高桩码头课程设计计算书
高桩梁板式码头设计
高桩梁板式码头设计一.码头总体设计1.码头泊位长度确定m d L L b 110122862=⨯+=+= 2.码头桩台宽度确定前桩台14.5m ,后桩台宽15m3.桩基设计与布置基桩:mm mm 400400⨯预应力钢筋混凝土方桩 横向:隔3.5m 布桩,海侧门机轨道布双直桩,路侧门机 轨道布双叉桩纵向:隔6m 布桩 总桩数:162189=⨯二.面板尺寸设计m m 65.3⨯;厚45cm;实心板三.纵梁设计与计算1.轨道梁计算(同一般纵梁) 1)断面设计:cm 9050⨯6m纵横2)计算跨度:按连续梁弹性支承 弯矩计算:m l l 60== 剪力计算:m l 1.5l n 0== 3)计算荷载 A.永久荷载纵梁自重:q=25×0.5×0.9=11.25 KN/m面板支座力:N=0.5S=0.5×(6+2.5)×19.69×0.5=41.84 KN B.可变荷载堆货荷载通过面板的支座力:KN S N 75.1482125.340)5.26(2121=⨯⨯⨯+⨯== 门机荷载:250×4=1000 KNC.荷载组合:承载能力极限状态持久组合:永久荷载+散货荷载+门机 正常使用极限状态持久组合:永久荷载+散货荷载+门机4)内力计算结果四.横梁的设计与计算1)断面设计(单位:cm)2)计算跨度:l=3.53)计算荷载:A.永久荷载横梁自重:q=25×(0.4×0.9+0.7×0.9)=24.75 KN/m面板自重——横梁:N=0.5S=0.5×19.69×3.5×0.5=17.23 KN 面板自重——纵梁——横梁:N=41.84 KN纵梁自重——横梁:N=0.5×11.25×6=33.75 KN中和轴竖向均布力24.75 KN/m67.5 KN/m 67.5 KN/m竖向三角形分布力39.38 KN/m 39.38 KN/m 39.38 KN/m185.64 KN185.64 KN168.41 KN168.41 KN竖向集中力永久荷载图B.可变荷载堆货荷载——横梁:N=0.5S=0.5×5.325.34021⨯⨯⨯=122.5 KN 堆货荷载——纵梁——横梁:N=148.75 KN中和轴竖向均布力240 KN/m散货荷载图门机滚动荷载——轨道梁——横梁船舶撞击力系缆水平力分配系数 = 0.31系缆夹角α(°):是系缆力水平面投影与码头前沿线的夹角,逆时针为正系缆夹角β(°):是系缆力竖直方向水平面的夹角注:系缆力在码头前后位置已经考虑,DL为系船柱到对应最近码头边缘的距离,DL>0船舶系缆力C.作用组合承载能力极限状态持久组合:永久荷载+件杂货、集装箱荷载+门机+船舶系缆力永久荷载+件杂货、集装箱荷载+门机+船舶靠岸撞击力正常使用极限状态持久组合:永久荷载+件杂货、集装箱荷载+门机+船舶系缆力永久荷载+件杂货、集装箱荷载+门机+船舶靠岸撞击力4)内力计算结果a.承载能力极限状态持久状况作用效应的持久组合b.正常使用极限状态持久状况的标准组合。
高桩码头课程设计计算书
⾼桩码头课程设计计算书⽬录第⼀章设计资料 (1)1.1 码头⽤途 (1)1.2 ⼯艺要求 (1)1.3⾃然条件 (1)1.3.1地形 (1)1.3.2 原有护岸情况 (1)1.3.3地基⼟壤物理⼒学性质指标 (2)1.3.4 ⽔位 (3)1.4 建材供应 (3)1.5 施⼯条件 (3)1.6 码头规划尺度 (3)第⼆章码头结构选型 (4)第三章码头结构布置及构造 (4)3.1 码头结构总尺度的确定 (4)3.1.1码头结构的宽度 (4)3.1.2 码头结构沿码头长度⽅向的分段 (4)3.1.3 桩顶⾼程 (5)3.2 码头上⼯艺设备的型式及布置 (5)3.2.1 门机轨道的布置 (5)3.2.2 ⼯艺管沟的位置和尺⼨ (5)3.2.3 系船柱的型式和布置 (5)3.2.4 橡胶防冲设备的型式和布置 (6)3.2.5 护轮槛 (7)3.3码头上部结构系统的布置和型式 (7)3.3.1 横向排架 (7)3.3.2 纵梁 (8)3.3.3 ⾯板和⾯层 (9)3.3.4 靠船构件 (10)3.4 基桩的布置及构造 (10)3.4.1 横向排架中桩的布置 (10)3.4.2桩的纵向布置 (10)3.4.3 桩的构造 (11)3.4.4 桩帽的构造 (11)第四章码头荷载 (12)4.1 永久荷载 (12)4.1.1 永久荷载计算图⽰ (12)4.1.2 永久荷载的计算 (13)4.2 可变荷载 (14)4.2.1 船舶荷载 (14)4.2.2 堆货荷载 (16)4.2.3 门机荷载 (16)4.3 作⽤效应组合设计值的确定 (18)第五章横向排架计算 (19)5.1 计算基本假定 (19)5.2 桩的刚性系数 (19)5.3 桩上荷载及符号定义 (21)5.4 桩顶的变位 (22)5.5 桩顶断⾯的内⼒ (22)5.6 静⼒平衡⽅程 (22)5.7 基桩承载⼒验算 (24)第六章附件 (26)(1) ⾼桩码头平⾯图与⽴⾯图 (26)(2)⾼桩码头断⾯图 (26)第⼀章设计资料1.1 码头⽤途拟设计的码头系天津港所属船舶修理⼚的配套⼯程之⼀,供待修船舶系靠、检修、修理和新建船舶舾装之⽤。
高桩码头计算说明
第6章水工建筑物6.1 建设内容本工程拟建5万t级通用泊位2个。
水工建筑物包括码头平台、固定引桥与护岸。
结构安全等级均为二级。
6.2 设计条件6.2.1 设计船型5万t级散货船:船长×船宽×型深×满载吃水=223×32.3×17.9×12.8m6.2.2 风况基本风压 0.70Kpa按九级风设计,风速为22m/s,超过九级风时,船舶离港去锚地避风。
6.2.3 水文(1)设计水位(85国家高程)设计高水位: 2.77m 极端高水位: 4.18m设计低水位: -2.89m 极端低水位: -3.96m(2)水流水流设计流速 V=1.2m/s流向:与船舶纵轴线平行。
(3)设计波浪:波浪重现期为50年,设计高水位下H1%=1.81m; H4%=1.52m;H13%=1.22m;T mean=3.8s,L=22.96m。
6.2.4 地质条件码头平台与固定引桥区在勘察控制深度范围内地基土层为海陆交互相沉积、陆相冲洪积成因类型和凝灰岩风化岩层,从上而下分别为淤泥、块石、残积粘性土、强风化凝灰岩与中风化凝灰岩。
其中淤泥层厚为20.95m ~51.15m ;块石厚度分布不均;残积粘性土厚度3.5~9.69m ;强风化凝灰岩厚度分布不均;中风化凝灰岩最大揭露厚度为5.70m ,未揭穿。
其物理力学性质指标见表3-2。
护岸与陆域部分在勘察控制深度范围内地基土层自上而下分别为耕土、淤泥、粘土、角砾混粉质粘土、粘土、含角砾粉质粘土、强风化基岩与中等风化基岩等。
其中,淤泥厚15.50~37.00m ;粘土层厚0.7~26.00m ;角砾混粉质粘土厚0.8~16.00m ;含角砾粉质粘土厚4.5~32.80m ;强风化基岩厚0.2~3.70m ;中等风化基岩最大揭露深度为6.90m ,未揭穿。
