高等数学(微积分)课件--§83偏导数与全微分共29页
合集下载
微积分ppt课件
和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。
微积分第一章第一节课件
微积分的重要性
微积分作为数学的基础学科,对于理解数学的高级概念和解决复杂问题具有重要意义。同时,它在物理学、工程 学、经济学等多个领域都有广泛的应用。
教学目标
知识与技能
情感态度与价值观
通过本课程的学习,学生应掌握微积 分的基本概念、基本理论和基本方法, 具备运用微积分知识解决实际问题的 能力。
培养学生严谨的数学思维习惯,激发 学生对数学的兴趣和热爱,树立正确 的数学价值观。
广义积分与含参变量积分
广义积分
广义积分是对定积分的扩展,包括无穷 限广义积分和无界函数广义积分两种类 型。广义积分的计算需要借助极限的思 想和方法。
VS
含参变量积分
含参变量积分是一种特殊的定积分,其被 积函数中含有参数。含参变量积分的计算 方法和性质与定积分类似,但需要注意参 数的影响。同时,含参变量积分在实际问 题中有着广泛的应用,如概率论、统计学 等领域。
定积分性质
定积分具有线性性、可加性、保号性、 绝对值不等式、积分中值定理等基本 性质。
不定积分概念及计算法则
不定积分概念
不定积分是微分学的逆运算,其结果是一个函数族。不定积分的定义包括被积函数、积分变量和常数 C等要素。
不定积分计算法则
不定积分的计算法则包括基本积分公式、换元积分法、分部积分法等。其中,基本积分公式是计算不 定积分的基础,换元积分法和分部积分法是常用的计算技巧。
微积分在实际问题中的应用
探讨微积分在物理、经济、工程等领域的实际应 用,如求解最值问题、分析物理现象等。
3
微积分的数值计算方法
研究微积分的数值计算方法,如有限差分法、有 限元法等,为实际应用提供有效的数值求解工具。
课后作业布置
01
02
微积分作为数学的基础学科,对于理解数学的高级概念和解决复杂问题具有重要意义。同时,它在物理学、工程 学、经济学等多个领域都有广泛的应用。
教学目标
知识与技能
情感态度与价值观
通过本课程的学习,学生应掌握微积 分的基本概念、基本理论和基本方法, 具备运用微积分知识解决实际问题的 能力。
培养学生严谨的数学思维习惯,激发 学生对数学的兴趣和热爱,树立正确 的数学价值观。
广义积分与含参变量积分
广义积分
广义积分是对定积分的扩展,包括无穷 限广义积分和无界函数广义积分两种类 型。广义积分的计算需要借助极限的思 想和方法。
VS
含参变量积分
含参变量积分是一种特殊的定积分,其被 积函数中含有参数。含参变量积分的计算 方法和性质与定积分类似,但需要注意参 数的影响。同时,含参变量积分在实际问 题中有着广泛的应用,如概率论、统计学 等领域。
定积分性质
定积分具有线性性、可加性、保号性、 绝对值不等式、积分中值定理等基本 性质。
不定积分概念及计算法则
不定积分概念
不定积分是微分学的逆运算,其结果是一个函数族。不定积分的定义包括被积函数、积分变量和常数 C等要素。
不定积分计算法则
不定积分的计算法则包括基本积分公式、换元积分法、分部积分法等。其中,基本积分公式是计算不 定积分的基础,换元积分法和分部积分法是常用的计算技巧。
微积分在实际问题中的应用
探讨微积分在物理、经济、工程等领域的实际应 用,如求解最值问题、分析物理现象等。
3
微积分的数值计算方法
研究微积分的数值计算方法,如有限差分法、有 限元法等,为实际应用提供有效的数值求解工具。
课后作业布置
01
02
高等数学(微积分)课件--§92一阶微分方程
2
两边积分, 得 1 ln 1 2u 3 ln x ln C 2 1 y 3 或 ln 1 2( ) ln x ln C . 2 x
21
课堂练习
1 求下列齐次方程的通解: x x x y y (2) (1 2e ) 2e (1 )dy 0 y x dx du 解令 u, x yu, u y , y dy dy du u 代入原方程 , 得 (1 2e )( u y ) 2e u (1 u) 0, dy u 1 2e 1 即 du dy , u y u 2e 两边积分, 得 ln u 2e u ln y ln C
