土的经验参数(物理指标、压缩、变形模量、剪切强度)

合集下载

土的经验参数(物理指标、压缩、变形模量、剪切强度)

土的经验参数(物理指标、压缩、变形模量、剪切强度)

⼟的经验参数(物理指标、压缩、变形模量、剪切强度)有关⼟的经验参数⼀、原状⼟物理性质指标变化范围原状⼟物理性质指标变化范围,见表3-3-28。

注:粘砂⼟3<I p≤7;砂粘⼟7<I p≤17⼆、⼟的平均物理、⼒学性质指标,见表3-3-29。

⼟的平均物理、⼒学性质指标,见表3-3-29。

注:①平均⽐重采取:砂——2.66;粘砂⼟——2.70;砂粘⼟——2.71;粘⼟——2.74;②粗砂和中砂的E 0值适⽤于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少。

C u 为中间值时E 0 值按内插法确定;③对于地基稳定计算,采⽤⼈摩擦⾓φ的计算值低于标准值2°。

1060d d 32三、⼟的压缩模量⼀般范围值⼟的压缩模量⼀般范围值,见表3-3-3-。

注:砂粘⼟7<I p≤7;粘⼟I p>17四、粘性⼟剪强度参考值粘性⼟抗剪强度参考值,见表3-3-31。

注:粘砂⼟3<I p≤7;砂粘⼟7<I p≤7;粘⼟I p>17五、⼟的侧压⼒系数(ξ)和泊松⽐(u)参考值注:粘⼟I p>17;粉质粘⼟10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指⼟体在⽆侧限条件下应⼒与应变之⽐,其中的应变包含弹性应变和塑性应变两部分。

因此,变形模量较弹性模量E⼩,通常在⼟与基础的共同作⽤分析中⽤变形模量E。

变形模量⼀般是通过现场载荷试验确定,⼀些地⽅通过静⼒触探、标贯试验与变形模量建⽴了经验公式。

压缩模量Es是在侧限条件下应⼒与应变的⽐值,是通过室内试验获取的参数。

两者的关系:对于软⼟E0近似等于Es;较硬⼟层,E0=βEs,β=2~8,⼟愈坚硬,倍数愈⼤。

土的经验参数(物理指标、压缩、变形模量、剪切强度)

土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数一、原状土物理性质指标变化范围原状土物理性质指标变化范围,见表3-3-28。

注:粘砂土3<I p≤7;砂粘土7<I p≤17二、土的平均物理、力学性质指标,见表3-3-29。

土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74;②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。

C u为中间值时E 0 值按内插法确定;③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。

1060d d 32三、土的压缩模量一般范围值土的压缩模量一般范围值,见表3-3-3-。

注:砂粘土7<I p≤7;粘土I p>17四、粘性土剪强度参考值粘性土抗剪强度参考值,见表3-3-31。

注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17五、土的侧压力系数(ξ)和泊松比(u)参考值注:粘土I p>17;粉质粘土10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。

因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。

变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。

压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。

两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

4.3 土的物理力学性质及其指标

4.3 土的物理力学性质及其指标

E0 = βEs
其中
β=1-12-μμ2
土的泊松比, 一般0~0.5之 间
四、土的力学性质
2. 土的抗剪强度
⑴ 土的强度破坏类型
基础
滑动面
滑动面
挡 土 墙
滑动面
四、土的力学性质
2. 土的抗剪强度 ⑵ 直接剪切试验
试验仪器:直剪仪(应力控制式,应变控制式)
四、土的力学性质
2. 土的抗剪强度 ⑶ 粘性土、无粘性土的抗剪强度
修正后
密实度
松散
稍密
中密
密实
按N评定砂石密实度 N≤10 10<N≤15 15<N≤30 N>30
按N63.5评定碎石土密实度 N63.5≤5 5<N63.5≤10 10<N63.5≤20 N63.5>20
三、粘性土的物理特征
1. 粘性土的稠度状态
土的软硬程度或土受外力作用所引起变形或破坏的抵抗能力,是粘性土 最主要的物理状态特征
0 缩限ωs
塑限ωP
液限ωL
ω
固态
半固态
可塑状态
流动状态
粘性土由某一种状态过渡到另一状态的界限含水量称为土的稠度界限
液、塑限的测定 测定液限的方法:锥式液限仪、碟式液限仪和液塑限联合测定仪。 测定塑限的方法:搓条法和液塑限联合测定仪。 测定缩限的方法:碟式仪法和液、塑限联合测定法。
三、粘性土的物理特征
= ms Vs ρω
=
ρs ρω
土粒相对密度变化范围不大:细 粒土(粘性土)一般2.70~2.75; 砂土一般为2.65左右。土中有机 质含量增加,土粒相对密度减小
一、土的三相及三相比例指标
2. 直接指标
质量m 气 水
Vw Va
体积V