其物理力学性质指标见表3-3。
6.2.5 设计荷载 6.2.5.1 船舶荷载 (1)系缆力[]sin cos cos cos y x F F K N n αβαβ=+∑∑ 式中:∑x F ,∑y F ——分别为可能同时出现的风和水流对船舶作用产生的横向分力总和及纵向分力总和(kN);K ——系船柱受力分布不均匀系数,K 取1.3; n ——计算船舶同时受力的系船柱数目,取n=5; α——系船缆的水平投影与码头前沿线所成的夹角(°),取α=30°;β——系船缆与水平面之间的夹角(°),取β=15°。
高桩码头下横梁底模计算书及附图
q=37.59KN/m2三丘田码头工程下横梁底模计算书一、模板计算主要参数1、允许挠度: [f/l]=1/400(见JTS202-2011,page27)2、A3钢材允许抗弯和抗拉强度:[σ]=1.7×105KN/m 2,A3钢材弹性模量:E=2.1×108KN/m 2(见JTJ025-86,page3、page4)3、杉木允许抗弯和抗拉强度:[σ]=11×103KN/m 2杉木允许抗弯和抗拉强度:E=9×106KN/m 2(见JTJ025-86,page50)4、九合板允许抗弯和抗拉强度:[σ]=90×103KN/m 2九合板弹性模量:E=6.0×106 KN/m 2二、荷载组合(参照JTS202-2011)1、模板和支架自重木材按5KN/m 3计;25b 工字钢重度为0.42KN/m 2;2、新浇混凝土及钢筋的重力钢筋混凝土按25KN/m 3计3、施工人员和设备的重力(1)计算模板和直接支撑模板的楞木时,取均布荷载 2.5KN/m 2,并以集中荷载 2.5KN 进行验算;(2)计算支撑小楞的梁和楞木构件时,取均布荷载1.5KN/m 2;(3)计算支架立柱及支撑架构件时,取均布荷载1.0KN/m 2。
三、模板和支架验算1、九合板验算取1m 宽九合板计算,方木间距为0.3m,取5跨连续梁计算:(1)、施工人员和设备的荷载按均布荷载时施工人员和设备的荷载q1=2.5KN/m 2 ×1m=2.5 KN/m九合板自重荷载q2=5KN/m 3 ×1m ×0.018m=0.09 KN/m钢筋混凝土荷载q3=25KN/m 3×1m ×1.4m=35 KN/m总荷载q=q1+q2+q3=0.09 KN/m +2.5 KN/m+35 KN/m =37.59 KN/m由结构力学求解器计算得,M max =ql 2/8=37.59×0.32/8=0.36 KN.mW=bh 2/6=1×0.0182/6=5.4×10-5m 3强度验算:σ= M max /W=0.36KN.m /5.4×10-5m 3=6.7×103 KN/m 2<[σ]=90×103KN/m 2满足要求。
高桩梁板式码头课程设计
2008级港口水工建筑物课程设计一、必要性说明课程设计是对学生综合运用所学知识解决一个实际工程问题的检验(要求基础知识扎实)。
所涉及到的知识包括材料力学﹑结构力学﹑水工钢筋混凝土、港口水工建筑物,因此要求学生基础知识扎实、表达清楚,有较强的工作能力和查阅和利用资料的能力,同时也为本课程的期末考试及毕业设计打下良好的基础。
应很好地珍惜这一次机会,锻炼自己的能力,要求全部用手算不用电算,已达到概念清楚。
二、课程设计的内容1.面板设计1)按整体板计算板的内力2)面板配筋计算(略)2.横向排架计算包括纵向梁系计算。
1)计算横梁在恒载作用下截面的内力以及桩力由于纵梁是预制的,然后整体连结,故面板、纵梁在横梁上产生的恒载反力按简支计算。
(即横向排架施工期的内力计算);2)计算使用荷载作用下(不考虑轮胎吊)纵梁传给横梁的集中力按刚性支承连续梁计算,(按五跨连续梁计算,影响线加载);3)计算单位垂直力作用下在排梁的纵梁放置处横梁的内力及桩力,按柔性桩台计算;(单位力法)4)计算单位水平力和单位端弯矩作用下横梁的内力及桩力;5)经作用效应组合得到横梁的内力及桩力;6)作用效应最不利组合,以求出最大内力及桩力;7)横梁配筋计算(略)。
3.绘结构总图1)选择并布置码头附属设备2)绘码头平面、立面及横断面图。
(要求手工绘图)4.编制课程设计计算书1)设计资料2)面板内力计算 3)横向排架内力计算 4)计算成果表格 5)附图三、面板内力计算(一)施工期内力计算1、预制板放置在纵梁上,在现场浇注砼时作脚手板(模板)使用,此时砼没有达到设计强度,故预制板按简支板计算。
(荷载包括板的自重、施工荷载)(1)计算跨度:弯矩),m in(00e l h l l ++=,剪力0l l = (2)内力计算(考虑2.5KN/m 2的施工荷载) 计算弯矩和剪力2、预制板吊运验算,(略)(工作中必须验算)一般采用四点吊,可按四点支承板进行计算。
高桩码头毕业课程设计
高桩码头毕业课程设计一、课程目标知识目标:1. 让学生掌握高桩码头的基本结构及其功能,理解其设计原理;2. 使学生了解高桩码头建设的关键技术,掌握其施工流程;3. 帮助学生了解我国高桩码头的发展历程,认识其在国民经济中的重要作用。
技能目标:1. 培养学生运用所学知识分析和解决实际工程问题的能力;2. 提高学生团队协作和沟通能力,能在项目中进行有效的分工与合作;3. 培养学生运用现代信息技术收集、整理和分析相关信息的能力。
情感态度价值观目标:1. 培养学生对港口工程及高桩码头建设的兴趣,激发其学习热情;2. 增强学生的社会责任感,使其认识到高桩码头建设对环境保护的重要性;3. 引导学生树立正确的价值观,认识到工程建设的经济效益与社会效益的统一。
分析课程性质、学生特点和教学要求,本课程旨在帮助学生全面掌握高桩码头相关知识,将理论联系实际,提高学生的工程素养。
课程目标分解为具体学习成果,以便后续教学设计和评估。
在教学过程中,注重培养学生的实践能力、创新能力和团队协作精神,为我国高桩码头建设培养高素质的工程技术人才。
二、教学内容本课程教学内容主要包括以下几部分:1. 高桩码头概述:介绍高桩码头的基本概念、结构特点、分类及功能,对应教材第一章内容。
2. 高桩码头设计原理:讲解高桩码头的设计原理、设计方法及设计要点,对应教材第二章内容。
3. 高桩码头施工技术:阐述高桩码头的施工流程、关键技术及质量控制,对应教材第三章内容。
4. 高桩码头建设案例分析:分析国内外典型高桩码头工程案例,了解其设计、施工及管理经验,对应教材第四章内容。
5. 高桩码头发展与展望:介绍我国高桩码头的发展历程、现状及未来发展趋势,对应教材第五章内容。
教学内容安排和进度如下:第一周:高桩码头概述第二周:高桩码头设计原理第三周:高桩码头施工技术第四周:高桩码头建设案例分析第五周:高桩码头发展与展望在教学过程中,注重理论与实践相结合,提高学生对高桩码头工程的认识,培养其解决实际问题的能力。
板梁式高桩码头设计
