约束优化最优性条件.
约束最优化问题的最优性条件
ci ( x ) ≥ 0
i ∈ I = {l + 1, , m}
一阶必要条件
定理6: (Kuhn-Tucker一阶必要条件)
*
I * = i ci x * = 0, i ∈ I ; 设 x 为问题(3)的局部最优解, f ( x ), ci ( x ) (1 ≤ i ≤ m ) 在 x * 点可微, 对于i ∈ E ∪ I *
*
λ f (x ) ∑ λ ci (x ) = 0
m * 0 *
λ c (x ) = 0 i = 1,2, , m
* i i *
i =1
* i
*
λ ≥ 0 i = 0,1,2, , m
* i
例2: 验证是否满足Fritz-John条件:
min f ( x1 , x2 ) = x1 s.t
*
3 c1 ( x1 , x2 ) = x1 x2 ≥ 0
* 则存在一组不全为零的实数 λ1 , λ* , λ* 使得: 2 l
f x * ∑ λ*ci x * = 0 i
i =1
( )
l
( )
二阶充分条件
定理2: 对等式约束问题,若: (1) f ( x ) 与 ci ( x )(1 ≤ i ≤ l ) 是二阶连续可微函数; (3) s ∈ R n且 s ≠ 0 , 且 s T ci (x * ) = 0 , i = 1,2, l 均有 s T 2 L (x * , λ* )s > 0 xx 则 x* 是等式约束问题的严格局部极小点. (2) x * ∈ R n 与 λ* ∈ R l 使: L(x* , λ* ) = 0 ;
{ ( ) }
的ci (x * ) 线性无关, 则存在非零向量 * λ* = (λ1 , , λ* ) 使得: m
4一般约束最优化问题的最优性条件.
T
, c 2 x
1,1, 0
*
T
.
令 6
即: f x * 2c1 x * 2c2 x * . * 0, i 1,2,3,4,5. c x 令i 0,i 3, 4, 5,则 i i
* x 所以, 是K-T点.
Fritz John 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
缺点
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
c 3 x x1 0
c4 x x 2 0 c5 x x 3 0
试验证最优点 x * 1, 1, 1T为K-T点.
一般约束最优化问题的最优性条件
解: I * 1, 2, f x * 6,2,4T ,
c1 x
2,2, 2
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
几何最优性条件—一阶必要条件 定义 I ( x ) {i | gi ( x ) 0, i 1,2,..., m}. 定理3.4.1
最优化理论第四章约束问题最优性条件
定理4.2
设x* s, f ( x), g i ( x), (i I )在x*可微,g i ( x), (i I )在x *连续,
如果x*是问题 2 的局部最优解,则F0 G0 =。 (证明从略)
2.2 定理4.3 (Fritz,John条件)
* 设x* s,I i g i ( x* ) 0 ,f , g i (i I )在x*处可微,g ( i i I)在x 处连续,
第
四
章
约束问题的最优性 条件(P206)
min f(x) 约束优化: s.t. gi (x) 0, h ( x) 0, j
x Rn i 1,..., m j 1,..., l
s x gi ( x) 0, i 1,..., m; h j ( x), j 1,..., l
iI
①K-T条件
* 进一步条件,若g( i I )在 x 处可微,K-T条件为: i m ( f x*) - wi gi ( x* ) 0 ② i 1 ② * m n方程组 wi gi ( x ) 0, i 1,..., m ③ ③ ④ wi 0, i 1,..., m * 给定x ,验证是否符合K-T条件用① 应用 * x 未定,求解K-T点,求解② +③
2.4