地质勘查报告岩土强度参数变形参数地基承载力的建议值

地质勘查报告岩土强度参数变形参数地基承载力的建议值

地质勘查报告岩土强度参数变形参数地基承载力的建议值岩土强度参数是评价土体和岩石强度及其变形能力的重要指标。

在地质勘查过程中,通过采集野外样品、进行室内室外试验和现场观测等方法,得出岩土层的强度特性,常见的参数有强度指数、强度参数等。

变形参数是岩土体在受到荷载作用时所表现出的不同类型的变形特性的描述,也是评价地基承载力的重要指标。

常见的变形参数有压缩模量、剪切模量、泊松比等。

地基承载力是指地基土体在荷载作用下的稳定性和承载能力。

地基承载力的建议值需要综合考虑地质勘查资料、实测数据和工程经验等因素。

一般来说,地基承载力建议值应根据土体类型、压缩性、含水量、稠度等因素来确定。

在分析岩土强度参数时,可以根据钻孔、采样和室内试验数据等资料,采用常用的输尺定标法或固结试验法等进行分析,从而确定岩土强度参数的建议值。

同时,还要考虑到不同地层的差异性和不确定性,采用统计方法进行分析,以提高数据的可靠性和准确性。

在评估变形参数时,可以通过岩土体本构模型的拟合分析,采用土压力计、剪切试验仪等现场测量仪器进行现场观测,以获取准确、可靠的变形参数建议值。

同时,还要根据地质勘查资料和实际工程情况,结合工程经验进行综合评估,以确保计算结果的合理性和准确性。

对于地基承载力的建议值,可以根据地基土体的类型、压缩性、含水量、稠度和工程荷载等因素进行综合分析。

可以采用动力触探、静力触探和室内室外试验等方法,获取土体的物理力学参数,并采用合适的计算方法进行地基承载力计算,以得出建议值。

总之,岩土强度参数、变形参数和地基承载力的建议值需要根据实际工程情况和地质勘查资料进行综合分析和评估。

科学、准确的建议值对于工程设计和建设的安全和稳定性至关重要,因此在进行地质勘查报告编写时,需要慎重选择合适的方法和数据,以确保报告的可信度和实用性。

土的经验参数

土的经验参数

土的经验参数一、物理指标1.比重:土壤的比重是指单位体积土壤的质量与同体积纯水的质量之比,通常用干重比重和湿重比重表示。

2.含水量:土壤的含水量是指土壤中水分的质量与干重土壤质量之比,常用百分比表示。

3.孔隙度:土壤的孔隙度是指土壤中孔隙体积与总体积之比,常用百分比表示。

4.总容重:土壤的总容重是指单位体积土壤的质量,通常用干重表示。

5.粒径分布:土壤的粒径分布是指不同粒径组分在土壤中的含量分布状况。

二、压缩指标1.压缩系数:土壤的压缩系数是指单位压力下土壤体积变化的比例,通常用体积压缩系数和线性压缩系数表示。

2.压缩指数:土壤的压缩指数是指土壤在其中一固定压力下的压缩变化量与干重土壤质量之比,表示土壤的可压缩性。

3.压缩模量:土壤的压缩模量是指土壤在荷载作用下的压缩刚度,通常用单位应力下的压缩应变表示。

三、变形模量1.杨氏模量:土壤的杨氏模量是指土壤在单位应力下的应变、变形关系,反映土壤的刚度。

2.泊松比:土壤的泊松比是指土壤沿径向收缩时垂直于径向的应变与径向应变之比,反映土壤的可压缩性和变形能力。

3.弯曲模量:土壤的弯曲模量是指土壤在受弯曲荷载作用下的弯曲刚度,通常用单位应力下的弯曲应变表示。

