高考物理曲线运动解题技巧讲解及练习题(含答案)
高考物理曲线运动答题技巧及练习题(含答案)含解析
高考物理曲线运动答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高考物理曲线运动解题技巧及经典题型及练习题(含答案).docx
高考物理曲线运动解题技巧及经典题型及练习题 ( 含答案 )一、高中物理精讲专题测试曲线运动1. 光滑水平轨道与半径为 R 的光滑半圆形轨道在 B 处连接,一质量为m 2 的小球静止在 B处,而质量为 m 1 的小球则以初速度 v 0 向右运动,当地重力加速度为g ,当 m 1 与 m 2 发生弹性碰撞后, m 2 将沿光滑圆形轨道上升,问:(1)当 m 1 与 m 2 发生弹性碰撞后, m 2 的速度大小是多少?(2)当 m 1 与 m 2 满足 m 2 km 1 (k0) ,半圆的半径 R 取何值时,小球 m 2 通过最高点 C后,落地点距离 B 点最远。
【答案】( 1) 2m 1v 0 /( m 1 +m 2) ( 2) R=v 0 2/2g(1+k)2【解析】【详解】( 1)以两球组成的系统为研究对象,由动量守恒定律得: m 1v 0=m 1v 1+m 2v 2,1 2121由机械能守恒定律得:m 1v 0 =m 1v 1 +2 22m 2v 22,解得: v 22m 1v 0 ; m 1 m 2(2)小球 m 2 从 B 点到达 C 点的过程中,由动能定理可得:1 2 1 2,-m 2g ×2R= m 2v 2 ′-2 m 2v 224gR(2v 0)解得: v 2v 2 4gR (2mv)2 2 4gR ;21m 1 m 21 k小球 m 2 通过最高点 C 后,做平抛运动,竖直方向: 2R= 1gt 2,2水平方向: s=v 2′t ,解得: s(2v 0 )2 4R 16R 2 ,1 k g由一元二次函数规律可知,当v 02 时小 m 2 落地点距 B 最远.Rk )22g(12. 如图所示,质量 m=3kg 的小物块以初速度秽 v 0=4m/s 水平向右抛出,恰好从 A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R= 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道 BD 平滑连接, A 与圆心 D 的连线与竖直方向成37角, MN 是一段粗糙的水平轨道,小物块与 MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
高考必备物理曲线运动技巧全解及练习题(含答案)及解析
高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
高考物理高考物理曲线运动解题技巧讲解及练习题(含答案)
高考物理高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
不计空气阻力,重力加速度求:滑块刚滑离平板车时,车和滑块的速度大小; 滑块与平板车间的动摩擦因数。
【答案】(1),(2)【解析】 【详解】设滑块刚滑到平板车右端时,滑块的速度大小为,平板车的速度大小为, 由动量守恒可知:滑块滑离平板车后做平抛运动,则有:解得:,;由功能关系可知:解得:【点睛】本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞后系统的动量相等列方程进行解答。
2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+,解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,半径为R 的四分之三光滑圆轨道竖直放置,CB 是竖直直径,A 点与圆心等高,有小球b 静止在轨道底部,小球a 自轨道上方某一高度处由静止释放自A 点与轨道相切进入竖直圆轨道,a 、b 小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b 经过C 点水平抛出落在离C 点水平距离为22R 的地面上,重力加速度为g ,小球均可视为质点。
高考物理曲线运动解题技巧讲解及练习题(含答案)
高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,BC 为半径r =m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C点后经过98s 再次回到C 点。
高考物理高考物理曲线运动答题技巧及练习题(含答案)
高考物理高考物理曲线运动答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F +【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
高考物理曲线运动解题技巧讲解及练习题(含答案)及解析
高考物理曲线运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.2.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。
【答案】(1) 2m 1v 0/(m 1+m 2) (2) R =v 02/2g (1+k )2 【解析】 【详解】(1)以两球组成的系统为研究对象, 由动量守恒定律得:m 1v 0=m 1v 1+m 2v 2, 由机械能守恒定律得:12m 1v 02=12m 1v 12+12m 2v 22, 解得:102122m v v m m =+;(2)小球m 2从B 点到达C 点的过程中, 由动能定理可得:-m 2g ×2R =12m 2v 2′2-12m 2v 22, 解得:2221002212224()4()41m v vv v gR gR gR m m k'=-=-=-++小球m 2通过最高点C 后,做平抛运动,竖直方向:2R =12gt 2, 水平方向:s =v 2′t ,解得:22024()161v Rs R k g=-+, 由一元二次函数规律可知,当2022(1)v R g k =+时小m 2落地点距B 最远.3.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大?②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得cos mgT α=解得:41515T mg =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
高考物理曲线运动解题技巧(超强)及练习题(含答案)及解析
高考物理曲线运动解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
【答案】【解析】 【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F ,小球受圆锥面的支持力为,则水平方向上有: 竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。