定理4.5 (约束问题最优解的一阶充分条件)
问题(2)中,f 是凸函数,g ( )是凹函数,s为可行域,x* s, i i 1,..., m I i gi ( x* ) 0 , f 和gi (i I )在点x*可微,gi (i I )在点x*连续,且在x*处 K - T 条件成立,则x*为全局最优解。 x 1, 0 为全局最优解(例子)
约束条件下的最优化问题
在约束条件下的最优化问题是指在一定的限制条件下,寻找使目标函数达到最大或最小值的最优解。
这类问题可以通过数学建模和优化算法来解决。
常见的约束条件包括等式约束和不等式约束。
等式约束要求某些变量之间的关系满足特定的等式关系,而不等式约束则要求某些变量之间的关系满足特定的不等式关系。
数学上,约束条件可以表示为:
1. 等式约束:g(x) = 0,其中g(x)是一个关于变量x的函数。
2. 不等式约束:h(x) ≤0,其中h(x)是一个关于变量x的函数。
最优化问题的目标函数可以是线性的、非线性的,甚至是在某些特殊情况下可能是非凸的。
根据问题的具体形式,可以选择适合的优化算法进行求解,如线性规划、非线性规划、整数规划等。
常见的优化算法包括:
1. 梯度下降法:用于求解无约束或有约束的凸优化问题,在连续可导的情况下通过迭代调整参数来逐步接近最优解。
2. KKT条件法:用于求解有约束的凸优化问题,通过构建拉格朗日函数和KKT条件来确定最优解。
3. 内点法:用于求解线性规划和凸优化问题,通过在可行域内寻找目标函数的最优解。
4. 遗传算法:用于求解复杂的非线性优化问题,通过模拟自然进化过程中的选择、交叉和变异操作来搜索最优解。
5. 模拟退火算法:用于求解非线性优化问题,通过模拟固体退火的过程来逐步降低温度并接近最优解。
在实际应用中,约束条件下的最优化问题广泛应用于工程、经济、运筹学、物流等领域。
通过合理地建立数学模型,并选择合适的优化算法,可以有效地解决这类问题,并得到最优解或接近最优解的结果。
约束问题的最优化方法
m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
其中:g u ( x) ≥ 0, u = 1,2,...m
③ .Φ ( x, r ) = f ( x) − ∑ ru ( k )
(k ) u =1
m
1 g u ( x)
④ .Φ ( x, r ) = f ( x) + r
(k )
(k )
(k )
1 ∑ 2 u =1 [ g u ( x )]
m u =1
k →∞
则Φ ( x, r ( k ) ) → f ( x) ,
) x12 + x22 例: 用内点法求 min f ( x=
s.t. g ( x ) = 1 − x1 ≤ 0
的约束最优解。
2 解: 首先构造内点惩罚函数:φ ( x , r ) = x12 + x2 − r k ln( x1 − 1)
(k ) u =1 m
lim r2 H [hv ( x ( k ) )] = 0
约束最优化条件KTT(课堂PPT)
.
3
考虑一般约束问题:
minf(x) s.t. gi(x)0,iI{1,2,,m 1}
hj(x)0,jE{m 11 ,,m}
(9.1)
可D 行 { x :g i( x 域 ) 0 ,i I ; : h j( x ) 0 ,j E }
这里我们假设 f , g函 i ,hj数 连续可微
i I
j E
x L ( x ,,) f( x ) . i g i( x ) j h j( x )5
i I
j E
一阶必要条件
定 理 9.2.1 设 x * D 是 问 题 (9 .1)的 一 个 局 部 最 优 解 ,如 果
SFD (x*,D ) LFD (x*,D )
思考
若函数,可 无导 约束问题的定 极是 值驻 ,点点 一 请问约束问题优 的解 局一 部 K 定 最 K点 是 T 吗??
不一定啦
.
7
例 9.2. 已知约束问题
x2
min f ( x) x2
g1(x) x(0, 2)
s.t. g( x) x ( x )
●
g2(x)
g ( x) x
令 x k x k d k ,由9 .1 定 .2 知 ,{ x k } 义 D .
