结构化学 分子对称性

合集下载

结构化学-分子的对称性

结构化学-分子的对称性

第三章分子的对称性3.1 对称操作与对称元素3.2分子点群3.3 分子的对称性和分子的物理性质对称在自然界中普遍存在。

北京天坛北京地坛在化学中,我们研究的分子、晶体等也有各种对称性。

有时会感觉这个分子对称性比那个分子高(如HF、H2O、NH3、CH4 、PF5 、SF6)。

如何表达、衡量各种对称?数学中定义了对称元素来描述这些对称。

3.1 对称操作与对称元素•对称操作:是指不改变物体内部任何两点间的距离而使物体复原或与原分子等价的操作。

•对称元素:对称操作所依据的几何元素。

•对称元素与对称操作紧密联系又有区别。

•点操作:对于分子等有限物体,在进行操作时,物体中至少有一点是不动的,这种对称操作叫点操作。

点对称操作和相应的点对称元素旋转反映操作旋映轴S n反演操作对称中心I 反映操作对称面σ旋转操作对称轴(真轴)C n 恒等操作恒等元素E对称操作对称元素符号分子中若存在一条轴线,绕此轴旋转一定角度能使分子复原或与原分子等价,就称此轴为旋转轴,符号为C n 。

1. 对称轴C n和旋转操作旋转轴的性质C n 旋转轴能生成n 个旋转操作,记为:EC C C C C C n n n n n n n n ˆˆ,ˆ,,ˆ,ˆ,ˆˆ1321=⋅⋅⋅=−m n m n b a nb n a n C C C C C ˆˆˆˆˆ22==⋅+•基转角:和C n 轴相应的基本旋转操作为Ĉn 1,它为绕轴转360˚/n 的操作,该旋转角度为基转角。

旋转角度按逆时针方向计算。

C n 旋转轴有如下性质:分子中若有多个旋转轴,轴次最高的轴一般叫主轴,其它的叫副轴。

通常将主轴取笛卡尔坐标的z轴。

旋转可以实际进行,旋转轴称为真轴。

分子中若存在一个平面,将分子两半部分互相反映而能使分子与原分子等价,则该平面就是对称面σ(镜面),这种操作就是反映。

=为奇数)(为偶数)n n E nσσˆ(ˆˆ2.对称面σ和反映操作和主轴垂直的镜面以σh 表示;通过主轴的镜面以σv 表示;通过主轴,平分副轴夹角的镜面以σd 表示。

结构化学分子的对称性ppt课件

结构化学分子的对称性ppt课件
一个h阶有限群的乘法表由h行和h列组成,共h2个乘积; 设行坐标为x,列坐标为y,则交叉点yx,先操作x,再操作y;对 称操作的乘法一般是不可交换的,故应注意次序。
在群的乘法表中,每个元素在每一行和每一列中被列入一 次而且只被列入一次,不可能有两行或两列是全同的。每一行 或每一列都是群元素的重新排列,这就是群的重排定理。
作时分子中至少有一点不动;(2) 分子的全部对称元
素至少通过一个公共点。
19
以H2O为例来说明: H2O分子的对称操作的完全集合为
G Eˆ,Cˆ2 ,σˆV ,σˆV
20
Cˆ 2
σv
C2
σˆ v σ v
σˆ v
σ v
21
(a)满足封闭性:如:Cˆ2σˆv σˆv
(b)有恒等元素:恒等操作 Eˆ
(c)满足缔合性: Cˆ2σˆvσˆv Cˆ2σˆv σˆv σˆvσˆv Eˆ
Cˆ2σˆvσˆv Cˆ2 σˆvσˆv Cˆ2Cˆ2 Eˆ
(d)有逆元素: Cˆ21 Cˆ2 ,σˆv1 σˆv ,
22
(2) 群的乘法表
假若有一个有限群的h个元素的完全而不重复的名单,并 且知道所有可能的乘积(有h2个乘积)是什么,那么这个群就完全 而唯一地被定义了——至少在抽象地意义上是如此。上述概念 可以方便地呈现在群的乘法表的形式中。
第二节 对称操作群与对称元素的组合
(1) 群的定义: 设元素A,B,C,属于集合G,在G中定义
有称之为“乘法”的某种组合运算。如果满足以 下四个条件,则称集合G构成群:
(a) 封闭性:设A和B为集合G中的任意两个元素, 且AB=C,则C也必是集合G中的一个元素;
(b) 恒等元素:在集合G中必有一个恒等元素E,满 足RE=ER=R,R是集合G中任意一个元素。