2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力,g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。
高考物理曲线运动解题技巧及练习题(含答案)及解析
高考物理曲线运动解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
高考物理高考物理曲线运动解题技巧和训练方法及练习题(含答案)
高考物理高考物理曲线运动解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.5.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.6.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 020v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v 代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;7.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s8.如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R 、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R 后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵到达管口C 时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能.已知重力加速度为g .求: (1)质量为m 的鱼饵到达管口C 时的速度大小v 1; (2)弹簧压缩到0.5R 时的弹性势能E p ;(3)已知地面欲睡面相距1.5R ,若使该投饵管绕AB 管的中轴线OO ' 。
高考物理曲线运动解题技巧讲解及练习题(含答案)及解析
高考物理曲线运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图是节水灌溉工程中使用喷水龙头的示意图。
高考物理曲线运动及其解题技巧及练习题(含答案)及解析
高考物理曲线运动及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。
【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则水平方向上有:竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。
2.水平抛出一个物体,当抛出1秒后,它的速度方向与水平方向成45°角,落地时,速度方向与水平方向成60°角,(g取10m/s2)。
求:(1)初速度(2)水平射程(结果保留两位有效数字)(3)抛出点距地面的高度【答案】(1)10m/s(2)17m(3)15m【解析】【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.将1秒后的速度进行分解,根据v y=gt求出竖直方向上的分速度,再根据角度关系求出平抛运动的初速度;将落地的速度进行分解,水平方向上的速度不变,根据水平初速度求出落地时的速度;根据落地时的速度求出竖直方向上的分速度,运用v y=gt求出运动的时间,再根据x=v0t求出水平射程.再根据h=12gt2求出抛出点距地面的高度.【详解】(1)如图,水平方向v x=v0,竖直方向v y=gt,1s时速度与水平成45°角,即θ=45°因为tan450=yvv所以v0=v y初速度:v0=gt=10×1=10m/s。
高考物理曲线运动解题技巧讲解及练习题(含答案)含解析
高考物理曲线运动解题技巧解说及练习题( 含答案 ) 含分析一、高中物理精讲专题测试曲线运动1.如下图,倾角为45的粗拙平直导轨与半径为r 的圆滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰巧击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为 e 点,重力加快度为g,不计空气阻力. 求:(1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果能够保存根号)【答案】( 1)142 mgr ;()′;()2=6mg2F314【分析】【剖析】【详解】(1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r v a t竖直方向: r1gt 22解得:v a gr小滑块在 a 点飞出的动能E k1mv a21mgr22(2)设小滑块在 e 点时速度为v m,由机械能守恒定律得:1mv m21mv a2mg 2r22在最低点由牛顿第二定律:F mg mv m2r由牛顿第三定律得:F′=F解得: F′ =6mg(3) bd 之间长度为L,由几何关系得:L 2 2 1 r从 d 到最低点 e 过程中,由动能定理mgHmg cos L1mv m22解得42142.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点. D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达 M 点( 3) 2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR 2 10 0.45 m/s=3m/sv y tan53 °4v D3所以: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v2y32 2.252m/s = 3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由D 到M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,所以物块不可以抵达M 点(3)由题意知x= 4t - 2t2,物块在桌面上过 B 点后初速度v B= 4m/s ,加快度为:a 4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数 :0.4质量 m1= 0.4kg 的物块将弹簧迟缓压缩到 C 点,开释后弹簧恢还原长时物块恰停止在B 点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC 0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.3.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点 C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【分析】【剖析】【详解】(1)依据机械能守恒定律12E p=mv1 ?①v1=2Ep=7m/s ②m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k1mv222解得: E k25J故此题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功 ,依据小球恰巧能经过最高点的条件获取小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动,只有重力做功 ,依据动能定理求小球落地时的动能大小4.小孩乐园里的弹珠游戏不单拥有娱乐性还能够锻炼小孩的眼手合一能力。