解
分离变量
dy e dx, 2x y 7e
2x
2 ln y ln(7 e 2 x ) C 1
y e
c 2x
dy e2 x dx, 两端积分 2x y 7e
7e
C 7e
2x
4
例题讲解
例 3 求解微分方程
4 xdx 3 ydy 3x 2 ydy 2 xy 2 dx的通解
dy x y 解: dx 2 xy
2
2
dy ( y x) 1 dx 2( y x)
2
y 令u , y ux x
18
例题讲解(续)
dy dux du 1 u 2 ux dx dx dx 2u dx 2u 1 1 du ( )du 2 x 1 u 1 u 1 u ~ ln x ln(1 u ) ln(1 u ) ln c
dy 2 2 例如 2 x y y dy 2 x dx , dx
4 5
高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
高等数学(微积分)课件--§7.1常数项级数的概念与性质
请利用几何级数计算: 1: ( ) 3 n 1 2 :
n 1
2
n
( 1) 2 3
n 1
n 1
3 : ( ) n2 4
n
8
例题(证明级数发散)
例 证明
证明级数 1 2 3 n 是发散的
n(n 1) 2
.
这级数的部分和为
sn 1 2 3 n
3 3
( 1)
n
8 9
n n
;
(2)
1 3
1 6
1 9
1 3n
; q 8 9 , 1 q
解
( 1 ) 因为级数是等比级数且
故原级数收敛
.
( 2 ) 因为级数
n1
1 n
是调和级数
, 它是发散的,
故由级数的性质知级数
1 3
1 6
1 9
1 3n
第七章
无穷级数
§7.1常数项级数的概念与性质 §7.2正项级数敛散性的判别 §7.3任意项级数敛散性的判别 §7.4*广义积分敛散性的判别 §7.5*幂级数 §7.6*函数的幂级数展开
1
§7.1常数项级数的概念与性质
一、常数项级数的概念 二、级数的基本性质 三、习题
2
一、常数项级数的概念
解
因为级数
n1
1 2
n
和
n1
1 3
n
都是收敛的等比级数
,
故由级数的性质知级数
1 1 1 1 1 1 2 2 n n 3 2 3 3 2 2
n 1
2
n
( 1) 2 3
n 1
n 1
3 : ( ) n2 4
n
8
例题(证明级数发散)
例 证明
证明级数 1 2 3 n 是发散的
n(n 1) 2
.
这级数的部分和为
sn 1 2 3 n
3 3
( 1)
n
8 9
n n
;
(2)
1 3
1 6
1 9
1 3n
; q 8 9 , 1 q
解
( 1 ) 因为级数是等比级数且
故原级数收敛
.
( 2 ) 因为级数
n1
1 n
是调和级数
, 它是发散的,
故由级数的性质知级数
1 3
1 6
1 9
1 3n
第七章
无穷级数
§7.1常数项级数的概念与性质 §7.2正项级数敛散性的判别 §7.3任意项级数敛散性的判别 §7.4*广义积分敛散性的判别 §7.5*幂级数 §7.6*函数的幂级数展开
1
§7.1常数项级数的概念与性质
一、常数项级数的概念 二、级数的基本性质 三、习题
2
一、常数项级数的概念
解
因为级数
n1
1 2
n
和
n1
1 3
n
都是收敛的等比级数
,
故由级数的性质知级数
1 1 1 1 1 1 2 2 n n 3 2 3 3 2 2
高等数学(微积分)课件--§7.2正项级数敛散性的判别
N
, 使得当 n N 时 , 有 u n cv n , 则 (1)当
v
n 1 n 1
n
收敛时, u n 收敛 ;
n 1
( 2)当
u
n
发散时, v n 发散 .
n 1
比较收敛法的前提
要有参考级数. (比较的对象)
6
例 1
P-级数 讨 论 p-级 数
1
p
1
1 3
即部分和数列有上界
(2) 设 sn (n )
n
u n 收敛
n1
.