结构化学-分子的对称性

结构化学-分子的对称性

通常,旋光性的对称性判据是有效的,但有两 种情况例外。 一种是分子中各基团之间的差别很小,导致
分子的旋光性很小以致于实际上观测不出来;
弱旋光性分子
另一种是由于分子中各基团的自由内旋转
存在,将造成基团的自由旋转存在, 从而消除了分子的旋光性
六螺烯分子
(H3CCHCONH)2
左手与右手互为 镜象. 你能用一种实 际操作把左手变成右 手吗?
对于手做不到的,
对于许多分子也做不 到. 这种分子我们称 具有旋光性。
一个分子能否与其镜像叠合,这是一个分子对称性问题。
我们说:当分子具有n重象转轴Sn时,则它可以与自己的镜
像叠合。
ˆ ˆ 对称操作 S n 是由两个操作即旋转C n和反映 σ 所组合的。 ˆ ˆ ˆ S n 操作中的反映将分子转变成它的镜像,而 S n操作如果
ˆ 是分子的对称操作,则 C n 转动将使分子与其镜像叠合: ˆ ˆ Cn σ 分子 镜像(分子) 转动了的镜像(分子)
由此可见,凡是具有Sn轴的分子,它能够与 其镜像完全叠合,这种分子没有旋光性。
ˆ ˆ 因为 S1 σ及 S 2 i ,所以,判断一个分子是否有旋 ˆ ˆ
光性的问题,可以归结为考察分子中是否有对称中心、 对称面和Sn轴的问题。凡是具有对称面、对称中心或 Sn轴的分子,没有旋光性;否则,有旋光性。 总结:当分子所属点群为Cn,Dn,T,O, I点群时,分子有旋光性,否则无旋光性。
极矩,同时也可以由分子有无偶极矩以及偶极矩的大
小了解分子结构的信息。 分子 C2H2 H2O2 C2H4 N2H4 μ(10-30C· m) 0 6.9 0 点群 D∞h 分子构型
C2 D2h C2v
6.1
分子

结构化学基础-4分子的对称性

结构化学基础-4分子的对称性

S3 = h + C 3
S 4:
ˆ1 ˆ 1 ˆ 1 S 4 hC4
ˆ2 ˆ 2 ˆ 2 ˆ1 S 4 h C4 C2 ˆ4 ˆ 4 ˆ 4 ˆ S 4 h C4 E
ˆ3 ˆ 3 ˆ 3 ˆ ˆ 3 S 4 h C4 h C4
S S 5:ˆ
S 4 的操作中既没有h,也没有C4,是真正的映轴
ˆ1 C4
4 3