为理解序列,可 我行 们方 来向 看看它 释的 :.11 Nhomakorabeaxk
D
●
dk
●
d
x
(a)点x在D内部
D
xk ●
dk
d
x ●
(b)点x在D的边界上
序列可行方向实际 序列可行方向包含可行
上就是可行方向
方向和边界的切线方向
约束优化的kkt条件
约束优化的KKT条件引言在数学和工程领域,优化问题是一类经典的问题,其目标是找到使得目标函数取得最小(或最大)值的变量取值。
在实际问题中,我们通常会面临各种各样的约束条件,这些约束条件限制了变量的取值范围。
约束优化问题是在满足一定约束条件下,求解最优解的问题。
KKT(Karush-Kuhn-Tucker)条件是约束优化问题的一种重要的解析工具,它提供了一种判断最优解的方法。
本文将详细介绍约束优化的KKT条件,包括KKT条件的定义、理论基础、推导过程以及实际应用。
KKT条件的定义KKT条件是一组必要条件,用于判断约束优化问题的最优解。
对于一个约束优化问题,假设目标函数为f(x),约束条件为g_i(x)≤0,其中x为变量向量。
则KKT条件的定义如下:1.非负性条件:g_i(x)≤0,对所有的i=1,2,…,m。
2.可行性条件:g_i(x)的约束必须满足。
3.梯度条件:存在拉格朗日乘子向量λ,使得目标函数f(x)加上所有约束条件的乘积的梯度为0,即∇f(x)+∑λ_i∇g_i(x)=0。
4.互补松弛条件:对所有的i=1,2,…,m,有λ_i*g_i(x)=0。
KKT条件包含了非负性条件、可行性条件、梯度条件和互补松弛条件四个方面,这些条件综合起来,可以判断一个解是否满足约束优化问题的最优解。
KKT条件的理论基础KKT条件的理论基础可以从拉格朗日乘子法来理解。
拉格朗日乘子法是一种常用的求解有约束优化问题的方法,它通过引入拉格朗日乘子,将约束优化问题转化为无约束优化问题。
对于一个约束优化问题,假设目标函数为f(x),约束条件为g_i(x)≤0,其中x为变量向量。
我们可以构建一个拉格朗日函数L(x,λ)=f(x)+∑λ_ig_i(x),其中λ为拉格朗日乘子向量。
通过求解拉格朗日函数的极小值,可以得到一组变量向量x和拉格朗日乘子向量λ。
根据极值的必要条件,可以推导出KKT条件。
KKT条件的推导过程KKT条件的推导过程可以通过求解拉格朗日函数的极小值来实现。
约束优化问题的最优性条件
{
}
连续,若 x 是(NLP1)的局部最优解,则存在不全 为零的非负数 w0 , wi (i ∈ i ) ,使得
w0∇f ( x) − ∑ wi ∇gi ( x) = 0
i∈I
证明:参见陈宝林书 page 239
注:运用Fritz John 条件时,可能出现 w0 = 0 的情形。这时Fritz John 条件中实际上不包含 目标函数的任何数据,只是把起作用约束的梯 度组合成零向量。这样的条件,对于问题的解 的描述,没有多大价值。我们感兴趣的是
w0 ≠ 0 的情形,所以为了保证 w0 ≠ 0 ,还需
要对约束施加某种限制。这种限制条件通常称 为约束规格。在定理7.3中,如果增加起作用 约束的梯度线性无关的约束规格,则给出不等 式约束问题的著名的K-T条件。
定理7.8 (K-T 必要条件) 考虑约束问题(NLP) , x 为可行点,I = i gi ( x) = 0 , f (x) 和 gi (x) (i ∈ I ) 在 x 处可微, gi (x) (i ∉ I ) 在 x 处连续, hj (j=1,…,l) 在 x 处连续可微。向量集
∂f = d T ∇f ( x ) ≥ 0 ∂d
(d
= 1)
即在极小点处的可行方向一定不是下降方向
n R 定理7.1 考虑约束极值问题 (NLP) , 设 S 是 中的非空集合,x ∈ S , f (x) 在 x 处可微。如果 x
是局部最优解,则
F0 ∩ D = ∅
证明:参见陈宝林书 page236
定理7.5 设在问题(NLP1)中, f 是凸函数, gi(x)(i=1,2,…,m) 是凹函数,S为可行域,x ∈ S