且 un vn ,
则
sn
是无上界数列 定理证毕.
v n 发散
n1
.
5
比较判别法的推论
推论 设 u n 和 v n 都是正项级数
n 1 n 1
,
且存在常数
c 和自然数
由比较收敛法的推论, 得证.
( 2 ) 由 lim
n
存在 , 若级数
u n 收敛
n1
,
则由结论
( 1 ) 有级数
v n 收敛
n1
, 但级数
v n 发散
n1
,
故级数
u n 不可能收敛
n1
, 即级数发散
.
12
例题讲解
例 解
判定级数
sin
n1
1 n
的收敛性
.
且 un v n ( n 1, 2,) ,若 v n 收敛,则 un 收敛;
n 1 n1
高等数学(微积分)课件--93高阶微分方程共28页
13
课堂练习解答
( 1 ) 4 y 4 y y 0 , y x 0 2 , y x 0 0 ; 解 特征方 4r2程 4r 是 10,
特 通 征解 y 根 r 1,2 (C 是 是 1 1 2C ,2x )e 1 2 x. 由yx02, 得C12, 由yx00, 得C21.
12
课堂练习解答
( 1 )y 6 y 1 y 3 0 ; 解 特征方 r2 程 6r是 13 0,
特征r1 根 ,23 是 2i, 通 y e 解 3 x ( C 1 c 2 x o 是 C 2 s s 2 x i )n . (2)4d d22 xt2d d 0 x t2x 50; 解 特征方 4r2 程 2r0 是 2 50, 通 特征 解 x根 r(1C ,是 21 是 5 2C ,2t)e5 2t.
且y2 y1
tanx常数 , y C 1 cx o C s 2 sx i.n
推论 如果y1(x),y2(x),, yn(x)是n阶齐次线性方程
y(n) a1(x)y(n1) an1(x)y an(x)y 0
的n个线性无关,的 那解 么,此方程的通解为
y C1y1(x)C2y2(x) Cnyn(x), 其中C1,C2,,Cn为任意常. 数
11
课堂练习
1 求下列微分方程的通解: ( 1 )y 6 y 1 y 3 0 ; (2)4d d22 xt2d d 0 x t2x 50;
2 求下列微分方给 程初 满始 足条 所件:的特解 ( 1 ) 4 y 4 y y 0 , y x 0 2 , y x 0 0 ;
( 2 )y 2 y 5 0 ,y x 0,
故有 r2prq0
特征方程
特征根
p p24q
r1,2
课堂练习解答
( 1 ) 4 y 4 y y 0 , y x 0 2 , y x 0 0 ; 解 特征方 4r2程 4r 是 10,
特 通 征解 y 根 r 1,2 (C 是 是 1 1 2C ,2x )e 1 2 x. 由yx02, 得C12, 由yx00, 得C21.
12
课堂练习解答
( 1 )y 6 y 1 y 3 0 ; 解 特征方 r2 程 6r是 13 0,
特征r1 根 ,23 是 2i, 通 y e 解 3 x ( C 1 c 2 x o 是 C 2 s s 2 x i )n . (2)4d d22 xt2d d 0 x t2x 50; 解 特征方 4r2 程 2r0 是 2 50, 通 特征 解 x根 r(1C ,是 21 是 5 2C ,2t)e5 2t.