高考物理曲线运动解题技巧分析及练习题(含答案)
高考物理曲线运动解题技巧分析及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR = (2)123gRv =,253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =2.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高考物理曲线运动答题技巧及练习题(含答案)及解析
高考物理曲线运动答题技巧及练习题( 含答案 ) 及分析一、高中物理精讲专题测试曲线运动1.如下图,半径R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,依据动能定理; -μ mgs= mv解得: v A=16.1m/s设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.2. 一位网球运动员用网球拍击球,使网球沿水平方向飞出.如下图,第一个球从O 点水平飞出时的初速度为 v 1,落在自己一方场所上的 B 点后,弹跳起来,恰巧过网上的C点,落在对方场所上的 A 点;第二个球从 O 点水平飞出时的初速度为 V2,也恰巧过网上的C 点,落在 A 点,设球与地面碰撞时没有能量损失,且不计空气阻力,求:(1)两个网球飞出时的初速度之比 v 1: v 2;(2)运动员击球点的高度H 与网高 h 之比 H : h【答案】( 1)两个网球飞出时的初速度之比 v 1: v 2 为 1: 3;( 2)运动员击球点的高度 H与网高 h 之比 H : h 为 4: 3. 【分析】【详解】(1)两球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的,设第一个球第一次落地时的水平位移为x 1,第二个球落地时的水平位移为 x 2由题意知,球与地面碰撞时没有能量损失,故第一个球在B 点反弹瞬时,其水平方向的分速度不变,竖直方向的分速度以原速率反向,依据运动的对称性可知两球第一次落地时的水平位移之比 x 1: x 2=1: 3,故两球做平抛运动的初速度之比v 1: v 2 =1:3(2)设第一个球从水平方向飞出到落地址B 所用时间为 t 1,第 2 个球从水平方向飞出到 C点所用时间为 t 2,则有 H=1gt 12, H-h= 1gt 222 2 又: x 1=v 1t 1O 、 C 之间的水平距离: x'1=v 2t 2第一个球第一次抵达与C 点等高的点时,其水平位移x' 2=v 1t 2,由运动的可逆性和运动的对称性可知球 1 运动到和 C 等高点可看作球 1 落地弹起后的最高点反向运动到C 点;故1122x =x' +x'可得: t 1=2t 2 , H=4(H-h ) 得: H : h=4:33. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道 AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为 m 1Kg 的小球从 A 点正上方R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N 18 N ,最后从 C 点水平飞离轨道,落到水平川面上的P 点 .已知 B 点与地面间的高度h 3.2m ,小球与BC段轨道间的动摩擦因数0.2 ,小球运动过程中可视为质点. (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道AB 上运动过程中战胜摩擦力所做的功W f(3)水平轨道 BC 的长度L多大时,小球落点P 与 B 点的水平距最大.【答案】( 1)v B=4?m / s(2) W f=22?J(3)L 3.36m【分析】试题剖析:( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;(3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度.(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F N mg m v B2R解得: v B4m / s(2)从O到 B 的过程中重力和阻力做功,由动能定理可得:mg R R W f 1mv B2022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC 1mv C21mv B2 22解得: L BC v B2v C2 2g从 C 点到落地的时间:t02h0.8sgv B2v C2B 到 P 的水平距离:L vC t02g代入数据,联立并整理可得:L 41v C24v C 45由数学知识可知,当v C 1.6m / s时, P 到 B 的水平距离最大,为: L=3.36m【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.4.如下图,物体 A 置于静止在圆滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球 C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度开释,并在最低点与物体 A 发生水公正碰,碰撞后小球 C 反弹的速度为 2m/s.已知 A、 B、 C的质量分别为m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数间极短,且只碰一次,取重力加快度g= 10m/s 2.μ= 0.2, A、 C碰撞时(1)求小球 C 与物体 A 碰撞前瞬时遇到细线的拉力大小;(2)求 A、 C 碰撞后瞬时 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N (2)1.5 m/s (3)0.375 m【分析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0 gl 1m0v02 2代入数据解得:v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摇动的过程中机械能守恒,得:1mv C2mgh 2所以:v C2gh210 0.22m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0 00 c Av=﹣ m v +mv代入数据解得:v A=1.5m/s(3)物块 A 与木板 B 互相作用过程,系统动量守恒,以 A 的速度方向为正方向,由动量守恒定律得:mv A=( m+M )v代入数据解得:v= 0.5m/s由能量守恒定律得:μmgx 1mv A21(m+M)v2 22代入数据解得:x=0.375m;5. 如图是节水浇灌工程中使用喷水龙头的表示图。
