法的特点是谱线简单、光谱干扰少、检出限低,测定空气中的汞,检出限达到每立方米2.2×10-9个原子,可进行多元素同时测定,校正曲线的线性范围宽,达到4~7数量级,适用元素的范围不如AES和 AAS广泛。
AFS法与AAS、AES分析技术互相补充,在冶金、地质、环境监测、生物、医学分析等领域得到了日益广泛的应用。
2 分子光谱分析法2.1 紫外一可见分光光度法(UV-VIS)紫外可见分光光度法是历史最悠久、应用面最为广泛的一种仪器分析方法,现在又发展了多种分光光度测量技术,如双波长(三波长)分光光度法,可以有效地消除复杂试样的背景吸收、散射、浑浊对测定的影响,很适合于生物样品和环境样品的分析。
胶束增溶分光光度法可以提高测定选择性和灵敏度,摩尔吸收系数一般可达 106 L/(mol·cm )。
导数分光光度法提高了对重叠、平坦谱带的分辨率与测定灵敏度,示差分光光度法提高了测定很稀或很浓溶液吸光度的精度。
正交函数吸光光度法在吸收曲线的某一区域选择适当的正交多项式,使干扰组分的正交多项式系数最小,以致可以忽略不计,用待测组分的正交多项式的系数进行定量分析。
随着化学计量学方法的兴起,出现了多种计算机辅助分光光度法,如因子分析、偏最小二乘法、多元线性回归分光光度法等,可以在谱带严重重叠的情况下,不经分离可以直接实现多组分的同时测定。
此外,还有流动注射吸光光度法、动力学吸光光度法、浮选吸光光度法、固相吸光光度法、计量学吸光光度法等。
2.2 红外光谱吸收法(IR)红外光谱能提供有机化合物丰富的结构信息,特别是中红外光谱是鉴定有机化合物结构最主要的手段之一。
近年来,近红外光谱技术与各种化学计量学算法相结合,取得了显著的研究成果。
目前,傅立叶变换红外光谱仪 (FTIR),逐渐取代了色散型红外光谱仪,它主要由红外光源、光学系统、检测器以及数据处理与数据控制系统组成。
现在数据库已储存有大量的有机化合物的标准红外图谱,检索也十分方便。
对于化工生产控制和未知物剖析有很大帮助。
综 述外光谱与显微镜联用已成为一种微量和微区分析的新技术。
借助于化学计量学的发展,近红外(NIR)光谱技术迅速发展,形成“三位一体”的技术,即将近红外光谱仪、化学计量学软件和应用模型三部分有机地结合起来,这项技术从农业上开始,渗透到石化领域,并发展极快。
2.3 光声光谱法(PAS)光声光谱法的基础是光声效应。
光声光谱法的特点是:灵敏度高,比普通分光光度法高2~3个数量级,应用范围广,可用于不透明固体、液体、气体和薄层样品分析,尤其可用于常规光谱仪难以分析的深色不透明或高散性的样品(如深色催化剂、生物活体试样等制样困难的橡胶和高聚物)的分析,用于检测大气中的氯乙烯、六氟化铀、氟里昂等污染物的含量,检出限可达到10-9g量级。
2.4 拉曼光谱法(Raman Spectroscopy)拉曼光谱的特点对于非极性基团、碳链和环的骨架的振动,拉曼光谱比红外光谱具有更强的特征性,并能很好地区分异构体。
水的红外吸收强,而拉曼散射弱,很适合在水溶液介质中研究生物大分子的结构。
拉曼光谱较红外光谱简单,没有倍频和组合频信号,减少了谱带重叠干扰的可能性,制样比较简单,液体、固体、粉末试样可直接测定。
傅立叶变换拉曼光谱仪使用的激光源功率低,减少了光源对有机样品和生物样品的光热分解和荧光对测定的干扰。
拉曼光谱主要用于化合物分子结构的鉴定,利用微分析装置将激光聚焦到很小的特定微区获得的显微拉曼光谱,特别适合半导体、陶瓷、生物活体和矿物等不均匀物质的分析。
2.5 分子荧光和磷光光谱(Molecular Fluorescence and Molecular Phosphorescence Spectroscopy)分子发射光谱法包括分子光致发光 (如分子荧光和分子磷光)分析法与非光致发光 (如化学发光和生物发光)分析法。