4 3 3 4 2 1

2 1
ˆ1 C4
对称元素的独立性
• 分子中的某一对称元素,不依赖于分子内 的其它元素或元素的结合而独立存在。
不同轴次的I所包含的操作
I 1:
ˆ ˆ ˆ1 ˆ I11 i 1C1 i 1
ˆ ˆ1 ˆ I 2 i 1C 2 h
ˆ ˆ ˆ ˆ I12 i 2C12 E ˆ2 ˆ ˆ 2 ˆ I 2 i 2C 2 E
I 6 C3 h
由此可知:对于反轴In有 Cn + i In = 2n个操作 n为奇数
Cn/2 + h n个操作 n为偶数但不是4的倍数
In n个操作 n为4的倍数(同时有Cn/2与
之重叠)
旋转反映操作和映轴
旋转反映操作:绕轴转360/n,接着按垂直于轴的镜面 进行反映
ˆ ˆ ˆ S C n h h C n 旋转轴Cn和垂直于Cn镜面h的组合
绕轴转360n接着按垂直于轴的镜面进行反映的组合不同轴次的s所包含的操作n个操作n为偶数但不是4的倍数2n个操作n为奇数n个操作n为4的倍数2nn为奇数n为4的倍数对称操作对称元素旋转第一类对称操作实操作旋转轴第一类对称元反演第二类对称操作虚操作对称中心第二类对称元反映镜面旋转反演在一定的坐标系下对物体进行对称操作使得其对应的坐标发生改变对这种坐标的变化关系可以使用矩阵来描述

结构化学分子的对称性

结构化学分子的对称性

ˆ ˆ2 ˆ3 ˆn ˆ 2n ˆ 2n C 2n , C 2n , C 2n , , C 2n , , C 2n 1 , C 2n E

ˆ n n 2π 2π C ˆ C 2n 2 2n 2
ˆ C 2 z
x, y, z
2
x, y, z
1
ˆ i
ˆ σ xy
x, y, z
3
并延长到反方向等距离处而使分子复原,这一点就是对
称中心 i ,这种操作就是反演.
(4) 象转轴和旋转反映操作 反轴和旋转反演操作 旋转反映或旋转反演都是复合操作,相应的对 称元素分别称为象转轴Sn和反轴In . 旋转反映(或旋 转反演)的两步操作顺序可以反过来.
对于Sn,若n等于奇数,则Cn和与之垂直的σ都
而唯一地被定义了——至少在抽象地意义上是如此。上述概念 可以方便地呈现在群的乘法表的形式中。 一个h阶有限群的乘法表由h行和h列组成,共h2 个乘积; 设行坐标为x,列坐标为y,则交叉点yx,先操作x,再操作y;对 称操作的乘法一般是不可交换的,故应注意次序。 在群的乘法表中,每个元素在每一行和每一列中被列入一 次而且只被列入一次,不可能有两行或两列是全同的。每一行 或每一列都是群元素的重新排列,这就是群的重排定理。
四阶群只有两种,其乘法表如下
G4 E A B C E E A B C A A B C E B B C E A C C E A B G4 E A B C E E A B C A A E C B B B C E A C C B A E
H2O分子的所有对称操作形成的C2v点群的乘法表如下:
G4
E E
ˆ C2 ˆ C2
ˆ 2 C 1C 1 , Cn ˆ n ˆ n

结构化学第四章分子对称性

结构化学第四章分子对称性
X射线晶体学需要制备晶体样品,通过X射线照射晶 体并记录衍射数据,再通过计算机软件分析衍射数 据,最终得到分子的晶体结构。
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。