板梁式高桩码头设计第一章资料分析1.1营运1.2自然条件1.3建筑物等级第二章码头总平面布置2.1 码头竖向设计2.2 码头主要尺寸的确定2.3 装卸工艺设计2.4 码头通过能力验算2.5 堆场面积计算2.6 总平面布置第三章码头结构初步设计计算3.1 前方桩台计算3.2 后方桩台计算3.3 方案比选第四章指定构件技术设计4.1 面板技术设计4.2 横向排架技术设计附图一:地质剖面图附图二:码头断面图附图三:面板配筋图附图四:施工期弯矩剪力包络图附图五:使用期弯矩剪力包络图附图六:施工期、使用期抵抗弯矩图第二章码头总平面布置2.1 码头竖向设计设计水位、码头前沿水深、水底高程2.2 码头主要尺寸的确定码头长度码头宽度码头前沿停泊水域宽度2.3 装卸工艺设计装卸工艺流程进口:船、带斗门机、接运皮带机、堆场皮带机出口:堆场、轮胎起重机、牵引车挂车、门机、船装卸机械及数量装卸工人数及行政人员数2.4 码头通过能力验算2.5 堆场面积计算堆场容量的确定2.6 码头总平面布置港区主要辅助生产建筑物面积、道路、总平面布置图第三章码头结构初步设计计算3.1 前方桩台计算3.1.1 面板尺寸估算(垫层、现浇层、预制板)3.1.1.1 施工期计算计算跨度内力计算(恒载、施工荷载)3.1.1.2 使用期计算计算跨度堆货荷载平板车3.1.1.3 面板尺寸验算3.1.2 纵梁断面尺寸估算3.1.2.1 计算跨度3.1.2.2 边梁计算恒载计算(面板、垫层、护轮砍、预制纵梁)使用荷载计算高度验算3.1.2.3 门机梁计算恒载计算(面板、垫层、预制纵梁)使用荷载计算:a 堆货荷载,b 门机荷载工况一:考虑一台门机作用时的情况工况二:考虑两台门机作用时的情况门机高度验算3.1.2.4 中纵梁计算恒载计算(面板、垫层、预制纵梁)使用荷载计算高度验算3.1.3 桩力计算(前方桩台)3.1.3.1 荷载计算1恒载:面板自重由纵梁传给横梁作用在外边梁上的恒载靠船构件前门机梁传递荷载中纵梁传递荷载后门机梁传递荷载内边梁传递恒载横梁自重2 可变作用堆货门机荷载a 门机作用情况一:一台门机吊臂位于临水面,与码头前沿线垂直,相距1.5m;b 门机作用情况二:两台门机吊臂位于驳岸方向,并与驳岸垂直,相距1.5m;系缆力(风压力、水流力)系缆力标准值N,由垂直于码头前沿线的横向分力Nx,平行于码头前沿线的分力Ny。
高桩码头排架计算报告书
高桩码头排架计算报告书高桩码头排架计算报告书排架计算报告书工程编号: 计算: 校核: 审定:工程条件1.基本说明1.1 设计采用的技术规范a.《高桩码头设计与施工规范》(JTS167-1-2010)b.《港口工程荷载规范》c.《水运工程抗震设计规范》d.《海港水文规范》e.《港口工程混凝土结构设计规范》f.《港口工程桩基规范》g.《港口工程灌注桩设计与施工规程》h.《港口工程预应力混凝土大直径管桩设计与施工规程》i.《港口工程嵌岩桩设计与施工规程》1.2 参数坐标说明a.坐标系约定X方向为沿横梁方向,X零点为码头前沿。
Y方向为沿码头前沿方向,Y零点为横梁轴线。
Z方向为竖向方向, Z零点为高程零点,Z的值代表高程。
b.作用效应值的正负号说明:轴力:受拉为负、受压为正。
弯矩:弯矩图画在受拉一侧,横梁上部受拉为负,下部受拉为正。
应力:受拉为负、受压为正。
c.参数采用的量纲:长度单位采用m,力采用kN,其它衍生的量纲以此为标准(特殊说明的除外)。
1.3 计算方法说明a.荷载计算1、施工期永久荷载包含:上横梁自重 + 纵梁自重 + 面板自重 + 靠船构件自重2、门机自动在轨道上滚动一遍得到支座的反力,然后将支座的反力最大值作为集中力反加到横梁上。
3、面板上均载按照面板的长宽比自动按照单向板或双向板方式进行传递到横梁和纵梁,集中力按照简支梁传递4、由于船舶力产生的横梁端部弯矩、竖向力传递到横梁时将被乘以分配系数6、程序不考虑超出横梁右侧的竖向荷载7、双向板上的集中力荷载先传递到纵梁8、计算时桩单元顶点取与横梁底部或桩帽底部的交点b.结构内力计算计算中将结构简化为平面刚架,采用杆系有限单元法进行求解;桩顶与横梁形心采用刚性连接9、计算中对横梁桩帽附近的包络值不进行削峰c.效应组合作用d.效应组合计算承载能力极限状态持久状况作用效应的持久组合采用下列公式计算:承载能力极限状态短暂组合采用下列公式计算:注:rQj 是第j个可变最用分项系数,按照分项系数表中所列值减小0.1;承载能力极限状态偶然组合采用下列公式计算:注:偶然作用的分项系数取1.0,与偶然作用同时出现的可变作用取标准值;承载能力极限状态地震组合采用下列公式计算:注:地震作用的分项系数取1.0,参考《水运工程抗震设计规范》执行;正常使用极限状态持久状况作用效应的标准组合采用下列公式计算:注:式中可变作用组合系数Ψ0 取 0.7;正常使用极限状态持久状况作用效应的频遇组合采用下列公式计算:注:式中频遇值系数Ψ1 取 0.7;正常使用极限状态持久状况准永久组合采用下列公式计算:注:式中准永久值系数Ψ2 取 0.6;正常使用极限状态短暂状况效应组合采用下列公式计算:正常使用极限状态持久状况的标准组合用途:预应力梁截面抗裂验算;预应力桩截面抗裂验算正常使用极限状态持久状况的准永久组合用途:预应力梁截面抗裂验算;梁截面裂缝宽度计算;预应力桩截面抗裂验算;桩截面裂缝宽度计算2.工程情况2.1 基本信息结构断面图结构立面图a.结构重要性等级:结构安全等级_二级;结构重要性系数1c.有无纵向联系:有纵梁系d.桩地基模型:假想嵌固点法;嵌固点深度:根据土层M值;嵌固点计算深度系数η:2.2 e.桩端支撑方式:摩擦桩f.水重度(kN/m^3):10g.计算中考虑如下水位:h.排架间距(m):6.5;排架榀数:8;码头顶面高程 (M):7;码头前沿泥面高程(m):-8 i.土层参数:单桩垂直承载力分项系数:1.55土抗拉折减系数:.7单桩抗拔承载力分项系数:1.55地基参数-#桩1地基参数-#桩2地基参数-#桩37 7 -50 19 3000 45 1500 0地基参数-#桩4层序土层名称层底高程(m)天然重度(kN/m^3)地基m系数(kN/m^4)桩的极限侧阻力标准值(KPa)桩的极限端阻力标准值(KPa)土容许承载力q0(kPa)1 1 -11 19 3000 12 0 02 2 -18 19 3000 16 0 03 3 -22 19 3000 22 0 04 4 -33 19 3000 20 0 05 5 -40 19 3000 35 1500 06 6 -48 19 3000 40 1500 07 7 -50 19 3000 45 1500 0 2.2 梁截面编号截面名称类型参数1 横梁截面1 B=1.2H=3.5b1=.6h1=22 纵梁截面1 B=.6H=1.5b1=.3h1=.15h2=.15h3=.353 纵梁截面2 B=.5H=1.5b1=.3h1=.15h2=.15h3=.354 梁截面2 B=1.2H=2.5b1=.6h1=1截面名称截面面积(m^2) 