1.内摩擦角:土壤的内摩擦角是指土壤在剪切状态下达到极限强度时,切线与水平方向之间的夹角,反映土壤抗剪性能。

2.剪切模量:土壤的剪切模量是指土壤在剪切应力作用下的应变、剪切关系,反映土壤的刚度。

以上是土的经验参数的主要内容,在土壤工程设计和分析中起到重要的作用。

不同类型的土壤具有不同的参数值,通过对土的经验参数的研究可以更好地了解土壤的物理和力学特性,为土壤工程设计提供依据。

各土层物理力学性能指标

各土层物理力学性能指标

各土层物理力学性能指标土层物理力学性能指标是描述土层在受力下的物理学性能的参数,主要包括强度指标、变形指标和渗流指标。

以下将详细介绍各土层物理力学性能指标。

一、强度指标:1.抗压强度:表示土体抵抗垂直压缩力的能力。

一般分为极限抗压强度和终端抗压强度两种。

极限抗压强度是土体在快速加载下失效破坏的抗压强度,终端抗压强度是土体在无限时间加载下失效破坏的抗压强度。

2.抗剪强度:表示土体抵抗剪切力的能力。

常用的指标有剪切强度、内摩擦角和剪胀特性。

剪切强度是土体在剪切加载下失效破坏的抗剪强度;内摩擦角是土体抗剪切力的一个重要参数,描述土体内部颗粒间的摩擦阻力;剪胀特性是土体在剪切加载下发生的体积变化。

3.抗拉强度:表示土体抵抗拉力的能力。

土体的抗拉强度较弱,一般可忽略。

二、变形指标:1.压缩性:土体在承受一定应力后发生的压缩变形。

常见的指标有压缩模量和压缩指数。

压缩模量是描述土体吸水压缩性质的指标;压缩指数是描述土体吸水压缩特性的指标。

2.鼓包性:土体在受到一定的水平应力作用下发生的体积膨胀。

常见的指标有鼓包应力和鼓包系数。

鼓包应力是描述土体水平膨胀特性的指标;鼓包系数是描述土体鼓包性质的指标。

3.剪切变形:土体在受到剪切应力作用下的变形行为。

常用的指标有剪切模量和剪切变形密度。

剪切模量是描述土体剪切变形特性的指标;剪切变形密度是描述土体变形程度的指标。

三、渗流指标:1.渗透性:土体内部孔隙中水分运动的能力。

常用指标有渗透系数和渗透率。

渗透系数是描述土体渗透性的指标;渗透率是描述土体渗透性的指标。

2.孔隙度:表示土体中有效孔隙体积与全体积之比。

孔隙度是描述土体渗透性和储水性的重要参数。

3.渗透容限:土体在承受应力下发生的渗透变形。

渗透容限是描述土体渗透性变形特性的指标。

以上是各土层物理力学性能指标的详细介绍。

不同土层具有不同的力学性能指标,了解和研究土层的物理力学性能指标对于工程设计和建设具有重要意义。

土的经验参数

土的经验参数

有关土的经验参数一、原状土物理性质指标变化范围
原状土物理性质指标变化范围,见表3-3-28。

注:粘砂土3<I p≤7;砂粘土 7<I p≤17
二、土的平均物理、力学性质指标,见表3-3-29。

土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——;粘砂土——;砂粘土——;粘土——;
②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。