且y2 y1
tanx常数 , y C 1 cx o C s 2 sx i.n
推论 如果y1(x),y2(x),, yn(x)是n阶齐次线性方程
y(n) a1(x)y(n1) an1(x)y an(x)y 0
的n个线性无关,的 那解 么,此方程的通解为
y C1y1(x)C2y2(x) Cnyn(x), 其中C1,C2,,Cn为任意常. 数
11
课堂练习
1 求下列微分方程的通解: ( 1 )y 6 y 1 y 3 0 ; (2)4d d22 xt2d d 0 x t2x 50;
2 求下列微分方给 程初 满始 足条 所件:的特解 ( 1 ) 4 y 4 y y 0 , y x 0 2 , y x 0 0 ;
( 2 )y 2 y 5 0 ,y x 0,
故有 r2prq0
特征方程
特征根
p p24q
r1,2
高等数学(微积分)课件--§6.1定积分的概念与性质
y = f (x)
O a
b x
3
无限细分、无限求和
处理该类问题的基本思路: 无限细分(化曲为直)、无限求和!
y y= f (x)
O
a
b
x
4
曲边梯形的面积计算—分割
设函数在区间[a,b]上连续, y=f(x)≥0 y 分割:
任意插入n-1个分点:
a x0 x1 xn 1 xn b
T1 t0 t1 t n 1 t n T2
把[T1,T2]分成n小段[ti-1, ti] (i=1,2,…,n),每小段 时间长度∆ti= ti- ti-1 ;相应地,位移也分成n段∆si v ②取近似: ∆siv(i)∆ti (i=1,2,…,n) v vt ③求和:
浙江财经学院本科教学课程 ----经济数学(一)
微积分
第六章 定积分
§6.1定积分的概念与性质 §6.2微积分基本定理 §6.3定积分计算方法 §6.4定积分的应用 §6.5广义积分初步
1
§6.1定积分的概念与性质
一、曲边梯形的面积 二、定积分的定义 三、定积分的几何意义 四、定积分的基本性质 在本节中我们将从一些实际问题的计算里 提炼出一类关于“和式极限”计算的数学问 题,从而引申出定积分的概念,并探讨它的性 质、几何意义。
s v i ti
i 1 n
④取极限: 所求位移为
s lim
0
T1
T2
v t (其中 maxt )
i i i 1
1i n i
n
O
t 0 ... ti 1 t i ... t n
t
10
解决此类求和问题的数学模式
高等数学微积分课件--61定积分的概念与性质
换元法的关键是选择合适的变量替换,使得积分过程简化,常用的换元方法有三角换元、倒代换等。
分部积分法
分部积分法是通过将两个函数的乘积 进行求导,然后将求导结果进行积分 ,从而得到原函数的一种方法。
VS
分部积分法的关键是选择合适的函数 进行乘积,使得求导和积分过程简化 ,常用的分部积分法有凑微分法和部 分分式法。
区间可加性的意义
区间可加性是定积分的一个重要性质,它表明定积分具有可加性,即函数的定积 分值只与区间的端点有关,而与区间的分割方式无关。这一性质在解决实际问题 时非常有用,因为它可以简化计算过程,提高计算的准确性。
函数值的积分性质
函数值的积分性质
如果函数f在区间[a, b]上的定积分等于该区间上任意一点的函数值与区间长度b-a的乘 积,即∫f dx = f(ξ)(b-a),其中ξ属于[a, b],则称f的定积分具有函数值的积分性质。
定积分的几何意义
1
定积分的值等于由曲线和x轴所夹的曲边梯形的 面积。
2
定积分的值等于数轴上一定区间内的一个区间所 对应的坐标原点处的值。
3
定积分的值等于函数图像在一定区间内与x轴之 间的面积。
02
定积分的性质
线性性质
线性性质
对于任意两个函数的和或差,其定积 分等于各自定积分的和或差。即,对 于任意函数f和g,以及常数a和b,有 ∫(a*f+b*g) dx = a * ∫f dx + b * ∫g dx。
定积分的计算方法
直接积分法