截面惯性矩(m^4)弹性模量(kPa材料重度(kN/m^3)材料名称横梁截面13.3 2.973296 3.25E+07 25 C40纵梁截面1.5175 .089434 3.25E+07 25 C40 纵梁截面2.495 .08789 3.25E+07 25 C40 梁截面2 2.1 1.072321 3.25E+07 25 C40 2.3 护轮坎参数b1(m):.3; b2(m):.25; h1(m):.25码头后沿是否有护轮坎:无2.4 面板参数面板预制部分厚度(m):.2;面板现浇部分厚度(m):.15;面板空心部分厚度(m):0面板磨耗层厚度(m):0~0面板现浇部分材料:C302.5 纵梁参数纵梁悬臂长度(m):2.00;轨道梁凹槽宽(m):0.00;轨道梁凹槽高(m):0.00 纵梁中心坐标X(m) 截面名称纵梁类型1 .15 纵梁截面2 边梁2 3.75 纵梁截面1 纵梁3 7.25 纵梁截面1 纵梁4 10.85 纵梁截面2 边梁2.6 横梁参数注:分段是横梁从左到右依次布置的各分段的情况横梁长(m) 截面1 2.2 横梁截面12 8.8 梁截面22.7 靠船构件参数沿码头前沿方向宽度(m)=1;靠船构件底部高程(m)=1;B1(m)=1.25;B2(m)=.6;H1(m)=2.5;H2(m)=0 2.8 设计时采用的桩截面混凝土空心方桩名称边长(m)内径(m)净面积(m^2)毛面积(m^2扭转惯性矩(m^4)截面惯性矩Iy(m^4)材料桩截面1.6 .3 .289314 .36 .020805 .010402 C402.9 桩截面承载力数桩截面1(根据容许轴力、弯矩、应力判定)注意:应力判定时钢桩根据材料系统自动判断;应力受压为正,受拉为负2.10 桩参数容许最小桩间净距(m)0;开口时桩内水位(m):0固定桩头时水位(m):0桩几何参数桩其它参数注:K值:桩的轴向刚性系数,即桩顶轴向单位变形所需的轴向力(kN/m) 转角:桩在水平面上投影与X轴的夹角,逆时针为正。
高桩码头毕业设计计算书
学号:上海海事大学本科生毕业设计(论文)张家港某5万吨级散货码头结构设计计算书学院:海洋科学与工程学院专业:港口航道与海岸工程班级:姓名:指导教师:完成日期:2015年06月日目录一、设计资料 (1)1.1 工程概述 (1)1.2 自然条件 (1)1.3 水文资料 (2)1.4 地质地貌资料 (2)1.5 船型资料 (4)1.6 荷载分析 (4)二、港口总平面布置 (6)2.1 港口总平面概述 (6)2.2 码头水域设施 (6)2.3 码头陆域设施 (8)2.4 装卸工艺设计 (9)三、码头总体设计 (11)3.1 结构选型 (11)3.2 初步设计 (11)四、码头结构设计 (12)4.1 面板设计 (12)4.2 轨道梁设计 (12)4.3 一般纵梁设计 (31)4.4 横向排架设计 (49)4.5 桩基设计 (77)一、设计资料1.1工程概述本设计位于江苏省张家港,江苏省江海粮油贸易公司张家港储运部位于江苏省张家港市金港镇,目前拥有万吨级泊位3个,设计年吞吐能力合计180万吨;千吨级泊位2个(五节港),年设计吞吐能力合计30万吨;中转库15万吨;规范化露天堆场5万平方米;总储量为7万吨油罐多座;储备库8万吨以及相配套的生产生活设施。
储运部主要承担长江干线地区粮食、大豆及油脂的中转任务以及国家粮油专项储备职能,是我国出口大米第一大港、长江流域最大的粮油集散地。
储运部近几年粮食、油脂的水上年中转量均达到250万吨左右,储运部现有码头的吞吐能力已远远满足不了生产和发展的需要,因此江苏省江海粮油贸易公司决定自筹资金,对张家港储运部现有码头进行扩建。
1.2自然条件1.2.1地理位置江苏省江海粮油贸易公司张家港储运部位于张家港市金港镇,长江福姜沙水道右汊南岸,地处苏锡常三市的水上门户。
该处水路通过长江上达重庆、武汉,下至上海并出海;陆路距上海173Km,距南京220Km,交通十分便利。
1.2.2气温多年平均气温15.2°C极端最高气温38°C极端最低气温-14°C全年35°C及以上的高温天数:年平均5.1d1.2.3降雨多年平均降雨量1025.5mm历年平均降雨天数>0.1mm 124d>5.0mm 50d>10.0mm 30d>25.0mm 10.5d>50.0mm 3d历年一小时最大降雨量93.2mm历年10分钟最大降雨量26.2mm最长历时降雨量109.2mm最长连续降雨日数14d1.2.4 风况拟建码头区位于长江下游平原地区,是北方冷空气南下和太平洋高压气旋北进的路径,冬春有寒潮入侵,夏秋有台风袭击,风力较长江中上游为大。
高桩码头课程设计任务书及指导书(2010级)
港口工程课程设计任务书及指导书长沙理工大学水利工程学院港航工程系2014年3月港口工程课程设计任务书(一)设计任务已知某海港拟建工程处设计高水位3.5m、设计低水位1.0m,根据不同靠泊船型、设计岸坡坡度、码头荷载等要求(详见任务分配表),完成一个顺岸式高桩码头的断面设计,并完成码头横向排架的计算,分别计算承载能力极限状态和正常使用极限状态下横梁内力及桩力,包括进行荷载组合,求出最大内力(包括内力包络图)。
绘制码头的平立面及横断面图各一张。
(二)设计要求1.所有计算及作图均应遵守港口工程技术规范的有关规定;2.完成有必要说明的设计计算书1份,要求文字简明,计算正确,誊写清楚、工整,按撰写规范要求;3.绘制结构平立面图1张、结构断面图1张(折合不少于1张A2图纸)。
4.分别绘制承载能力极限状态持久组合时横梁弯矩包络图和剪力包络图、正常使用极限状态持久状况时横梁弯矩包络图和剪力包络图、承载能力极限状态短暂组合时横梁弯矩图和剪力图。
(折合不少于1张A2图纸)(三)考核内容与方式1.考核内容1)课程设计期间的考勤;2)综合运用理论知识分析解决实际问题的能力、查阅资料的能力、独立工作的能力、计算机应用能力等;3)课程设计成果:设计说明书、计算表格、结构总图、计算程序等。
2.考核方式平时成绩(考核内容中1、2项)占40%;课程设计成果占60%。
(四)参考书目本次课程设计可参考以下书籍:《结构力学》、《材料力学》、《土力学》、《港口水工建筑物》(Ⅰ、Ⅱ册)、《桩基工程》、《港口工程结构设计算例》、《高桩码头算例》、《水工钢筋混凝土结构学》、《高桩码头设计与施工规范》、《港口工程混凝土结构设计规范》、《港口工程荷载规范》、《港口工程地基规范》等。
港口工程课程设计指导书本课程设计应遵循港口工程技术规范有关篇册的规定,并按以下指导和提示进行。
1、横向排架计算方法与计算简图本码头为梁板式码头,根据受力特征采取简化相应计算方法,并说明理由。
高桩码头说明书(1)