C u
为中间值时E 0 值按内插法确定;
③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。

10
60d d 32
三、土的压缩模量一般范围值
土的压缩模量一般范围值,见表3-3-3-。

注:砂粘土7<I p≤7;粘土I p>17
四、粘性土剪强度参考值
粘性土抗剪强度参考值,见表3-3-31。

注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17
五、土的侧压力系数(ξ)和泊松比(u)参考值
注:粘土I p>17;粉质粘土10<I p≤17;I p≤10
五、变形模量于压缩模量的关系
变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。

因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。

变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。

压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。

两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

水利水电部分常用岩土物理力学参数经验数值

水利水电部分常用岩土物理力学参数经验数值

使用说明:1、资料涉及各行各业;2、资料出处为黄底加粗字体的为最新版本内容。

可按规范适用范围选择使用;3、资料出处非黄底加粗字体的为引用资料,很多为老版本,参考用。

水利水电工程部分岩土物理力学参数经验数值1岩土的渗透性(1)渗透系数岩土的渗透系数经验值《地下铁道、轻轨交通岩土工程勘察规范》〜页土体的渗透系数值《水利水电工程水文地质勘察规范》页岩土体渗透性分级Lu:吕荣单位,是IMPa压力下,每米试段的平均压入流量。

以L/min计摘自《水利水电工程地质勘察规范》GB50287-99 附录J 66页表F 岩土体渗透性分级《水利水电工程地质勘察规范》(GB50487-2008) 109页附录F (2)单位吸水量各种构造岩的单位吸水量(3值)上表可以看出:同一断层内,一般碎块岩强烈透水;压碎岩中等透水;断层角砾岩弱透水;糜棱岩和断层泥不透水或微透水。

摘自高等学校教材天津大学《水利工程地质》第三版113页坝基(肩)防渗控制标准注:透水率lLu (吕荣)相当于单位吸水量摘自高等学校教材天津大学《水利工程地质》第三版118页(3)简易钻孔抽注水公式1)简易钻孔抽水公式根据水位恢复速度计算渗透系数公式丫(h2~hi)K= ---------------------t (S,+S2)式中:Y --一井的半径;h】一一抽水停止后h时刻的水头值;h:—一抽水停止后B 时刻的水头值;S】、S:-一- S或匕时刻从承压水的静止水位至恢复水位的距离;H-一-未抽水时承压水的水头值或潜水含水层厚度。

《工程地质手册》第三版927页2)简易钻孔注水公式当1/丫V4时21lg 21Ls Y式中:K-渗透系数(m/d); 1-一试验段或过滤器长度(m); Q一-稳定注水量(m3/d);s 孔中水头高度(m); Y 钻孔或过滤器半径(m)o《工程地质手册》第三版936页(4)水力坡降各种土允许水力坡降参考表允许水力坡降等于临界水力坡降被安全系数除,一般安全系数值取、, 即I允二I摘自长春地质学院《中小型水利水电工程地质》1978年139页各种土地基上水闸设计的允许渗流比降土层与混凝土建筑物接触面间发生接触冲刷时的破坏比降除以安全系数得出在无渗流出口保护情况下地基允许渗流比降见上表。