高考物理曲线运动答题技巧及练习题(含答案)含解析
高考物理曲线运动答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试曲线运动1.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0 .(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0=g .l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.2.如下图,粗拙水平川面与半径为R=0.4m 的粗拙半圆轨道BCD相连结,且在同一竖直平面内,O 是BCD的圆心,BOD 在同一竖直线上.质量为m=1kg 的小物块在水平恒力F=15N 的作用下,从 A 点由静止开始做匀加快直线运动,当小物块运动到 B 点时撤去F,小物块沿半圆轨道运动恰巧能经过 D 点,已知A、 B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加快度g 取10m/s 2.求:(1)小物块运动到(2)小物块走开B 点时对圆轨道 B 点的压力大小.D 点后落到地面上的点与 D 点之间的距离【答案】( 1) 160N( 2)0.8 2 m【分析】【详解】(1)小物块在水平面上从 A 运动到 B 过程中,依据动能定理,有:(F-μmg) x AB= 1mv B2-02在 B 点,以物块为研究对象,依据牛顿第二定律得:Nmg m vB2R联立解得小物块运动到 B 点时轨道对物块的支持力为:N=160N由牛顿第三定律可得,小物块运动到 B 点时对圆轨道 B 点的压力大小为: N′=N=160N (2)因为小物块恰能经过 D 点,因此在 D 点小物块所受的重力等于向心力,即:mg m vD2R可得: v D=2m/s设小物块落地址距 B 点之间的距离为x,着落时间为t,依据平抛运动的规律有:x=v D t ,122R= gt2解得: x=0.8m则小物块走开 D 点后落到地面上的点与 D 点之间的距离l2x0.8 2m3.如下图,在圆滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加快度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高中物理高考物理曲线运动解题技巧讲解及练习题(含答案)
高中物理高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C 点再落回到水平面,重力加速度为g .求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.6.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
高考物理曲线运动解题技巧讲解及练习题(含答案)含解析
高考物理曲线运动解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求:(1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=3.如图是节水灌溉工程中使用喷水龙头的示意图。
高考物理曲线运动解题技巧讲解及练习题(含答案)
高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.2.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。
不计空气阻力,重力加速度求:滑块刚滑离平板车时,车和滑块的速度大小;滑块与平板车间的动摩擦因数。
【答案】(1), (2)【解析】【详解】设滑块刚滑到平板车右端时,滑块的速度大小为,平板车的速度大小为,由动量守恒可知:滑块滑离平板车后做平抛运动,则有:解得:,;由功能关系可知:解得:【点睛】本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞后系统的动量相等列方程进行解答。
高考物理曲线运动解题技巧及练习题(含答案)及解析
高考物理曲线运动解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m2.一位网球运动员用网球拍击球,使网球沿水平方向飞出.如图所示,第一个球从O 点水平飞出时的初速度为v 1,落在自己一方场地上的B 点后,弹跳起来,刚好过网上的C 点,落在对方场地上的A 点;第二个球从O 点水平飞出时的初速度为V 2,也刚好过网上的C 点,落在A 点,设球与地面碰撞时没有能量损失,且不计空气阻力,求:(1)两个网球飞出时的初速度之比v 1:v 2; (2)运动员击球点的高度H 与网高h 之比H :h【答案】(1)两个网球飞出时的初速度之比v 1:v 2为1:3;(2)运动员击球点的高度H 与网高h 之比H :h 为4:3. 【解析】 【详解】(1)两球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的,设第一个球第一次落地时的水平位移为x 1,第二个球落地时的水平位移为x 2由题意知,球与地面碰撞时没有能量损失,故第一个球在B 点反弹瞬间,其水平方向的分速度不变,竖直方向的分速度以原速率反向,根据运动的对称性可知两球第一次落地时的水平位移之比x 1:x 2=1:3,故两球做平抛运动的初速度之比v 1:v 2=1:3(2)设第一个球从水平方向飞出到落地点B 所用时间为t 1,第2个球从水平方向飞出到C 点所用时间为t 2,则有H =2112gt ,H -h =2212gt 又:x 1=v 1t 1O 、C 之间的水平距离:x '1=v 2t 2第一个球第一次到达与C 点等高的点时,其水平位移x '2=v 1t 2,由运动的可逆性和运动的对称性可知球1运动到和C 等高点可看作球1落地弹起后的最高点反向运动到C 点;故 2x 1=x '1+x '2可得:t 1=2t 2 ,H =4(H -h ) 得:H :h =4:33.如图所示,在平面直角坐标系xOy 内,第Ⅰ象限的等腰直角三角形MNP 区域内存在垂直于坐标平面向外的匀强磁场,y <0的区域内存在着沿y 轴正方向的匀强电场202mv E qh=.