高桩码头课程设计系名称:建筑工程系专业:港口航道与海岸工程班级:班学号: 60122071姓名:王指导教师:刘佳2015年11 月30 日目录(居中,宋体小二,自动生成,全文多倍行距1.25)1.课程设计目的(宋体小四,数字英文均为新罗马)...........................................2.设计资料 .............................................................................................................2.1码头用途(宋体小四,首行缩进2个字符) ................................................2.2工艺要求 ............................................................................................................2.2.1靠泊作业船舶要求(宋体五号,首行缩进4个字符)2.2.2起重机作业要求2.2.3堆货荷载要求2.2.4码头设施2.3自然条件2.3.1地理位置2.3.2地质条件2.3.3水位资料2.4施工条件2.5码头规划尺度3.码头结构设计3.1码头形式选择3.2码头结构尺度3.2.1码头宽度的确定3.2.2码头结构沿长度方向的分段3.3桩基3.3.1钢筋混凝土桩3.3.2桩长计算3.3.3桩帽尺寸3.4上部结构3.4.1结构系统3.4.2横梁3.4.3纵梁3.4.4面板3.4.5面层4.码头附属设备4.1缓冲设备4.2系船设备4.3工艺管沟4.4护轮坎4.5接岸结构5.荷载计算5.1永久荷载5.2可变荷载5.2.1堆货荷载5.2.2门机荷载5.2.3船舶荷载5.2.4纵梁1.课程设计目的高桩码头课程设计是港口工程课的重要教学环节之一,是在学完港口工程课的基础上进行的,通过课程设计要达到以下教学目的:1.巩固和加深港工课所学的知识;2.培养运用所学知识解决实际工程问题的能力,掌握设计方法;3.提高计算和绘图技能,培养编写技术文件的能力。
高桩码头课程设计任务书
题目:高桩码头设计一.设计(论文)内容及要求(包括原始数据、技术要求、达到的指标和应做的实验等)1、建筑概况及设计资料(1)概况:20世纪90年代末,长江某港的货运量能力达1800万吨,但与货运量预测,尚有300万吨缺口。
根据新的经济运量规划研究成果,该港四期工程的年吞吐量分别为集装箱100万吨,矿散80万吨,散装化肥40万吨,钢材30万,及杂货20万吨,总计年吞吐量270万吨;需在四期工程中新建第三集装箱与第二代集装箱泊位各一个,2万吨级与1万吨级多用途泊位各一个,合计新建四个深水泊位。
长江2、自然条件(1)气象资料:常风向偏东,强风向北。
除年均一次台风影响外,大风一般出现在冬季,最大风速28m/s。
年平均降水量852.8mm。
每年6~9月为雨季,占全年降水量60%以上,最大日降水量156mm。
年平均雾日18d,水平能见度大雾小于1000。
一般雾日延续时间约2h。
年平均气温14.2℃,最高气温38.5℃,最低气温-8℃。
常年不封冻。
(2)水文:潮汐属不规则半日潮。
根据潮位资料统计分析,设计高水位+2.64m,设计低水位+0.2m,极端高中水位+3.68m,极端低水位-0.94m。
根据当地施工经验,混凝土浇筑的施工水位+1.65m。
潮流属不规则半日潮流,;四期工程附近水域呈东西向往复流,平均流速0.2m/s左右。
(3)地质资料:四期工程区域土层分布较为规则,根据其成因类型自上而下分为四大层:土体柱状见下表。
地质资料及回填土资料地基土物理力学特性见表(4)抗震设防要求:设防烈度:7度二、完成后应交的作业(包括各种说明书、图纸等)1、建筑设计部分(1)设计内容①码头总平面设计;②主要梁、板、桩等部位的设计及材料作法;③绘制建筑布置图纸。
(2)成果形式:①建筑设计图纸,建议用3#或3#加长图纸,内容见下面:1)、施工图:(1)总平面图及总说明1︰1000(2)梁平面图1︰100(3)桩基的布置及剖面图1︰100(4)板平面图1︰100(5)所有结构构件的钢筋配筋图1︰100(6)其它节点详图,做法说明1︰10②编制建筑设计说明书一份(1500字左右):要求简明扼要,主要阐述设计依据、设计意图、场地位置的选择、结构选型、以及码头平面布置中对各功能分区设置、交通关系、消防、平面立面造型、码头各部分的材料选用、构造形式等系列问题的考虑。
《港口工程学》课程设计高桩梁板式码头计算书
《港口工程学》课程设计设计计算书组号:姓名:学号:2020年4月一.码头总体设计1.码头泊位长度确定m d L L b 110122862=⨯+=+= 2.码头桩台宽度确定前桩台14.5m ,后桩台宽15m 3.桩基设计与布置基桩:mm mm 400400⨯预应力钢筋混凝土方桩横向:隔3.5m 布桩,海侧门机轨道布双直桩,路侧门机轨道布双叉桩 纵向:隔6m 布桩 总桩数:162189=⨯ 二.面板尺寸设计m m 65.3⨯;厚45cm;实心板 三.纵梁设计与计算1.轨道梁计算(同一般纵梁) 1)断面设计:cm 9050⨯2)计算跨度:按连续梁弹性支承 弯矩计算:m l l 60== 剪力计算:m l 1.5l n 0== 3)计算荷载 A.永久荷载纵梁自重:q=25×0.5×0.9=11.25 KN/m面板支座力:N=0.5S=0.5×(6+2.5)×19.69×0.5=41.84 KN B.可变荷载堆货荷载通过面板的支座力:KN S N 75.1482125.340)5.26(2121=⨯⨯⨯+⨯== 门机荷载:250×4=1000 KNC.荷载组合:承载能力极限状态持久组合:永久荷载+散货荷载+门机 正常使用极限状态持久组合:永久荷载+散货荷载+门机6m纵横4)内力计算结果四.横梁的设计与计算1)断面设计(单位:cm )2)计算跨度:l=3.5 3)计算荷载:A.永久荷载横梁自重:q=25×(0.4×0.9+0.7×0.9)=24.75 KN/m面板自重——横梁:N=0.5S=0.5×19.69×3.5×0.5=17.23 KN 面板自重——纵梁——横梁:N=41.84 KN纵梁自重——横梁:N=0.5×11.25×6=33.75 KN中和轴竖向均布力24.75 KN/m67.5 KN/m 67.5 KN/m竖向三角形分布力39.38 KN/m 39.38 KN/m 39.38 KN/m185.64 KN185.64 KN168.41 KN168.41 KN竖向集中力永久荷载图B.可变荷载堆货荷载——横梁:N=0.5S=0.5×5.325.34021⨯⨯⨯=122.5 KN 堆货荷载——纵梁——横梁:N=148.75 KN中和轴竖向均布力240 KN/m散货荷载图门机滚动荷载——轨道梁——横梁船舶撞击力系缆水平力分配系数 = 0.31系缆夹角α(°):是系缆力水平面投影与码头前沿线的夹角,逆时针为正 系缆夹角β(°):是系缆力竖直方向水平面的夹角注:系缆力在码头前后位置已经考虑,DL 为系船柱到对应最近码头边缘的距离,DL>0船舶系缆力C.作用组合承载能力极限状态持久组合:永久荷载+件杂货、集装箱荷载+门机+船舶系缆力 永久荷载+件杂货、集装箱荷载+门机+船舶靠岸撞击力正常使用极限状态持久组合:永久荷载+件杂货、集装箱荷载+门机+船舶系缆力 永久荷载+件杂货、集装箱荷载+门机+船舶靠岸撞击力4)内力计算结果a.承载能力极限状态持久状况作用效应的持久组合b.正常使用极限状态持久状况的标准组合。