土的经验参数物理指标压缩变形模量剪切强度

土的经验参数物理指标压缩变形模量剪切强度

土的经验参数物理指标压缩变形模量剪切强度1.压缩变形模量:压缩变形模量是描述土体在受到垂直应力加载时的变形能力的物理指标。

它反映了土体在受到压力时的刚度和变形特性。

压缩变形模量可以通过一维压缩试验来测定。

实验测得的压缩变形模量值可以用于工程计算中,以评估土体在受到压力时的变形和承受能力。

2.剪切强度:剪切强度是描述土体抵抗剪切力的能力的物理指标。

它是土体克服剪切力产生的变形并转化为抵抗剪切力的能量。

剪切强度可以通过直剪试验来测定。

实验测得的剪切强度值可以用于工程计算中,以评估土体在受到剪切力时的稳定性和承受能力。

3.土体的物理指标:土体的物理指标是用来描述土体的基本物理性质的参数。

例如,土体的密度、比重、含水量等。

这些指标可以通过实验测定来确定,用于工程设计中土体的水分控制、排水设计等。

土的经验参数在土力学和岩土工程中具有重要的作用。

它们可以帮助工程师了解土体的力学行为,设计合理的土木结构和地基工程,评估土体的稳定性和承载能力,并制定适当的施工措施和地震防护措施。

同时,土的经验参数还可以用于土壤力学理论的研究和发展,为土力学的建立和发展提供理论依据。

因此,对土的经验参数的研究和应用具有重要的理论和实际意义。

在实际工程设计中,根据特定土壤的性质和工程要求,可以采用不同的经验参数。

不同类型的土壤具有不同的力学特性和工程行为,因此需要根据具体情况选择合适的经验参数。

此外,土体的经验参数还会受到其他因素的影响,如土壤的成分、结构和水分状况等。

因此,在使用土的经验参数时需要综合考虑这些因素,并进行合理的修正和调整。

总之,土的经验参数是描述和表征土的力学性质和行为的重要参数。

通过实验测定和工程应用,可以有效地评估土的变形和承载能力,并指导土木工程设计和施工。

在土力学和岩土工程领域,土的经验参数具有重要的理论和实际价值,对土力学的发展和应用起着重要的作用。

各土层物理力学性能指标

各土层物理力学性能指标

各土层物理力学性能指标土层物理力学性能指标是描述土体固体物理性质的指标,可以用来评价土体的稳定性、抗冲刷性、渗透性等,常用指标包括体积重、单位重、孔隙比、含水率、饱和度、压缩性和剪切性能等。

1.体积重:体积重是指单位体积土体所受重力的大小。

体积重与土壤颗粒的密度有关,一般通过测定单位体积土样的质量和体积来计算。

体积重的大小直接关系到土壤的承载力和稳定性。

2.单位重:单位重是指单位体积土体的质量。

它是体积重的倒数,单位是kN/m3、单位重通常用来计算土体的水力学性质、液化性、动力响应等。

3.孔隙比:孔隙比是指土体中孔隙体积与总体积之比,是衡量土质疏松程度和渗透性的重要指标。

孔隙比越大,土体的渗透性越好。

4.含水率:含水率是指土体中含有的自由水的质量与干土质量之比。

含水率的大小直接影响土体的拟静力稳定性、渗透性、压缩性等。

5.饱和度:饱和度是指研究对象中孔隙中所含水的体积与总体积之比。

饱和度直接影响土体的渗透性、固结性、剪切强度等。

6.压缩性:压缩性是指土体在所受应力作用下体积发生变化的能力。

土壤的压缩性与孔隙分布和组成、饱和度、孔隙比等因素密切相关。

7.剪切性能:剪切性能是指土壤在受到剪切应力作用下的变形能力。

剪切性能是评价土体的抗剪强度和变形特性的重要指标。

除了上述指标外,还有其他一些指标也常用于描述土层的物理力学性能。

例如:-泊松比:泊松比是指材料在受到拉伸或压缩时沿着应变方向的变化与垂直方向的变化之比。

泊松比是评价土体的压缩性和弹性度量的重要指标。

-弹性模量:弹性模量是指材料在受力后恢复原状的能力。

弹性模量是衡量土壤抗剪切性能和变形能力的重要参数。

-液塑限度:液塑限度是指土壤从固态过渡到半固态和可塑态的水分含量范围。

液塑限度对土壤的可塑性和压缩性具有重要作用。

这些土层物理力学性能指标可以根据实际需要在实验室中进行土壤试验,以了解土体的性质,为土方工程、地基处理、地质工程设计等提供依据。

土的常规物理力学指标综合试验报告

土的常规物理力学指标综合试验报告
土的常规物理力学指标综合性试验报告

业:

级:

号:

名:
一、土样描述
1.颜色: 2.矿物成分: 3.干湿状态: 4.结构是否扰动: 5.是否浸水软化: 6.土的分类:
二、土的天然密度、天然含水量及土粒重度试验记录及成果整理
1.天然密度的测定(环刀法)
试样 编号 环刀+土质量 m1 (g) 环刀质量 m2 (g) 土质量 m1-m2(g) 环刀体积 V (cm3) 60 60 密度 g/cm3 平均密度 g/cm3
eo=
压缩系数 a1-2 Mpa-1 平均压 缩模量 Es1-2 Mpa 压缩 性评 价
压缩后 孔隙比 eo-ei
24h 注: (4)
ei=∑Δh'×(1+e0)/ho
∑Δh'= (dh)T/(dh)t×(di)t
(di)t—任一荷重下压缩一小时的读数减去该荷重下的仪器变形量; (dh)t—最后一级荷重下压缩一小时的读数减去该荷重下的仪器变形量; (dh)T—最后一级荷重下压缩至稳定时的测微表读数减去仪器变形量。
W=
2 3
WL= Wp= Ip= IL=
ep压缩曲线孔隙比e压力孔隙比ei50100200300400压力pkpa四土的直接剪切试验记录及成果整理垂直压力kp100200300百分表最大读数001mm量力环校正系数ckpa001mm峰值抗剪强度抗剪强度曲线五土的液塑限联合测定试验记录及成果整理土样的天然含水量沉入深度mm平均读数mm100在双对数坐标纸上作hw按地基规范分类命名并指出其软硬状态分享知识成就自我
C= φ=
kpa 度
Байду номын сангаас
抗剪强度曲线

土的经验参数(物理指标、压缩、变形模量、剪切强度)

土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数一、原状土物理性质指标变化范围原状土物理性质指标变化范围,见表3-3-28。

原状土物理性质指标变化范围表3-3-28注:粘砂土3<I p≤7;砂粘土 7<I p≤17二、土的平均物理、力学性质指标,见表3-3-29。

土的平均物理、力学性质指标,见表3-3-29。

土的平均物理、力学指标表3-3-29注:①平均比重采取:砂——;粘砂土——;砂粘土——;粘土——;②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。

C u为中间值时E 0 值按内插法确定;③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。

三、土的压缩模量一般范围值土的压缩模量一般范围值,见表3-3-3-。

土的压缩模量一般范围值 表3-3-30注:砂粘土7<I p ≤7;粘土I p >17四、粘性土剪强度参考值1060d d 32粘性土抗剪强度参考值,见表3-3-31。

注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17五、土的侧压力系数(ξ)和泊松比(u)参考值土的侧压力系数ξ和泊松比u参考值表3-3-32注:粘土I p>17;粉质粘土10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。

因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。

变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。

压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。

两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

关于常用的岩土和岩石物理力学参数

关于常用的岩土和岩石物理力学参数

(E , ν) 与(K , G )的转换关系如下:)1(2ν+=EG ()当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表和分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表土的弹性特性值(实验室值)(Das,1980) 表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。

纯净水在室温情况下的K f 值是2 Gpa 。

其取值依赖于分析的目的。

分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。

这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。

在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。

f'K n m k C +=νν ()其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980)表7.1干密度(kg/m 3)E(GPa) ν K(GPa) G(GPa) 砂岩19.3 0.38 26.8 7.0 粉质砂岩26.3 0.22 15.6 10.8 石灰石2090 28.5 0.29 22.6 11.1 页岩2210-257011.1 0.29 8.8 4.3大理石2700 55.8 0.25 37.2 22.3 花岗岩73.8 0.22 43.9 30.2土的弹性特性值(实验室值)(Das,1980)表7.2干密度(kg/m 3) 弹性模量E(MPa) 泊松比ν 松散均质砂土1470 10-26 0.2-0.4 密质均质砂土 1840 34-69 0.3-0.45 松散含角砾淤泥质砂土 1630 密实含角砾淤泥质砂土 1940 0.2-0.4 硬质粘土 1730 6-14 0.2-0.5 软质粘土1170-1490 2-3 0.15-0.25 黄土1380 软质有机土610-820 冻土2150各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