I = i gi ( x) = 0 , f (x) 和 gi (x) (i ∈ I )在 x 处可微,
不等式约束条件的最优化问题
不等式约束条件的最优化问题概述在数学和经济学等领域中,最优化问题是一个常见的研究课题。
在解决最优化问题时,我们通常会面临各种约束条件,其中一种常见的约束条件是不等式约束条件。
本文将深入探讨不等式约束条件的最优化问题,包括其定义、求解方法以及应用领域等。
定义不等式约束条件的最优化问题是指在一组不等式条件下,寻找使目标函数取得最大值或最小值的变量取值。
不等式约束条件可以是单个不等式,也可以是多个不等式的组合。
一般来说,最优化问题可以分为线性最优化问题和非线性最优化问题,而不等式约束条件可以存在于两种类型的最优化问题中。
线性不等式约束条件的最优化问题求解方法线性不等式约束条件的最优化问题可以通过线性规划方法求解。
线性规划是一种数学优化方法,用于求解线性约束条件下的最优化问题。
在线性规划中,目标函数和约束条件都是线性的,可以用线性代数的方法进行求解。
线性不等式约束条件的最优化问题可以通过单纯形法、内点法等方法进行求解。
单纯形法是一种基于顶点的搜索算法,通过不断移动顶点以搜索最优解。
内点法是另一种常用的求解线性规划问题的方法,它通过将问题转化为一个等价的无约束问题来求解。
应用领域线性不等式约束条件的最优化问题在实际应用中具有广泛的应用。
例如,在生产计划中,我们常常需要在一组资源有限的条件下,最大化产出或最小化成本。
在供应链管理中,我们需要在供应商、生产能力、运输成本等多个因素的约束下,优化供应链的效率和利润。
线性不等式约束条件的最优化问题也在金融投资、交通规划等领域中得到广泛应用。
非线性不等式约束条件的最优化问题求解方法非线性不等式约束条件的最优化问题相对复杂,求解方法也更加多样化。
常见的求解方法包括梯度下降法、牛顿法、拟牛顿法等。
这些方法通常需要对目标函数进行求导或近似求导,以找到函数的极值点。
应用领域非线性不等式约束条件的最优化问题在实际应用中也非常常见。
例如,在机器学习和人工智能领域中,我们常常需要通过调整模型参数来最小化损失函数,以提高模型的准确性。
运筹学-约束最优化方法
若AT的各个行向量线性无 关.根据Kuhn-Tucker条件, 在该线性规划的最优点y* 处存在乘子向量x*≥0,使得
即Ax*=b 对偶规划约束条件 及(ATy*-c)T x*=0 线性规划互补松弛条件
29
5.1.3 一般约束问题的最优性条件
定理1.3.1 在上述问题中,若 (i)x*为局部最优解, 有效集I*={i|ci(x*)=0,i∈I}; (ii)f(x),ci(x)(1≤i≤m)在x*点可微; (iii)对于i∈E∪I*, 线性无关, 则存在向量l*=(l1*,· · · ,lm*)使得
解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
19
例题(Fritz-John条件)
min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0 c2(x)=x1≥0 c3(x)=x2≥0 即
35
惩罚函数法
惩罚是手段,不是目的
KT条件中li*ci(x*)=0 称为互补松弛条件. 它表明li*与ci(x*)不能 同时不为0.
28
线性规划情形
对于线性规划问题 min f(y)=-bTy s.t. -ATy≥-c 其中 y∈Rm,A∈Rm×n, b∈Rm,c∈Rn 问题有n个约束条件. 各个约束条件关于y 的梯度为-AT的行向 量(-pi).
借助于Farkas引理,可推出存在li*≥0(i∈I*), 使得
类似与Fritz-John条件的证明,可以证明KuhnTucker条件. 有效约束函数的梯度线性无关称为KuhnTucker约束规范. 如果该约束规范不满足,最优点不一定是KT点.