直接积分法是定积分的基本计算方法 ,通过将积分表达式进行不定积分, 然后求出原函数,再根据定积分的上 下限求出定积分的值。
直接积分法的关键是求出不定积分, 不定积分是微分学的逆运算,可以通 过凑微分、分部积分等方法求解。
分部积分法
分部积分法是通过将两个函数的乘积 进行求导,然后将求导结果进行积分 ,从而得到原函数的一种方法。
VS
分部积分法的关键是选择合适的函数 进行乘积,使得求导和积分过程简化 ,常用的分部积分法有凑微分法和部 分分式法。
区间可加性的意义
区间可加性是定积分的一个重要性质,它表明定积分具有可加性,即函数的定积 分值只与区间的端点有关,而与区间的分割方式无关。这一性质在解决实际问题 时非常有用,因为它可以简化计算过程,提高计算的准确性。
函数值的积分性质
函数值的积分性质
如果函数f在区间[a, b]上的定积分等于该区间上任意一点的函数值与区间长度b-a的乘 积,即∫f dx = f(ξ)(b-a),其中ξ属于[a, b],则称f的定积分具有函数值的积分性质。
定积分的几何意义
1
定积分的值等于由曲线和x轴所夹的曲边梯形的 面积。
2
定积分的值等于数轴上一定区间内的一个区间所 对应的坐标原点处的值。
3
定积分的值等于函数图像在一定区间内与x轴之 间的面积。
02
定积分的性质
线性性质
线性性质
对于任意两个函数的和或差,其定积 分等于各自定积分的和或差。即,对 于任意函数f和g,以及常数a和b,有 ∫(a*f+b*g) dx = a * ∫f dx + b * ∫g dx。
定积分的计算方法
直接积分法
直接积分法是定积分的基本计算方法 ,通过将积分表达式进行不定积分, 然后求出原函数,再根据定积分的上 下限求出定积分的值。
直接积分法的关键是求出不定积分, 不定积分是微分学的逆运算,可以通 过凑微分、分部积分等方法求解。
吉林大学微积分(高等数学) PPT课件
例如实数集R中集合 A {x 0 x 1}的 补集是
AC A {x x 0 或 x 1 }.
9
二、集合的基本运算
1. 集合的并、交、差
设 A、B 是两个集合,由所有属于A 或者属 于B 的元素组成的集合, 称为A 与 B 的并集(简称 并), 记作 A B,
即 A B {x x A 或 x B};
[a,b] {x a x b}.
oa
b
x
a 和 b 称为闭区间[a, b]的端点, a [a, b], b [a, b].
16
类似地可定义半开区间:
[a,b) { x a x b},(a,b] { x a x b}. 有限区间 [a, b]、(a, b)、(a, b]、[a, b).
a
a
a
点 a 叫做这个邻域的中心,
叫做这个邻域的半径.
x
19
去心邻域的定义:
点 a 的 邻域去掉中心a 后, 称为a 的去心
o
邻域, 记作U (a, ),即
o
U(a, ) { x 0 x a }.
开区间(a ,a) 称为a 的左 邻域, 开区间 (a, a ) 称为a 的右 邻域.
(,) {x x R} R
ob x
18
4.邻域的定义
设 是任一正数, 则开区间(a ,a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作U(a, ). U(a, ) {x x a } {x a x a }.
22
按 照 定 义 , 如 果 数 集E有 界 , 则 存 在 常 数l与L(l L), 使 得 对 一 切x E, 都 有
AC A {x x 0 或 x 1 }.
9
二、集合的基本运算
1. 集合的并、交、差
设 A、B 是两个集合,由所有属于A 或者属 于B 的元素组成的集合, 称为A 与 B 的并集(简称 并), 记作 A B,
即 A B {x x A 或 x B};
[a,b] {x a x b}.
oa
b
x
a 和 b 称为闭区间[a, b]的端点, a [a, b], b [a, b].