第四章 高桩码头2
1、轴向刚性系数CeN:桩顶发生单位轴向位移,在
桩顶所施加的轴向力。kN/m
2、其它刚性系数: CΔQ――使桩顶发生单位法向位移所需施加的切向力
2017/4/28
港口水工建筑
16
CΔM――使桩顶发生单位法向位移所需施加的力矩 CφQ――使桩顶发生单位转角所需施加的切向力 CφM――使桩顶发生单位转角所需施加的力矩 假定桩入土段受地基弹性嵌固,按照文克尔假定的
1、集中荷载作用下单向简支板和连续板 计算宽度
2、集中荷载作用下悬臂板计算宽度
2017/4/28
港口水工建筑
2
(四)内力计算
1、悬臂板
2、单向板
3、双向板
4、装配式整体板
计算对象:均布荷载按单宽计算,
集中荷载按计算宽度bc计算
2017/4/28
港口水工建筑
3
双向板承受集中荷载作用时,受冲切承 载力设计值:
不可能同时出现的荷载不应组合在一起;
最不利荷载组合不易判断,应取几种组合进行内力计 算,并以内力最大值包络图为控制条件。 梁板的布置方式对面板上荷载传递方式有很大影响, 也影响到横向排架的计算。具体传递方式说明。
2017/4/28
港口水工建筑
15
(三)桩的刚性系数
桩的刚性系数是指是桩顶发生单位变为(轴向位移、 法向位移、或转角)需在桩顶所施加的力。以C表示。
端承桩(桩的入土深度较浅)的底端应按铰接考虑,
钢、木结构中桩顶与上部结构的连接也按铰接。 对于摩擦桩计算时桩的下端一般按弹性嵌固考虑 。
2017/4/28
港口水工建筑
高桩码头计算书
某海港18000吨五金钢铁高桩码头工程设计摘要:上海港原有2#码头由于货运任务愈来愈繁重,码头破旧不堪,原有机械不配套,装卸通过能力又过低,远不满足生产发展需要。
现迫切需要扩建码头以满足年吞吐量40万吨的运量要求,本次设计拟拆掉原有码头2#而改建成一个18000吨级泊位的码头。
根据该码头的营运资料和自然条件,码头的总平面布置为:码头前沿宽14.5m,长198m,设三个后方桩台,宽27m,与陆域形成整片连岸式码头,由于货种主要为五金钢铁,装卸船采用门座起重机,水平运输采用牵引车或平板车,堆场作业采用轮胎式起重机。
根据码头的用途及其上的作用,初步确定了码头结构的两种设计方案,第一种为纵横梁不等高连接的高桩梁板式结构,第二种为纵横梁等高连接的高桩梁板式结构,经过比选确定第一种方案为推荐方案。
根据第一种方案进行了技术设计,对面板进行了施工期和使用期内力计算,对横梁进行了施工期内力计算,同时用PJJS电算软件对横梁进行了使用期内力计算,并根据计算结果对面板和横梁进行了配筋计算,设计成果主要有计算书、说明书、总平面布置图、码头三视图、横梁和面板配筋图。
关键词:上海港;改建;总平面布置;方案比选;内力计算Reconstruction of ShangHai PortHU Xionghui(School of Traffic and Ocean,Hohai University,Nanjing,Jiangsu,210098,China)Abstract:With the development of the input-output, the original two berths can’t meet the requirements of cargo transporation, ShangHai port have to be rebuilded. My task of graduation project is to extend aquay berth about tonnage of eighteen thousand at the original mark-two dock in ShangHai port.According to the trading and natural information, the whole plane layout of dock is that the length of apron space is 198m and the width is 14.5m and 3 rear platforms with the width of 27m becoming a solid deck pier. The main types of goods are iron and steel hardware so that the cargo-handling technology includes portal slewing cranes,flatbed tricycles or tractors and hoists.I have designed two programs. One is the longerons and the beams with the different height . The other has the same height . By the schemes comparison, I choose the first program as the final program.At last I make the technical design by the first program. In the construction period I make the internal force and strength calculation of the deckss and the beams. With the help of PJJS software, I calculate the internal force and strength calculation of the beams at the used period. And I design and reinforcement calculation of the decks and the beams.Keywords:Shanghai port, Reconstruction, whole plane layout of dock, schemes comparison, internal force and strength calculation.目录1 设计基本条件和依据 (1)1.1 工程概况 (1)1.2 设计依据 (1)1.3 设计任务 (1)2 营运资料 (1)2.1 货运任务 (1)2.2 船舶资料 (1)2.3 机械设备 (2)3 港口自然条件 (2)3.1 水文条件 (2)3.2 地形地质条件 (2)3.3 气象条件 (3)4 材料供应及施工条件 (3)4.1 材料供应 (3)4.2 施工条件 (3)5 总平面布置 (4)5.1 平面布置原则 (4)5.2 码头设计尺度 (4)5.3 陆域平面布置 (5)5.4 辅助生产和辅助生活建筑物 (5)5.5 装卸工艺 (5)6 码头结构初步设计 (7)6.1 码头上作用的确定 (7)6.2 拟定码头结构方案一 (9)6.3 拟定码头结构方案二 (17)6.4 码头结构方案比选 (22)7 码头结构技术设计 (23)7.1 面板技术设计 (23)7.2 横向排架技术设计 (26)8 结束语 (33)参考文献 (34)1 设计基本条件和依据1.1 工程概况上海地处入海河口地区,既承担运河任务,停靠千吨级货船,也承担海运任务,停靠万吨级的货轮。