最优化方法(约束优化问题的最优性条件)
s.t. c1 ( x ) = x 1 + x 2 + x 3 − 3 = 0 , c 2 ( x ) = − x 1 + x 2 ≥ 0
c 3 ( x ) = x1 ≥ 0 , c 4 ( x ) = x 2 ≥ 0 , c 5 ( x ) = x 3 ≥ 0
带入约束条件可知满足约束条件 将 x = (1,1,1) 带入约束条件可知满足约束条件
验证KT点的步骤 小结
• • • • • • 1 化为标准形式 2 验证约束成立 并且求得有效约束 3 约束规范 ∇f ( x * ) − λ1 ∇c1 ( x * ) − λ 2 ∇c 2 ( x * ) = 0 4 一阶条件方程 例如 5 验证不等式约束互补条件、乘子的非负性 验证不等式约束互补条件、 6结论 结论
* T
并且有效约束集合为 并且有效约束集合为 I = {1,2}
*
∇f ( x ) = ( −3,−1,−2) T , ∇c1 ( x ) = ( 2,2,2) T , ∇c 2 ( x ) = ( −1,1,0) T T T 线性无关。 且 ∇c 1 ( x ) = ( 2,2,2) 与 ∇c 2 ( x ) = ( −1,1,0) 线性无关。
向量 d ,如果对任意的 i ∈ I ( x) 有 ∇ci ( x)T d > 0 , 则 d 是点 x 的 可行方向。
令 证明: x ' = x + t d , t > 0。 则对任意的 i ∈ I ( x ) , 有
ci ( x' ) = ci ( x) + t ∇ci ( x)T d + o( || td ||2 )
= t ∇ci ( x)T d + o( || td ||2 )
运筹学第15讲 约束最优化方法 (1)
⎛1 ⎞ (2) = ⎜ ⎜ 2 ⎟ ⎟ ⎝ ⎠
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续)
m ⎧ ⎪ ∇ f ( x ) − ∑ u i∇ g i ( x ) = 0 i ⎪ u i ≥ 0 , i = 1,2 ,L , m → ⎨ ⎪ u ig i( x ) = 0 ⎪ ⎩
< 寻找下降可行方向: 定理 1:设 其中 x 是可行解,在
1 2
6.2 可行方向法
一、解线性约束问题的可行方向法 (续)
d x 处有 A 1 x = b 1,A
2
x > b2,
⎛ A A = ⎜ ⎜A ⎝
⎞ ⎛ b1 ⎟ ⎜ , b = ⎟ ⎜b ⎠ ⎝ 2
⎞ ⎟ ⎟ 。则非零向量 ⎠
d 为 x 处的下降可行
g3=0 x2 2 1 1
▽g2(x*)
第六章
例
-▽f(x*) (3,2)T
x* 2 3 g1=0
▽g1(x*)
4
g4=0 x1 g2=0
6.1 Kuhn-Tucker 条件 二、不等式约束问题的Khun-Tucker条件: (续)
在 x *点 ⎧ g 1 ( x1 , x 2 ) = 0 ⎨ ⎩ g 2 ( x1 , x 2 ) = 0
∗ ∗ ∗பைடு நூலகம்
第六章
6.1 Kuhn-Tucker 条件
三、一般约束问题的Kuhn-Tucker 条件 (续)
如果 x ∗ − l .opt .那么 ∃ u i∗ ≥ 0 , i ∈ I , v ∗j ∈ R , j = 1, 2 , L , l ∇f (x ) −
∗
∑u
数值最优化(李董辉)第八章最优性条件(精)
2、二阶条件
(8.9)
唯楚有材 於斯为盛
最优化
主讲:刘陶文博士
课件制作:刘陶文
第八章 约束问题的最优性条件
第一节 可行方向 第二节 约束问题最优性条件
第一节 可行方向
记下降方向集合为GD,容易看出x* 是最优解的条件是
GD FD 然而 FD的计算是困难的。我们需要FD的代数表达式,才能 得到最优解的条件的代数表达式
注意:序列可行方向 不一定是可行方向,并且也没有代数表达式
线性可行方向具有代数表达式,是非常方便的,下面的定理和 引理说明了线性可行方向与可行方向的关系,即在一定条件下 两者是相等的
上面的引理是 Farkas 定理的一个直接结果, 它是非常重要的
第二节 约束问题的最优性条件
1、 一阶必要条件
约束最优化最优性条件
0
x2
R { x | g i ( x ) 0}
gi (x) 0
x
0
x1
x gi (x) 0
0
形成的边界, 影响下一步选向.
如何判断一个向量是否
是可行方向?
定理 1 给定点 x Q , 记点 x 的积极约束指标集为 向量 d ,如果对任意的 可行方向。
T
min s .t .