结构化学 04第四章 分子的对称性

结构化学 04第四章 分子的对称性

所有分子都有无限多个C1旋转轴,因为绕通过分子 的任一直线旋转360o都使分子复原,是个恒等操作,常 用E表示。 E称为主操作,和乘法中的1相似。严格地说, 一个分子若只有E能使它复原,这个分子不能称为对称 分子,或只能看作对称分子的一个特例。在分子的对称 操作群中, E是一个不可缺少的元素。
Cn的轴次并不受限制,n可为任意正整数。分子中 常见的旋转轴有C2 , C3 , C4 , C5 , C6 , C∞等。
试 找 出 分 子 中 的 镜 面
4.1.4 旋转反演操作和反轴
反轴In的基本操作为绕轴转360o/n,接着按轴上的中心点进 行反演,In1 = iCn1。这个操作是Cn1和i相继进行的联合操作。I1
对称元素等于i;I2等于h;I3包括下列6个对称操作
I31 = iC31 , I32 = C32 , I33 = i ,
轴和 h组成;
◆当n为偶数而又不为4的整数倍时,Sn 可看作由Cn/2与i组成; ◆当n为4的整数倍时,Sn是个独立的对 称元素,而且Sn与Cn/2轴同时存在。
环辛四烯衍生物中的S4
(1) 重叠型二茂铁具有 S5, 所以, C5和与之垂直 的σ也都独立存在;
(2) 甲烷具有S4,所以, 只有C2与S4共轴,但C4和与 之垂直的σ并不独立存在.
左手与右手互为镜象. 你能用 一种实际操作把左手变成右手吗?
对于手做不到的, 对于许多分 子也做不到. 这种分子就是手性分 子.
结论:不能用实际操作将分子与其镜象完全迭合的分子
是手性分子,分子没有虚轴Sn ,也就没有σ、没有i、没有S4
(任何分子, 包括手性分子, 都能用―镜子‖产生镜象, 但手性分子本身并无镜面).
I6 = C3 + h

结构化学第四章分子对称性精讲

结构化学第四章分子对称性精讲

共同对称元素:
6C5,10C3,15C2,等

对称操作:
E
12C5
i
12S10
12C52
20C3 15C2
12S103
20S6 15σ h=120
C60
四面体群Td
八面体群Oh
十二面体群 Id
11、线形分子
共同对称元素: C ,v 对于HCN,无对称中心,对称点群为 Cv 若有对称中心,如CO2,对称点群为Dh
ˆ n 1 , C ˆ (1) , C ˆ (1) , ,C n 2 2
ˆ (1) ,C 2

群阶:2n
D2 群
主轴C2垂直于荧光屏
6、Dnh点群 Cn+ nC2(Cn) + h Dnh
对称元素: Cn+ nC2(Cn) + h Dnh
n=偶数:Cn, nC2(Cn), h, In, nv, i n=奇数:Cn, nC2(Cn), h, I2n, nv
药物分子的不对称合成
对称性破缺在生命科学中产生了极为深远的影响,因为构成生命 的重要物质如蛋白质和核酸等都是由手性分子缩合而成,生物体中 进行的化学反应也受到这些分子构型的影响. 药物分子若有手性中心 ,则对映异构体对人体可能会有完全不同的作用,许多药物的有效 成份只有左旋异构体有活性, 右旋异构体无效甚至有毒副作用。例如 ,早期用于减轻妇女妊娠反应的药物酞胺哌啶酮因未能将R构型对映 体分离出去而导致许多胎儿畸形. 类似的情况还有很多,仅举几例, 它们的有效对映体和另一对映体的构型与作用如下:
手性有机化合物的合成方法主要有4种: (1)旋光拆分,(2)用 光学活性化合物作为合成起始物,(3)使用手性辅助剂,(4)使用手 性催化剂. 一个好的手性催化剂分子可产生10万个手性产物. 21世纪的第一个诺贝尔化学奖授予威廉· S· 诺尔斯、野依良治、 K· 巴里· 夏普莱斯, 就是表彰他们在手性催化反应方面的贡献.

结构化学:分子的对称性

结构化学:分子的对称性

对称元素:对称操作所依据的几何元素(点、线、面) 分子中的对称元素有:
1. 恒等元素E 和恒等操作
ˆ E
恒等元素E是所有分子几何图形都有的,其相应的操作是恒等操 作 E。对分子施行这种操作后,分子保持完全不动,即分子中各原子 的位置及其轨道方位完全不变。
恒等操作对向量(x, y, z)不产生任何影响。
6. 映轴 Sn 和旋转反映
ˆ S n
对应的操作为
ˆ ˆ ˆ hC S n n
当对分子施行 轴的 S k次操作
n
时 Sn
k
k ˆk ˆk ˆ S n n Cn
k k ˆ ˆ ˆ S C n n k ˆ C ˆk S n n
当k为奇数时
当k为偶数时 当n为奇数时 当n为偶数时
4. 对称中心 i 和反演(倒反)操作