港口工程结构设计算例
第二章高桩码头一、工程概述本算例为钢筋混凝土高桩梁板结构,码头前沿水深为-14米,码头面定稿成为4.5米,码头结构由前桩台、后桩台和接岸结构组成。
前桩台宽37.5米,后桩台款15米。
前桩台基桩为650mm X 650mm 的预应力混凝土空心方桩,后桩台为600mm X 600mm 的预应力混凝土空心方桩,排架间距为7米。
二、设计条件1.设计船型设计船型为5万吨级集装箱船。
船长:L=280m;船宽:B=39.8m;型深:D=25m;满载吃水:T=12.5m。
2.水位及气象资料1)水位设计高水位:2.64m;极端高水位:3.68m;设计地水位:0.2m;极端地水位:-0.94m2)波浪第四章防波堤第一节斜坡堤一、设计条件二、断面尺寸确定三、护面块体稳定重量和护面层厚度四、垫层块石的重量和厚度五、堤前护底块石重量和厚度六、胸墙的作用标准值计算及相应的组合七、胸墙的抗滑、抗倾稳定性计算八、地基稳定性演算九、地基沉降计算高柱码头设施与施工规范3 一般规定3.1 一般要求3.1.1 在符合使用要求、保证质量、经济合理和施工可能的前提下,宜简化解耦形式,采用预应力混凝土构件,增加码头的整体性和使用年限,采用先进的施工工艺进行施工。
3.1.2 高桩码头基桩一般采用预应力混凝土桩、预应力混凝土管桩和钢管桩。
内河中小型码头可采用钢筋混凝土桩。
此外,也可采用灌注桩和嵌岩桩等其他形式基桩。
基桩设计和施工按现行行业标准《港口工程基桩规范》(JTJ254)规定执行。
3.1.3 码头伸缩缝的间距,应根据本地区的温度差、上部结构的刚度、桩的自由长度和刚度等因素综合考虑。
上部结构为装配整体式结构时,宜取60m—70米;上部结构为现场整体浇筑混凝土时,宜取35m左右。
沉降缝的位置应根据荷载情况、结构形式和地址条件确定,沉降缝宜与伸缩缝相结合。
注:当有实践经验或可靠论证时,伸缩缝的间距可适当增减。
3.1.4 码头上部结构在伸缩缝和沉降缝分段处,可采用悬臂式结构或简支结构。
高桩码头课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章设计资料 (1)1.1 码头用途 (1)1.2 工艺要求 (1)1.3自然条件 (1)1.3.1地形 (1)1.3.2 原有护岸情况 (1)1.3.3地基土壤物理力学性质指标 (2)1.3.4 水位 (3)1.4 建材供应 (3)1.5 施工条件 (3)1.6 码头规划尺度 (3)第二章码头结构选型 (4)第三章码头结构布置及构造 (4)3.1 码头结构总尺度的确定 (4)3.1.1码头结构的宽度 (4)3.1.2 码头结构沿码头长度方向的分段 (4)3.1.3 桩顶高程 (5)3.2 码头上工艺设备的型式及布置 (5)3.2.1 门机轨道的布置 (5)3.2.2 工艺管沟的位置和尺寸 (5)3.2.3 系船柱的型式和布置 (5)3.2.4 橡胶防冲设备的型式和布置 (6)3.2.5 护轮槛 (7)3.3码头上部结构系统的布置和型式 (7)3.3.1 横向排架 (7)3.3.2 纵梁 (8)3.3.3 面板和面层 (9)3.3.4 靠船构件 (10)3.4 基桩的布置及构造 (10)3.4.1 横向排架中桩的布置 (10)3.4.2桩的纵向布置 (10)3.4.3 桩的构造 (11)3.4.4 桩帽的构造 (11)第四章码头荷载 (12)4.1 永久荷载 (12)4.1.1 永久荷载计算图示 (12)4.1.2 永久荷载的计算 (13)4.2 可变荷载 (14)4.2.1 船舶荷载 (14)4.2.2 堆货荷载 (16)4.2.3 门机荷载 (16)4.3 作用效应组合设计值的确定 (18)第五章横向排架计算 (19)5.1 计算基本假定 (19)5.2 桩的刚性系数 (19)5.3 桩上荷载及符号定义 (21)5.4 桩顶的变位 (22)5.5 桩顶断面的内力 (22)5.6 静力平衡方程 (22)5.7 基桩承载力验算 (24)第六章附件 (26)(1) 高桩码头平面图与立面图 (26)(2)高桩码头断面图 (26)第一章设计资料1.1 码头用途拟设计的码头系天津港所属船舶修理厂的配套工程之一,供待修船舶系靠、检修、修理和新建船舶舾装之用。
1.2 工艺要求满足主机马力为1900HP,长45.79米宽9.8米型深5.0米,最大吃水4.5米港作拖轮停靠和修理要求,满足长度为67.52米载重量1000吨,满载排水量为1830吨供游轮停靠要求。
满足轨距为10.5米,起重量为10吨,荷载代号为M h-4-25门座起重机(1台)在码头上作业的要求。
满足自重为23.8吨,最大其中量为16.8吨,使用吊重为9吨(打支腿工作)的Q161型轮胎吊在码头上作业的要求。
满足码头上堆置15kN/m2的负荷要求。
码头前沿设两条工艺管沟,一条供敷设水、乙炔、压缩空气之用,一条供敷设电缆用。
码头前沿设置供船舶和电焊机使用的供电箱4个和供门机使用的供电箱1个。
码头前沿设置船桩和防冲设备以供船舶安全方便系靠。
1.3自然条件1.3.1地形修船码头位于海河下游左侧凹岸内,现有岸坡稳定,水深无明显变化。
1.3.2 原有护岸情况现有护岸为木桩基L型钢筋混凝土结构,横断面如图1-1所示,经唐山大地震考验,安全可靠可继续使用,护岸前岸坡平均坡度为1:5。
图1-1 原有护岸的横断面图1.3.3地基土壤物理力学性质指标地基土壤物理力学性质指标见表1-1: 土层标高(m ) 土的名称 天然含水量(%)W湿重度3(/)KN m 孔隙比ε 固结快剪 桩侧极限摩阻力2(/)KN m ()φ︒ 2/C Kg cm4.7-以上泥质亚粘土 42.2 17.7 1.2 19 0.19 15 4.7~12.0-- 深灰色粘土46.6 17.5 1.3 13 0.13 15 12.0~20.0-- 深灰色亚粘土28.6 19.6 0.79 19 0.11 60 20.0~22.0-- 黄褐色粘土 29.5 19.7 0.81 16 0.25 60表1-1 地基土壤物理力学性质指标当桩尖打至20.0m -以下时,桩端极限阻力21600/R KN m =。