可行域为
f (x) g( x) 0
(1 )
Q { x | g ( x ) 0 }。
1 .可 行 方 向
可行方向: 设 x Q , 为一个向量。如果存在 d
0
实数 0 ,
0
使得对任意的 一个可行方向。
[ 0 , ] 有 x d Q , 则称 d 为 x 处的
T
I ( x ) 。给定
i I(x)
则向量 d 是点 x 处的可行下降方向。
极值点的必要条件:
定理 3 设 x * Q , ( x *) 是其积极约束指标集。 I ( i I ( x *) ) 在点 x * 处可微, 续。如果 x * 是约束极值问题(
f ( x)和 gi( x)
g i ( x ) ( i I ( x *) ) 在点 x * 处连 1)的局部极小点,则在
i
( x ) 和 i
有且仅有一个成立,即取 0 值,则称为严格互补松弛条 件.
3 . K T 点的计算
例1 求约束极值问题
min f ( x ) x1 x 2 6 x1 6 x 2 8
2 2
s .t .
x1 x 2 4 x1 0 x 0 2
约束优化的共轭梯度算法及最优性条件
8
-408.590428
2173.136424
9
-754.887518
1826.839334
10
-2567.158421
14.568431
11
-2581.711672
0.015180
12
-2581.726852
-0.000000
f (xk )− f (x* ) ( ) ( ) f xk−1 − f x*
(约束规格条件) 5.0.1 超平面分离
幻灯片 27
定理 设 S 是 Rn 的一个非空闲凸子集,设 x* ∈ R n 是一个不属于 S 的向量,则,存在
向量 c ∈ R n 使得 c' x* < c' x ,最所有 x ∈ S
证明见 BT.P.170 5.1 凸性下的证明方法
z 假定 x 是一个局部(因此也是整体)最优解
幻灯片 21
KKT:
⎜⎜⎝⎛
1 0
⎟⎟⎠⎞
+
u ⎜⎜⎝⎛
2x1 −1
⎟⎟⎠⎞
+
v⎜⎜⎝⎛
0 1
⎟⎟⎠⎞
=
⎜⎜⎝⎛
0 0
⎟⎟⎠⎞
KKT:乘子不存在,当 (0,0)' 是局部极小值点,检查 ∇g1(0,0)
和 ∇h1(0,0)
3.7 约束规格
Slater 条件:存在 x 0 使得 g j (x0 ) < 0, j = 1,..., p 且
幻灯片 22
hi (x0 ) ,对所有 i = 1,..., m
定理:在 Slater 条件下,KKT 条件是必要的
4 充分性最优性条件
定理 若
z x 是 p 的可行解
最优化方法及应用_郭科_约束问题的最优性条件
§2.7 约束问题的最优性条件所谓最优性条件就是最优化问题的目标函数与约束函数在最优点处满足的充要条件.这种条件对于最优化算法的终止判定和最优化理论推证都是至关重要的.最优性必要条件是指在最优点处满足哪些条件;充分条件是指满足哪些条件的点是最优点.本节仅讲述最基本的结论.一、约束最优解对约束优化问题的求解,其目的是在由约束条件所规定的可行域D 内,寻求一个目标函数值最小的点*X 及其函数值)(*X f .这样的解))(,(**X f X 称为约束最优解.约束最优点除了可能落在可行域D 内的情况外,更常常是在约束边界上或等式约束曲面上,因此它的定义及它的一阶必要条件与无约束优化问题不同.(一)约束优化问题的类型约束优化问题根据约束条件类型的不同分为三种,其数学模型如下:(1)不等式约束优化问题(IP 型)min (),..()012i f X s t g X i l ≥=,,,,. (2.16)(2)等式约束优化问题(EP 型)min ()..()012j f X s t h X j m ==,,,,,.(3)一般约束优化问题(GP 型) min ()()012..()012i j f X g X i l s t h X j m ≥=⎧⎪⎨==⎪⎩,,,,,,,,,,.(二)约束优化问题的局部解与全局解按一般约束优化问题,其可行域为 }210)(210)(|{m j X h l i X g X D j i ,,,,;,,,, ===≥=.若对某可行点*X 存在0>ε,当*X 与它邻域的点X 之距离ε<-||||*X X 时,总有)()(*X f X f <则称*X 为该约束优化问题的一个局部最优解.