5. 反轴 In 和旋转反演
ˆ I n
若将分子绕某轴旋转2/n角度后,再经对称中心反演产生分 子的等价图形,该对称操作称为反演,表示为 ,相应的 对称元素称反轴,用In表示。
ˆ I n
旋转反演是一种复合操作,且先反演后旋转( 转后反演(
),和先旋
ˆi ˆ C n
4.1.1 分子的对称性
对称性是物质内部分子结构对称性的反映。在
分子中,原子可以看做是固定在其平衡位置上的, 分子的结构参数,如键长、键角等决定了分子的几 何构型和分子的对称性。许多分子的几何构型具有 一定的对称性。
分子的对称性
对称操作和相应的对称元素
4.1.2 对称操作和相应的对称元素
对称操作:指不改变物体内部任何 两点间的距离而使物体复原的操作。
例: CH4 (放在正方体中)
ˆ I n

结构化学基础课件 第四章 分子的对称性

结构化学基础课件 第四章 分子的对称性

②第二步,进行右上角的乘法, 分子进行 反映,N和H1保持不变,H2与H3互换位置,
再绕 轴旋转120度,则N还是不变,H2到H1 位置,H1到H2位置,H3回到原位置,两个操 作的净结果,相当于一个 镜面反映……可
写出右上角的九个结果。
③同理也可写出左下角的九个结果。旋转操 作和反映操作相乘,得到的是反映操作;两 个旋转操作相乘和两个反映操作相乘得到的 是旋转操作。
学时安排 学时----- 4学时
第四章.分子的对称性
对称 是一种很常见的现象。在自然界
我们可观察到五瓣对称的梅花、桃花,六瓣 的水仙花、雪花、松树叶沿枝干两侧对称, 槐树叶、榕树叶又是另一种对称……在人工 建筑中,北京的古皇城是中轴线对称。在化 学中,我们研究的分子、晶体等也有各种对 称性,有时会感觉这个分子对称性比那个分 子高,如何表达、衡量各种对称?数学中定 义了对称元素来描述这些对称。
I1 S2 i
S1
I
2
I2 S1
S2 I1 i
I3
S
6
C3
i
S3
I
6
C3
I4 S4
S4
I
4
I5 S10 C5 i
S5 I10 C5
I6 S3 C3 S6 I3 C3 i
负号代表逆操作,即沿原来的操作退回去的操作。
S4 S6
对称元 素符号
E Cn
I1n=iC1n 4.1.5.映轴和旋转反映操作
映轴S1n的基本操作为绕轴转3600/n, 接着按垂直于轴的平面进行反映,是C1n和 σ相继进行的联合操作:
S1n=σC1n
如果绕一根轴旋转2/n角度后立即对垂直于这根轴的一 平面进行反映,产生一个不可分辨的构型,那么这个轴就