16
类似地可定义半开区间:
[a,b) { x a x b},(a,b] { x a x b}. 有限区间 [a, b]、(a, b)、(a, b]、[a, b).
a
a
a
点 a 叫做这个邻域的中心,
叫做这个邻域的半径.
x
19
去心邻域的定义:
点 a 的 邻域去掉中心a 后, 称为a 的去心
o
邻域, 记作U (a, ),即
o
U(a, ) { x 0 x a }.
开区间(a ,a) 称为a 的左 邻域, 开区间 (a, a ) 称为a 的右 邻域.
(,) {x x R} R
ob x
18
4.邻域的定义
设 是任一正数, 则开区间(a ,a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作U(a, ). U(a, ) {x x a } {x a x a }.
22
按 照 定 义 , 如 果 数 集E有 界 , 则 存 在 常 数l与L(l L), 使 得 对 一 切x E, 都 有
高等数学(微积分)课件-86多元函数极值与最值
极值的必要条件
必要条件一
如果函数$f(x)$在点$x_0$处取得极 值,则该点的导数$f'(x_0)$必定为零 。
必要条件二
如果函数$f(x)$在点$x_0$处取得极值 ,则该点的二阶导数$f''(x_0)$必定存 在且不为零。
极值的充分条件
第一充分条件
如果函数$f(x)$在点$x_0$处的Hessian矩阵(二阶导数矩阵)是正定的,则函数在点$x_0$处取得极 小值。
拉格朗日乘数法
通过引入拉格朗日乘数,将约束条件转化为无约束条件,再利用 无约束条件的求解方法求得极值点。
惩罚函数法
通过构造一个惩罚函数,将约束条件转化为无约束条件,再利用无 约束条件的求解方法求得极值点。
序列二次规划法
将原问题转化为一系列二次规划问题,利用二次规划的求解方法逐 一求解,最终得到极值点。
数。
答案与解析
计算下列函数的极值 点
$f(x,y) = x^2 + 4y^2 - 4x + 8y + 10$的极值点为 $(0,0)$和$(2,-2)$。
$g(x,y) = x^2 + y^2 - 2x - 4y + 6$的极值 点为$(1,2)$和$(1,2)$。
求函数$f(x,y) = x^2 + y^2$在点$(1,1)$ 处的梯度:$nabla f(1,1) = (2,2)$。
高等数学(微积分)课件-86多元函 数极值与最值
目录
• 引言 • 多元函数极值的基本概念 • 多元函数的最值 • 多元函数的极值与最值的求解方法 • 习题与答案
01 引言
主题简介
01
多元函数极值与最值是高等数 学中的一个重要主题,主要研 究多元函数在某个区域内的最 大值和最小值问题。
高等数学(微积分)课件-71常数项级数的概念与性质
间接法求和
定义
间接法求和是通过将级数中的某些项 进行变换,然后利用已知的级数求和
公式或性质,得到级数的和。
适用范围
适用于项数较多、数值较大的级数。
计算步骤
选择适当的变换方式,利用已知的级 数求和公式或性质,计算级数的和。
幂级数求和
01
定义
幂级数是一种特殊的常数项级数,其每一项都是某个变量的幂次方。幂
了解常数项级数的应用实例。
掌握常数项级数的收敛与发散的 判断方法。
理解常数项级数的定义和性质。
01
03 02
02 常数项级数的定义
有限级数与无限级数
有限级数
级数的项数是有限的,可以明确写出 其和。
无限级数
级数的项数是无限的,其和可能是一 个有限的数、无穷大或未定型。
常数项级数的定义与示例
常数项级数是由一系列常数组成的级数,例如
03
判断常数项级数$sum_{n=1}^{infty} frac{1}{n}$是否收敛, 并说明理由。
解答与解析
01
对于常数项级数$sum_{n=1}^{infty} (-1)^n$,由于$(-1)^n$在$n$趋向 无穷大时,其值在$-1$和$1$之间交替,因此该级数不收敛。
02
对于常数项级数$sum_{n=1}^{infty} frac{1}{n^2}$,由于$frac{1}{n^2}$是单 调递减且趋向于0的,根据收敛级数的性质,该级数收敛。其和为 $frac{pi^2}{6}$。
乘法运算