一质量为m 、电荷量为q 的带电粒子从电场中Q 点以速度v 0水平向右射出,经坐标原点O 射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN 边射出磁场.已知MN 平行于x 轴,N 点的坐标为(2h,2h ),不计粒子的重力,求:⑴入射点Q 的坐标; ⑵磁感应强度的大小B ; ⑶粒子第三次经过x 轴的位置坐标. 【答案】(1)()2,h h --(2) )0221mv qh(3)(20262,0v gh g ⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】 【分析】带电粒子从电场中Q 点以速度v 0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I 象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动. 【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F 运动时间为1t ,有1F qE =202mv h=由题意得11F qE a m m== 101x v t =21112y at =解得201mv x Eq =2012mv y Eq=202mv E qh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R ,由牛顿第二定律则有20022mv q v B R= 02R qB =由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径22R =+ 解得)0221B mv qh=(3) 02v ,且抛 射角是045,如下图所示,根据斜抛运动的规律,有202x v v =cos450202y v v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标 由几何知识可知2p 点的坐标是222h +,0)带电粒子在1p 点的坐标是()202642,0v gh g ⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.4.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.5.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆6.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2ω=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t 220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x=vt=5×0.4=2m.4.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量m=1kg的小物块(视为质点)从左側水平轨道上的A点以大小v0=12m/s的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D点.已知A、B两点间的距离L1=5.75m,物块与水平轨道写的动摩擦因数μ=0.2,取g=10m/s2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.5.水平抛出一个物体,当抛出1秒后,它的速度方向与水平方向成45°角,落地时,速度方向与水平方向成60°角,(g 取10m/s 2)。
求: (1)初速度(2)水平射程(结果保留两位有效数字) (3)抛出点距地面的高度 【答案】(1)10m/s (2)17m(3)15m 【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.将1秒后的速度进行分解,根据v y=gt求出竖直方向上的分速度,再根据角度关系求出平抛运动的初速度;将落地的速度进行分解,水平方向上的速度不变,根据水平初速度求出落地时的速度;根据落地时的速度求出竖直方向上的分速度,运用v y=gt求出运动的时间,再根据x=v0t求出水平射程.再根据h=12gt2求出抛出点距地面的高度.【详解】(1)如图,水平方向v x=v0,竖直方向v y=gt,1s时速度与水平成45°角,即θ=45°因为tan450=yvv所以v0=v y初速度:v0=gt=10×1=10m/s。
(2)落地时,'tan60yxvv=所以落地竖直速度'3103/yv gt v m s===解得t=3s水平射程:10317x v t m m==≈(3)抛出点距地面的高度22111031522h gt m m==⨯⨯=【点睛】解决本题的关键知道平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.知道分运动和合运动具有等时性,掌握竖直方向和水平方向上的运动学公式.6.如图所示,半径R=0.40m的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量m=0.10kg的小球,以初速度V0=7.0m/s在水平地面上向左做加速度a=3.0m/s2的匀减速直线运动,运动4.0m后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A点的速度(2)小球到B点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.7.如图所示,轻绳绕过定滑轮,一端连接物块A ,另一端连接在滑环C 上,物块A 的下端用弹簧与放在地面上的物块B 连接,A 、B 两物块的质量均为m ,滑环C 的质量为M ,开始时绳连接滑环C 部分处于水平,绳刚好拉直且无弹力,滑轮到杆的距离为L ,控制滑块C ,使其沿杆缓慢下滑,当C 下滑43L 时,释放滑环C ,结果滑环C 刚好处于静止,此时B 刚好要离开地面,不计一切摩擦,重力加速度为g .(1)求弹簧的劲度系数;(2)若由静止释放滑环C ,求当物块B 刚好要离开地面时,滑环C 的速度大小.【答案】(1)3mg L (2) 【解析】 【详解】(1)设开始时弹簧的压缩量为x ,则 kx=mg设B 物块刚好要离开地面,弹簧的伸长量为x′,则 kx′=mg 因此x ′=x =mg k由几何关系得 2x L =2 3L求得 x=3L得 k=3mgL(2)弹簧的劲度系数为k ,开始时弹簧的压缩量为x 1=3mg Lk = 当B 刚好要离开地面时,弹簧的伸长量 x 2=3mg Lk = 因此A 上升的距离为 h =x 1+x 2=23LC 下滑的距离 43L H == 根据机械能守恒MgH −mgh =2211 22m Mv +求得 v =8.如图所示,四分之一光滑圆弧轨道AO 通过水平轨道OB 与光滑半圆形轨道BC 平滑连接,B 、C 两点在同一竖直线上,整个轨道固定于竖直平面内,以O 点为坐标原点建立直角坐标系xOy 。