结构化学-分子的对称性

结构化学-分子的对称性

H2O中的C2和两个σv
C2v 群
船式环己烷
N2H4
C2v群:臭氧 C2v 群:菲
与水分子类似的V型分子,如SO2、NO2、ClO2、H2S等均 属于C2v点群,此外,顺式-1,2-二氯乙烯、船式环己烷,
呋喃,吡啶等也属于C2v点群
C3v :NH3 C3v :CHCl3
NH3 分子是C3v 点群的一个典型例子。其它三角锥形分 子,如PCl3、PF3、CH3Cl等也属于C3v点群
单轴群: 包括Cn 、Cnh 、Cnv 点群. 这类点群的共同特点是只有一条旋转轴. Cn 群:只有一条n次旋转轴Cn 。群的阶为n。
C2
C2 群
C2
H2O2
C2 群
C2群
二氯丙二烯
C3通过分子中心且垂直于荧光屏
C3 群
Cnv 群: 有一条n次旋转轴Cn 和n个包含该轴的对称
面σv。群的阶为2n。
对称中心i 对称中心i
确定分子点群的几点其他思路
(b) 有对称中心,且主轴为偶数时,则分子属于Cnh或Dnh点群。进一 步去找镜面或垂直于主轴的C2 轴,如果只有一个镜面或没有垂直于 主轴的C2轴,则属于Cnh点群;如果有二个以上的镜面或有垂直于主 轴的C2轴,则属于Dnh点群。如图2所示分子属于这种情况。
C2
D2 群
主轴C2垂直于荧光屏
C2
D3群:这种分子比较少见,其对称元素也不易看出. [Co(NH2CH2CH2NH2)3 ]3+是一实例.
C2
C2 唯一的C3旋转轴从正三角形中 心穿过, 通向中心Co;
三条C2旋转轴分别从每个N–N 键中心穿过通向Co.
C2
Dnh 群:在Dn 基础上,还有一个垂直于主轴的对称面σh 。

对称性在结构化学中的应用

对称性在结构化学中的应用

对称性在结构化学中的应用
在结构化学中,对称性是指分子或者晶体的结构具有一定的对称性,这种对称性可以是对称轴,对称轴的顺序,对称中心或者旋转对称。

对称性在结构化学中有很多重要的应用,例如:
1.对称性可以用来确定分子结构。

例如,通过观察分子的对称性,可以判断分子是否具有共价键,从而确定分子的结构。

2.对称性可以用来确定分子的构型。

例如,如果分子具有对称轴,那么分子的构型一定是对称的。

3.对称性可以用来确定分子的光学活性。

例如,如果分子具有旋转对称,那么分子就不具有光学活性。

4.对称性可以用来确定分子的化学性质。

例如,一些对称的分子比不对称的分子更稳定,因此对称的分子通常具有更高的化学稳定性。

5.对称性可以用来确定分子的生物活性。

例如,一些对称的分子在生物体内可能具有特定的生物活性,因此对称性可能会影响分子在生物体内的作用。

1/ 1。

第4章 分子对称性

第4章 分子对称性

AB C A BC
(3) 有单位元素E存在 群中必有一个元素E, 它对 G中任何一个 元素A, 有 EA AE A (4) 群中每一元素A必有一个逆元素A-1,且A-1也是群的元素。
AA A A E
1
1
38
乘法表
39
2、分子点群
分子中的各种对称操作的集 合构成群。 由于分子中的对称操作都是 相对于对称图形中某一固定点 而言的,因此称此类对称操作 群为对称点群,或简称点群。 每一个对称操作就是点群的 元素。
结构化学 —— 第四章 分子的对称性
第四章
1
自然界的对称
2
自然界雪 花的对称 性图案
3
故 宫 博 物 院 的 对 称 排 布
4
对称性的特点 这些物体上存在若干个相等的部分,或可以 划分为若干个相等的部分。 如果把这些相等部分对换一下,就好象没有 动过一样(即物体复原),或者说这些相等部 分都是有规律重复出现的。 具有对称性的图形称为对称图形,“对换”或“复 原”的动作称为对称操作。
40
ˆ 1、C ˆ 2、 ˆ、 C E 3 3 ˆ1、 ˆ 2、 ˆ3
分子点群示例
Cn群:有n重旋转轴
C1
C2
C3
41
Cnv群:Cn+σv
C2v
船式环已烷
N2H4
42
C3v
P4S3
43
C∞v群:C∞+Cv。 例:异核双原子分子CO、NO、HCl等。
44
Cnh群:Cn+σh
C1h 只有一个镜面,凡是没有其它对称元素的平面分 子均属C1h(Cs)群。
H
28
NH3的三个σ相交于C3轴,故有偶极矩且 取向在C3轴上。