土力学实验报告

土力学实验报告

. .. 土工试验报告班级:组号:姓名:同组人:成绩:河北工业大学土木工程学院2016年5月 18 日试验一土的基本物理指标的测定(一)记录土样编号_________________ 班组_________________ 试验日期_________________ 姓名_________________2.含水率试验记录表(烘干法)3.界限含水率试验圆锥下沉深度 /mm盒号盒质量 / g盒加湿土质量 /g盒加干土质量 /g水质量 / g干土质量 / g含水率/ %液限/ %塑限/ %3.2A64 16.05 56.20 48.98 7.22 32.93 21.92210mm 142 15.87 42.13 37.37 4.76 21.5022.17.911815.55 50.19 42.57 7.62 27.0228.228.1A35 16.92 48.60 41.69 6.91 24.77 27.917mm16.9073 16.33 52.00 42.46 9.54 26.1336.536.7128 16.64 41.77 35.00 6.77 18.36 36.9注:圆锥下沉深度与含水率的双对数坐标关系曲线绘制于图 1 之中。

含水率 / %图 1 圆锥入土深度与含水率关系曲线(二)试验成果汇总和计算1.试验测定数据ã = 20.85 kN/m3w = 28.1 %w L= 36 %w p= 21 %根据备注表1,由w L 查表得d s = 2.72.计算参数•e= (1+w)d sγw /γ−1=0.65•S r =wd s /e=1.16•I P = w L–w P = 15•I L= (w L–w) / I P =0.527 3.依上述计算结果判定•土的分类名称:粘性土•试验土样所处的状态:可塑状态(三)思考与分析1.土样烘干时,为什么要控制温度为105~110°C?避免把强吸着水蒸发2.环刀尺寸(直径、高度、壁厚、容积)对试验成果有何影响?环刀的直径越大,高度越小,容积越大,实验的误差越小3.试分析搓条法的理论依据及存在的主要问题。

土的经验参数(物理指标、压缩、变形模量、剪切强度)

土的经验参数(物理指标、压缩、变形模量、剪切强度)

土的经验参数(物理指标、压缩、变形模量、剪切强度)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN有关土的经验参数一、原状土物理性质指标变化范围原状土物理性质指标变化范围,见表3-3-28。

注:粘砂土3<I p≤7;砂粘土 7<I p≤17二、土的平均物理、力学性质指标,见表3-3-29。

土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74;②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。

C u为中间值时E 0 值按内插法确定;③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。

1060d d 32三、土的压缩模量一般范围值土的压缩模量一般范围值,见表3-3-3-。

注:砂粘土7<I p≤7;粘土I p>17四、粘性土剪强度参考值粘性土抗剪强度参考值,见表3-3-31。

注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17五、土的侧压力系数(ξ)和泊松比(u)参考值注:粘土I p>17;粉质粘土10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。

因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。

变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。

压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。

两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

土力学名词解释汇总

土力学名词解释汇总

土力学——研究土的物理、化学和力学性质及土体在外力、水流和温度的作用下的应力、变形和稳定性的学科。

土——矿物或岩石碎屑构成的松散物。

形成土的三种风化作用---物理、化学、生物。

土的矿物成分——原生矿物、次生矿物、有机质。

干土----天然状态的土一般由固体,液体和气体三部分组成.若土中的孔隙全部由气体填充时,称干土.最大击实干容重——在实验室中得到的最密实状态下的干容重。

土中水——土中水分为结合水和自由水。

1、结合水又可分为:强结合水和弱结合水。

2、自由水分为重力水和毛细水。

饱和土——土体孔隙被水充满的土。

最大干密度——击实或压实试验所得的干密度与含水率关系曲线上峰值点对应的干密度。

饱和度——土体中孔隙水体积与孔隙体积之比值。

最优含水量——在一定功能的压实(或击实、或夯实)作用下,能使填土达到最大干密度(干容量)时相应的含水量。

液性指数IL ——IL=(ω-ωp)/(ωL-ωp)。

液性指数≤0 坚硬;0< 液性指数≤0.25 硬塑;0.25< 液性指数≤0.75 可塑;0.75<液性指数≤1 软塑;液性指数>1 流塑。

塑性指数——I p=ωl-ωp土的可塑性——土壤在一定含水量时,在外力作用下能成形,当外力去除后仍能保持塑形的性质。

湿化变形——因非饱和土浸水而使吸力减少,使土体产生较大的变形,土体软化,称为非饱和土湿化。

界限含水量 ----粘性土的状态随着含水量的变化而变化,当含水量不同时,粘性土可分别处于固态、半固态、可塑状态及流动状态,粘性土从一种状态转到另一种状态的分界含水量称为界限含水量。