将一个级数的每一项与另一个 级数的每一项相乘得到一个新 的级数。
注意
在进行级数的四则运算时,常数项级数的求和
直接法求和
定义
直接法求和是根据级数的定义,将每一项的 值直接相加得到级数的和。
高等数学(微积分学)教学课件
三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D
《高等数学课件——微积分篇》
高等数学课件——微积分 篇
微积分是数学中最关键的学科之一。它的研究内容和方法在物理、化学、工 程学等领域都有广泛应用。通过本课件,您将掌握微积分的基础知识和应用 方法,培养解决实际问题的能力。
微积分的基本概念和方法
曲线下面积的计算方式
学习曲线下面积的计算方法, 从而深入理解导数的概念。
导数的定义与计算
反常积分和广义积分
反常积分的概念和判敛准则
掌握反常积分的定义和判敛准则,并能应用到实际问题中。
广义积分的概念和收敛性判定
学习广义积分的概念,以及判断其收敛性的方法和技巧。
高阶导数与广义积分的关系
学习高阶导数和广义积分的关系,并灵活运用到实际问题中。
多元函数的偏导数和全微分
偏导数与方向导数
学习偏导数和方向导数,以及 掌握求解全微分的方法。
母函数的引入和应用
学习母函数的定义和应用,如 何使用母函数来快速求解数列 中的元素。
微分中值定理和极值
1
罗尔中值定理
学习罗尔中值定理及其应用,了解如何判断函数的导数符号及图象的单调特性。
2
拉格朗日中值定理
学习拉格朗日中值定理及其应用,如何快速求解函数的值。
3
极值的概念和求解
学习极值的定义和求解方法,应用到实际问题中。
定积分的运算方法和性质
学习定积分的运算方法和性质,灵活应用到实际 问题中。
牛顿-莱布尼茨公式和换元积分法
1
牛顿-莱布尼茨公式
学习牛顿莱布尼茨公式的定义和应用,
换元积分法
2
并能解决含参变量的积分问题。
学习换元积分法的概念和计算方法,
并掌握其应用到不同类型的积分问题
中。
3
分部积分法和定积分的应用
微积分是数学中最关键的学科之一。它的研究内容和方法在物理、化学、工 程学等领域都有广泛应用。通过本课件,您将掌握微积分的基础知识和应用 方法,培养解决实际问题的能力。
微积分的基本概念和方法
曲线下面积的计算方式
学习曲线下面积的计算方法, 从而深入理解导数的概念。
导数的定义与计算
反常积分和广义积分
反常积分的概念和判敛准则
掌握反常积分的定义和判敛准则,并能应用到实际问题中。
广义积分的概念和收敛性判定
学习广义积分的概念,以及判断其收敛性的方法和技巧。
高阶导数与广义积分的关系
学习高阶导数和广义积分的关系,并灵活运用到实际问题中。
多元函数的偏导数和全微分
偏导数与方向导数
学习偏导数和方向导数,以及 掌握求解全微分的方法。
母函数的引入和应用
学习母函数的定义和应用,如 何使用母函数来快速求解数列 中的元素。
微分中值定理和极值
1
罗尔中值定理
学习罗尔中值定理及其应用,了解如何判断函数的导数符号及图象的单调特性。
2
拉格朗日中值定理
学习拉格朗日中值定理及其应用,如何快速求解函数的值。
3
极值的概念和求解
学习极值的定义和求解方法,应用到实际问题中。
定积分的运算方法和性质
学习定积分的运算方法和性质,灵活应用到实际 问题中。
牛顿-莱布尼茨公式和换元积分法
1
牛顿-莱布尼茨公式
学习牛顿莱布尼茨公式的定义和应用,
换元积分法
2
并能解决含参变量的积分问题。
学习换元积分法的概念和计算方法,
并掌握其应用到不同类型的积分问题
中。
3
分部积分法和定积分的应用
吉林大学微积分(高等数学)课件
23
定义 2 设E是R的非空子集,如果存在常数
R( R ),满足条件
(1) 对一切x E都有x ( x ),即 ( )为 的E下界(上界); 都存在x0 E , 使得 x0 ( x0 ), 则称 ( )为E的下 确 界 (上 确 界 ) . 数集E的下确界和上确界 分别记为
[a,) { x x a}
o
a
x o x
( , b) { x x b}
(,) { x x R} R
b
18
4.邻域的定义
设 是任一正数, 则开区间(a , a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作 U (a, ).