[结构化学]第四章-分子的对称性

[结构化学]第四章-分子的对称性

二、群的乘法表: 如有限群G为 h 阶,那它们之间的运算方法有 h 2 个。 一个有限群的代数运算常用一个表来表示—乘法表。 例1、操练群 G:{立正,向左转,向右转,向后转}
h = 4 ,联合动作有 h 2 = 4 2 = 16 个
G 立正 向左转 向右转 向后转 立正 立正 向左转 向右转 向后转 向左转 向左转 向后转 立正 向右转 向右转 向右转 立正 向后转 向左转 向后转 向后转 向右转 向左转 立正
动作后,和原几何构型不可区分的性质。 • 对称操作—能使几何构型复原的动作。 如:旋转、反映、反演等 • 对称元素—进行对称操作所依据的几何要素。 如: 点 线 面
对称中心 对称轴 对称面
.
一、恒等元素和恒等操作: 保持分子完全不动或旋转3600的操作
E
ˆ E
X 1 0 0 X X ˆ Y = 0 1 0 Y = Y E Z Z 0 0 1 Z
存在逆元
G : {± ( 2n − 1), n = 1,2,}对加法是否成群? 思考题:
几个慨念:群G的元有限——有限群 如群G中 AB = BA 可对易——交换群(Abel群) 群G中元的个数就是群G的阶(h) 群G中的元,如 R-1AR=B , R-1BR=A,则A,B为 共轭元素,该变换称为相似变换。
n −1 ˆ / n' ˆ ,c ˆ1 ˆ ˆ , , c , c , , c ∴ Dn : { E n n 2 2 } 2n阶
0 x x / / 0 y = y z/ 1 z
1 0 0 1 0 0 ˆ , k为奇 σ k 2 ˆh =σ ˆ xy = 0 1 0 ,当σ ˆ xy = 0 1 0 ,∴ σ ˆ = 如 σ ˆ , k为偶 E 0 0 1 0 0 − 1

结构化学第4章_分子对称性

结构化学第4章_分子对称性

C1h C1 h Cs
2n阶
H
Cl C C H
反式二氯己烯
Cl
C2h群
④ Dn群:
1个Cn轴加上n个垂直Cn的二重轴
(不存在任何对称面)
n1 (1) ( 2) ( n) Dn E, Cn ,Cn , C2 , C2 ,C2


2n阶
D3: [Co( NH 2CH 2CH 2 NH 2 )3 ]
(3)N2(直线形)
(4)CO
有σh、∞个σd(σv)
有∞ 个σv
⑤ 反轴In和旋转反演操作
如果分子图形绕轴旋转3600/n后,再按轴上的中 心点反演,可以产生分子的等价图形,则称该轴为反 轴,对应的对称操作为:I n iCn 例如CH4,其分子构型可用下图表示:
1 C4
i
CH4没有C4,但存在I4
一个有限分子的对称操作的集合构成群,称为分子点群。
2 分子点群的分类
分子的全部对称操作的集合构成群—分子点群, 采用Schonflies(熊夫利)记号。
① Cn群:
只有一个Cn轴。
2 n1 Cn E, Cn , Cn ,, Cn