在荧光光度计上,配置磷光附件,或利用时间分辨技术可以进行磷光测定。
分子荧光和分子磷光可用于研究物质的电子状态、发光体的分子取向、发光过程动力学等。
通过直接测定含量发光物质,能测定的元素达60多种。
通过化学反应,将不发荧光或荧光量子产量很低的物质转变为适合于测定的荧光物质,在环境监测、生物医学、临床化学、DNA测序、基因分析、跟踪化学等方面都有广泛的应用。
2.6 化学发光分析法(Chemiluminescence)化学发光分析法是分子发光法的一种,大部分有机生色基团的激发能约为 50~102 kcal/mol,相应于280~580 nm 的光谱区,正处于大多数氧化还原反应的能量区,故化学发光反应大多为氧化还原反应。
如卵磷脂等不饱和脂肪酸组成的脂质体,通过不饱和脂肪酸的自氧化,使脂质体膜产生超微弱发光。
化学发光分析法的主要特点是灵敏度高,检出限达到 10-11 mol/L的生物样品,重现性好,线性范围宽,仪器比较简单,操作方便。
化学发光现象在分析化学、生物化学、环境科学、材料分析中有着广泛的应用。
到痕量都可测定,测定精度好,采用基本参数分析法可实现无标分析。
分析过程中不破坏试样,便于无损分析,分析速度快,易于实现分析自动化,缺点是仪器设备昂贵。
目前,在执行RoHS 指令对电子电器产品污染物测试中,应用XRF对大量电子电器样品进行定性筛选发挥了很的作用。
3.2 X射线衍射分析(XRD)X射线衍射分析主要用于物相分析、结构分析和结构鉴定,它具有多种形式,其中粉末衍射仪是目前研究粉末 X射线衍射最常用的仪器。
X射线衍射分析为我们提供了一种定性鉴定晶体化合物、定量测定混合物中晶体化合物及研究晶体结构方便而有效的方法,在化学、物理学、生物学、材料学以及矿物学等领域都有广泛的应用。
X射线光谱的定性分析包括试样的X射线光谱记录和峰的识别,定量分析是测定试样中待测元素的特征谱线强度,并把强度转化为元素含量。
4 波谱分析4.1 电子顺磁共振波谱(EMR)电子顺磁共振是电子自旋共振的一种,专指顺磁物质的电子自旋共振。
在外磁场的作用下,具有未成对电子的顺磁物质(如自由基、过渡金属离子、晶体中的缺陷、多重态分子、碱金属的自由电子、半导体的杂质等),有净电子自旋和相应的磁矩,在磁场中以一定的频率转动,当外界加入射频磁场的频率与未成对电子的转动频率相同时,分析吸收一定能量的微波在未成对电子自旋分裂成的不同能级之间跃迁,形成电子自旋共振吸收波谱。
谱线峰面积与未配对电子的浓度成正比。
4.2 核磁共振波谱(NMR)上世纪70年代后期,脉冲傅立叶变换核磁共振波谱仪问世,使用强而短的脉冲让所观察的不同官能团中所有同位素核都发生核磁共振信号,计算机记录信号强度随时间衰减的过程,得到信号强度对频率关系的谱图。
核磁共振波谱给出的结构信息是最严格和准确的。
结构中每个官能团和结构单元都有确切对应的峰,反之,每一个吸收峰都能找到确切的归属。
可以通过化学位移和耦合常数获取有机化合物的相关信息。
目前广泛使用的是H1和C13核磁共振仪器,核磁共振波谱是有机结构分析最有效的手段之一。
但仪器价格和维持费用高。
5 质谱分析法(MS)按质量分析器分,可以分为扇形场质谱仪、四极杆质谱仪、飞行时间质谱仪、离子回旋共振质谱仪、离子阱质谱仪等。
按离子源类别分,可以分为火花源质谱仪、电感耦合等离子体质谱仪、二次离子质谱仪等。
按分辨率分,可以分为高分辨率质谱仪,分辨率在 10000以上的,如双聚焦质谱仪和傅立叶变换离子回旋共振质谱仪;低分辨率质谱仪,在 1000以下的,如单聚焦质谱仪、四极杆质谱仪、不带反射静电透镜的飞行时间质谱仪。