高等数学
吉林大学数学学院 杨 泰 山
1
主要内容
第一章 预备知识 第二章 极限与连续函数 第三章 导数与微分 第四章 微分中值定理与导数的应用 第五章 不定积分 第六章 定积分 第七章 空间解析几何
2
第一章 预备知识
§1 实 数 集 §2 函数 §3 常用逻辑符号简介
3
§1 实 数 集
一、集合的概念与表示 二、集合的基本运算
(1) 列举法: 即把集合的全体元素一一列举.
例如 A {a1 , a2 ,, an };
(2) 描述法: 若集合M是由具有某种性质P 的元素的全体所组成, 写出其特性.
M { x x 具有性质 P }. 2 例 如 集合 B 是方程 x 1 0 的解集,
则集合 B { x x 1 0 }.
25
21
定义1 设E是R的一个非空子集,如果存在 常数l(或L),使得对一切x E都有 l x或xL, 则称数集E有下界(或有上界),常数l(或L) 称为数集E的一个下界(或上界),否则称 数集 E无下界或(无上界). 如果数集E既 有下界又有上界,则称E有界,否则称E无界
定义 2 设E是R的非空子集,如果存在常数
R( R ),满足条件
(1) 对一切x E都有x ( x ),即 ( )为 的E下界(上界); 都存在x0 E , 使得 x0 ( x0 ), 则称 ( )为E的下 确 界 (上 确 界 ) . 数集E的下确界和上确界 分别记为
[a,) { x x a}
o
a
x o x
( , b) { x x b}
(,) { x x R} R
b
18
4.邻域的定义
设 是任一正数, 则开区间(a , a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作 U (a, ).
高等数学
吉林大学数学学院 杨 泰 山
1
主要内容
第一章 预备知识 第二章 极限与连续函数 第三章 导数与微分 第四章 微分中值定理与导数的应用 第五章 不定积分 第六章 定积分 第七章 空间解析几何
2
第一章 预备知识
§1 实 数 集 §2 函数 §3 常用逻辑符号简介
3
§1 实 数 集
一、集合的概念与表示 二、集合的基本运算
(1) 列举法: 即把集合的全体元素一一列举.
例如 A {a1 , a2 ,, an };
(2) 描述法: 若集合M是由具有某种性质P 的元素的全体所组成, 写出其特性.
M { x x 具有性质 P }. 2 例 如 集合 B 是方程 x 1 0 的解集,
则集合 B { x x 1 0 }.
25
21
定义1 设E是R的一个非空子集,如果存在 常数l(或L),使得对一切x E都有 l x或xL, 则称数集E有下界(或有上界),常数l(或L) 称为数集E的一个下界(或上界),否则称 数集 E无下界或(无上界). 如果数集E既 有下界又有上界,则称E有界,否则称E无界
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢!
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
高等数学(微积分)课件--§83偏导数 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。 与全微分
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