n阶 C 1群 C 2群 C 3群
CHFClBr H2O2
1D=3.336×10-30c.m
偶极矩是分子本 身固有的性质,与是否有外加 电场无关。
-1-分子的偶极矩和分子的对称性
分子有无偶极矩与分子的对称性有密切关系。 对静态分子,可根据分子的对称性对分子有无 偶极矩作出简单明确的判据: 只有属于Cn和Cnv(n=1,2,3, …,∞) 点群的分子具 有偶极矩。C1v=C1h=Cs,Cs点群也包括在Cnv之 中。 具有对称中心的分子没有偶极矩;有两个对称 元素只相交于一点的分子偶极矩为零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cn,Cnh, Cnv, Cni, Sn, Dn, Dnh, Dnd, T, Th, Td, O, Oh, I, Ih
Point groups
Point groups are a way of classifying molecules in terms of their internal symmetry. Molecules can have many symmetry operations that result into indistinguishable configurations. Different collections of symmetry operations are organized into groups. These 11 groups were developed by Schoenflies.
C1:
only identity. Example: CHBrClF
Cs:
only a reflection plane. Example: CH2BrCl
Ci:
only a center of symmetry. Example: staggered 1,2-dibromo-1,2-
dichloroethane.
by reflection
绕轴旋转后按对 称中心反演
rotation followed by inversion
rotates counterclockwise 360o/n degrees about the axis
and then reflects across a
plane perpendicular to the
符号标记 Label
Eˆ ˆi Cˆ n ˆ Sˆ n
Iˆ n
对称元素 Symmetry element
恒等操作 identity
对称中心 center of symmetry or inversion center
n-重旋转轴 n-fold proper axis of
rotation 镜面
plane of symmetry
h, :v,
d,
Cn,(horizon)tal containsCn(vertic)al containsCn and ...
σ垂直于主轴
σ通过主轴
σ通过主轴,平分两副轴(C2轴)的夹角
旋转反映操作和映轴
旋转反演操作和反轴
对称元素的组合-1
1、两个旋转轴的组合
交角为2pi/2n的两个C2轴,在其交点上必定出 现一个垂直于这两个C2轴的Cn轴;
axis
rotates counterclockwise 360o/n degrees about the axis
and then projects through5 the center an equal distance
a)具有对称中心的
b)没有对称中心的
1 0 0 i0 1 0
0 0 1
inE, n iseven i, n isodd
In addition of being used to simplify calculations, two properties directly depend on symmetry: optical activity and dipole moments.
We consider equilibrium configurations, with the atoms in their mean positions.
n-重映轴 n-folபைடு நூலகம் improper axis
of rotation
n-重反轴 n-fold improper axis
of rotation
对称操作
Symmetry operation
不变 nothing
What does it do Nothing
按对称中心反演 projects through the center an
而垂直于Cn轴通过交点的平面内必有n个C2轴
对称元素的组合-2
2、两个镜面的组合
交角为2pi/2n的两个镜面相交,则其交线必为n
次轴Cn ; Cn轴和通过它的镜面组合,一定存在n个镜面,
相邻镜面的夹角为2pi/2n
对称元素的组合-3 3、偶次旋转轴和与它垂直的镜面的组合
一个偶次旋转轴和与它垂直的镜面的组合,必定在其 交点上出现对称中心---〉一个偶次旋转轴和对称中心
a)氨分子(NH3)的三重轴 b)水分子(H2O)的二重轴
x x '
C
k n
y
y
'
z z '
co2sk(/n) sin2k(/n) 0
Cnk sin2k(/n) co2sk(/n) 0
0
0
1
反映操作和镜面
1 0 0
xy0 1 0
0 0 1
nE, n iseven , n isodd
组合,必有垂直于轴的镜面;,,,
群的定义
1、封闭性: A ,B G ,A B C , C G
2、主操作:
A E E A A
3、逆操作: A G , A 1 G ,A 1 A A 1 A E
4、结合律:
A(B)C (A)B C
群的实例
群的乘法表 规则:先行后列,(列行)
分子点群的分类
Cn:
only a Cn center of symmetry.
Example of C2: hydrogen peroxide (not coplanar)
Cnv: only n-fold axis and n vertical (or dihedral) mirror planes.
inversion
equal distance
绕轴旋转 rotation
rotates counterclockwise 360o/n degrees about the axis
通过镜面反映 reflection
reflects across a plane
绕轴旋转后反映 rotation followed
第四章 分子的对称性
第七章 晶体结构的对称性
Symmetry is important in quantum mechanics for determining molecular structure and for interpreting spectroscopic information.
相关文档
最新文档