1.3.4 水位设计高水位:+3.50米;设计低水位:+1.00米;平均水位:+2.20米。
1.4 建材供应钢筋、水泥、木材按计划满足供应,钢筋品种、规格按实际构造需要选用,橡胶防冲设备可采用天津市工厂生产的产品,砂石料由外地供应宜节约使用。
1.5 施工条件码头施工可委托一航局一公司承担,该公司技术力量雄厚,施工经验丰富,有规模大、机械化程度高的构件预制厂,能制作各种规格的钢筋混凝土和预应力混凝土构件(桩、梁、板、靠船物件等)有大型和小型的起重运输机械和各种工程船舶(打桩船、起重船、拖轮、驳船等)可满足施工需要。
1.6 码头规划尺度码头平行于护岸布置,码头前沿线距钢筋混凝土L型挡土墙32.5m。
码头长90m,码头宽度可根据使用要求和选用的结构形式确定。
码头前沿标高+4.5M码头前水深-4.0M。
第二章码头结构选型天津港海岸地貌为淤泥质海岸类型,土质较软,多为粘性土壤,承载能力差,适合打桩,故选用高桩码头。
由此码头的用途和工艺要求可知,码头上部结构中除了面板、靠船构件等主要组成外,还应布置工艺管沟和门机轨道梁等。
所以对于其上部结构,承台式适用于水位变化较大,且岸坡土质较好的情况;无梁板式只能采用非预应力面板,且跨度不宜太大,桩的承载力不能充分发挥,码头面不能承受集中荷载;桁架式构造复杂,易损坏,难维修,造价往往就高。
梁板式高桩码头将码头面上的堆货荷载和流动机械荷载通过面板传给纵梁和横梁;门机荷载直接由门机轨道梁承受;作用在靠船构件和系船柱块体上的船舶荷载通过横梁传给桩基,故梁板式码头各构件受力合理明确;由于采用预应力钢筋混凝土结构,提高了构件抗裂性能,减少了钢筋用量;横向排架跨度大,桩的承载力能充分发挥,装配程度高,施工速度较承台式和桁架式快;因横梁位置较低,靠船构件的悬臂长度较无梁板式短;适用于荷载较大且复杂的大型海港码头。
故此码头上部结构采用梁板式。
由于此地区地基中软土层较厚、土质差,且土坡已经较为稳定,所以可以建造宽桩台式高桩码头,这样既可以保证码头建筑物的整体稳定性,还可以减少填方。
由于码头宽度较大,通常将整个码头结构用纵向变形缝分成前后桩台。
第三章码头结构布置及构造3.1 码头结构总尺度的确定3.1.1码头结构的宽度由于本码头采用宽桩台式高桩码头,码头结构宽度较大,而在此宽度内前后区域所受的荷载差异较大,故把码头用纵向变形缝分为前方桩台和后方桩台。
前方桩台的宽度一般采用码头前沿地带的宽度,此码头的码头前沿地带设有宽度为10.5m的门机,且从码头前沿线到门机后轨外1.5m处的范围内。
故码头前沿地带宽度为14m,且门机轨道下分别设有纵梁。
-=。
后方桩台宽度取为32.51418.5m3.1.2 码头结构沿码头长度方向的分段为避免在结构中产生过大的温度应力和沉降应力,沿码头长度方向设置变形缝。
变形缝的宽度取为25mm,变形缝内用泡沫塑料的功能柔性材料填充,以保证结构自由伸缩。
本码头长度为90m,采用梁板式高桩码头,故变形缝的间距取为45m。
变形缝的形式取为悬臂梁式,悬臂的长度取为 1.5m。
为防止相邻两分段水平位移不一致,造成轨道错牙,变形缝在平面上应作成凹凸形,凹凸缝的齿高为300mm。
3.1.3 桩顶高程桩顶高程为+2.67。
3.2 码头上工艺设备的型式及布置3.2.1 门机轨道的布置门机轨道布置在码头的前方桩台的纵梁上,从码头前沿线到门机后轨外的距离为2m。
3.2.2 工艺管沟的位置和尺寸此码头为舾装码头,在码头前沿应设置两条管沟,一条供铺设电缆和提供压缩乙炔用,另一条供为船舶供水和提供压缩空气和氧气的管线。
对于高桩码头,管沟的位置一般设置在码头前沿靠船构件和前纵梁之间,在系船柱下方,两条管沟之间用墙开。
采用小尺寸管沟,管沟的宽度为0.7m,深度为0.9m。
上面盖设厚度为0.2m,宽度为1.80m的盖板,下部铺设0.1m的底板。
管沟底板接于靠船构件上,厚度为10mm。
为排除管沟内积水,在管沟底部设置排水孔。
管沟的尺寸如图3-1:图3-1 工艺管沟结构图3.2.3 系船柱的型式和布置本码头应满足载重量为1000t 的船舶,故船舶系缆力的下限值为150KN ,选择15t 级,在距码头前沿0.8m 处设置,系船柱之间的间距取为21m ,沿码头长度方向布置5个。
选用单挡檐型,底盘形状选为方形,柱壳材料选为铸铁。
系船柱的形式如图3-2:图3-2 系船柱的型式及尺寸3.2.4 橡胶防冲设备的型式和布置由于海水腐蚀性强,同时船舶的尺度较大,故采用橡胶护舷。
由于D 形橡胶护舷具有吸收能量大,反力适中,安装与维修方便,护舷底宽较小等优点,故在本码头中选用D 形橡胶护舷。
船舶靠岸时的有效撞击能量:202n E MV ρ=式中:ρ——有效动能系数,取为0.7。
M ——船舶的质量,1830M t = n V ——船舶靠岸时的法向速度, 1.6/n V m s =求得:016.40E KJ =,船舶一般是斜靠码头,因此船舶的撞击能量通常是考虑由一个护舷吸收,故选用D 形橡胶护舷30015003H L Z ⨯-。
护舷尺寸如图3-3:图3-3 50015003H L z ⨯- D 形橡胶护舷橡胶护舷的布置应满足船舶在各种水位和不同吃水条件下的安全靠泊,沿码头前沿立面竖向间端布置,船舶满载吃水时的干舷高度为1.3m ,而设计高水位与设计低水位之差为2.5m ,故在靠船构件上设置3排橡胶护舷,高程分别为: 1.7m +、 2.8m +、 4.0m +。
3.2.5 护轮槛护轮槛断面尺寸为100100mm mm ⨯。
3.3码头上部结构系统的布置和型式3.3.1 横向排架3.3.1.1 前方桩台前方桩台的横向排架间距取为7m ,两侧悬臂的长度为1.5m ,每分段设置7组横向排架。
3.3.1.2 后方桩台后方桩台的横向排架间距取为3.5m,两侧悬臂长度为1.5m,每分段设置1.3组横向排架。
3.3.1.3 横梁的构造前方桩台横梁的横断面形式采用到T形,下部预制的预应力结构,上部采用现浇形式,构成现场叠合式结构。
为使桩帽伸出的钢筋穿入预制的下横梁,在横梁的端部预留椭圆形安装孔,其长轴(沿梁长方向)和短轴的长度分别为80mm和40mm。
横梁宽度取为800mm。
断面结构尺寸见图3-4:图3-4 横梁的结构尺寸图后方桩台为了减小梁的宽度又满足板的搁置长度,采用倒梯形断面。
横梁宽度取为600mm。
横梁高度取为1600mm。
3.3.2 纵梁3.3.2.1 纵梁的布置本码头为只设门机不设铁路的梁板式码头,所以在前方桩台的门机轨道下设置两个纵梁。
后方桩台不设纵梁。
3.3.2.2 纵梁的构造纵梁的横断面采用空心矩形断面,选用下部预应力结构预制,上部结构现浇的叠合梁型式。