砂土的相对密度——Dr=(emax-e)/(emax-emin)孔隙比 ----土体中空隙体积与固体颗粒体积之比值。

孔隙率——土体中空隙体积与土总体积之比,以百分率表示。

颗粒级配——反映构成土的颗粒粒径分布曲线形态的一种特征。

土粒级配——土中各粒组质量含量的百分比。

不均匀系数 ----反映土颗粒粒径分布均匀性的系数。

土的经验参数(物理指标、压缩、变形模量、剪切强度)教学提纲

土的经验参数(物理指标、压缩、变形模量、剪切强度)教学提纲

土的经验参数(物理指标、压缩、变形模量、剪切强度)有关土的经验参数一、原状土物理性质指标变化范围原状土物理性质指标变化范围,见表3-3-28。

注:粘砂土3<I p≤7;砂粘土 7<I p≤17二、土的平均物理、力学性质指标,见表3-3-29。

土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74;②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。

C u为中间值时E 0 值按内插法确定;③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。

1060d d 32三、土的压缩模量一般范围值土的压缩模量一般范围值,见表3-3-3-。

注:砂粘土7<I p≤7;粘土I p>17四、粘性土剪强度参考值粘性土抗剪强度参考值,见表3-3-31。

注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17五、土的侧压力系数(ξ)和泊松比(u)参考值注:粘土I p>17;粉质粘土10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。

因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。

变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。

压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。

两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

碎石土-物理力学性质指标查询表

碎石土-物理力学性质指标查询表

承载力:
沈阳市区《建筑地基基础技术规范》
63.5确《铁路工程地质原
《成都地区建筑地基基础设计规范》〔DB51/T 5026-2001〕
湖北省地方标准《建筑地基基础技术规范》〔DB42/242-2014〕

压缩模量:
沈阳市区《建筑地基基础技术规范》
《成都地区建筑地基基础设计规范》〔DB51/T 5026-2001〕
63.5确定圆
铁道部第二勘测设计院
原一机部勘察公司丁南大队
抗剪强度:
s =6.2+
沈阳市区《建筑地基基础技术规范》〔DB 21-907-96〕
《成都地区建筑地基基础设计规范》〔DB51/T 5026-2001〕
湖北省地方标准 《建筑地基基础技术规范》〔DB42/242-2014〕
地质原位测试规程》〔TB 10041-2003、J261-2003〕锥动力触探N63.5确定地基承载力 〔kPa〕
规范》〔DB 21-907-96〕

设计院研究成果 《动力触探技术规定》〔TBJ 18-87〕力触探N63.5确定圆砾、卵石土的变形模量E0
规范》〔DB 21-907-96〕
标准值φK
〕的关系
14〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关土的经验参数
一、原状土物理性质指标变化范围
原状土物理性质指标变化范围,见表3-3-28。

注:粘砂土3<I p≤7;砂粘土7<I p≤17
二、土的平均物理、力学性质指标,见表3-3-29。

土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74;
②粗砂和中砂的E 0值适用于不均匀系数C u ==3者,当C u >5时应按表中所列值减少。

C u 为中间值
时E 0值按内插法确定;
③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。

三、土的压缩模量一般范围值
土的压缩模量一般范围值,见表3-3-3-。

10
60d d 32
注:砂粘土7<I p≤7;粘土I p>17
四、粘性土剪强度参考值
粘性土抗剪强度参考值,见表3-3-31。

注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17
五、土的侧压力系数(ξ)和泊松比(u)参考值
注:粘土I p>17;粉质粘土10<I p≤17;I p≤10
五、变形模量于压缩模量的关系
变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。

因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。

变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。

压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。

两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

相关文档
最新文档