下面以一个简单例子说明.设有⎩⎨⎧=---=≥+=+-=.,,09)2()(02)(..)1()(min 222122221x x X h x X g t s x x X f该问题的几何图形如图2.8所示.从图上的目标函数等值线和不等式约束与等式约束的函数曲线可写出它的两个局部最优解T T X X ]05[]01[*2*1,,,=-=.这是因为在*1X 点邻域的任一满足约束的点X ,都有)()(*1X f X f >;同理,*2X 亦然.1图2.8 对某些约束优化问题,局部解可能有多个.在所有的局部最优解中,目标函数值最小的那个解称为全局最优解.在上例中,由于16)(4)(*2*1==X f X f ,,所以全局最优解为))((*1*1X f X ,. 由此可知,约束优化问题全局解一定是局部解,而局部解不一定是全局解.这与无约束优化问题是相同的.二、约束优化问题局部解的一阶必要条件对于约束,现在进一步阐明起作用约束与不起作用约束的概念.一般的约束优化问题,其约束包含不等式约束l i X g i ,,,, 210)(=≥和等式约束m j X h j ,,,, 210)(==.在可行点k X 处,如果有0)(=k i X g ,则该约束)(X g i 称可行点k X 的起作用约束;而如果有0)(>k i X g ,则该约束)(X g i 称可行点k X 的不起作用约束.对于等式约束0)(=X h j ,显然在任意可行点处的等式约束都是起作用约束. 在某个可行点k X 处,起作用约束在k X 的邻域内起到限制可行域范围的作用,而不起作用约束在k X 处的邻域内就不产生影响.因此,应把注意力集中在起作用约束上.(一)IP 型约束问题的一阶必要条件图2.9所示为具有三个不等式约束的二维最优化问题.图2.9图2.9(a )是最优点*X 在可行域内部的一种情况.在此种情形下,*X 点的全部约束函数值)(*X g i 均大于零)321(,,=i ,所以这组约束条件对其最优点*X 都不起作用.换句话说,如果除掉全部约束,其最优点也仍是同一个*X 点.因此这种约束优化问题与无约束优化问题是等价的.图2.9(b )所示的约束最优点*X 在)(1X g 的边界曲线与目标函数等值线的切点处.此时,0)(0)(0)(*3*2*1>>=X g X g X g ,,,所以)(1X g 是起作用约束,而其余的两个是不起作用约束.既然约束最优点*X 是目标函数等值线与)(1X g 边界的切点,则在*X 点处目标函数的梯度)(*X f ∇与约束函数梯度矢量)(*1X g ∇必共线,而且方向一致.若取非负乘子0*1≥λ,则在*X 处存在如下关系0)()(*1*1*=∇-∇X g X f λ.另一种情况如图2.9(c )所示.当前迭代点k X 在两约束交点上,该点目标函数的梯度矢量)(k X f ∇夹于两约束函数的梯度矢量)()(21k k X g X g ∇∇,之间.显然,在k X 点邻近的可行域内部不存在目标函数值比)(k X f 更小的可行点.因此,点k X 就是约束最优点,记作*X .由图可知,此时k X 点目标函数的梯度)(k X f ∇可表达为约束函数梯度)(1k X g ∇和)(2k X g ∇的线性组合.若用*X 代替k X 即有)()()(*2*2*1*1*X g X g X f ∇+∇=∇λλ成立,且式中的乘子*1λ和*2λ必为非负.总结以上各种情况,最优解的一阶必要条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥=∇-∇∑=.,,,,210)(00)()(**21**1*i X g X g X f i i i i λλ 对于(2.16)IP 型约束问题的一阶必要条件讨论如下: 设最优点*X 位于j 个约束边界的汇交处,则这j 个约束条件组成一个起作用的约束集.按上面的分析,对于*X 点必有下式成立⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥=∇-∇∑=.,,,,,,j i X g X g X f i i j i i i 210)(00)()(**1***λλ (2.17)但是在实际求解过程中,并不能预先知道最优点*X 位于哪一个或哪几个约束边界的汇交处.为此,把l 个约束全部考虑进去,并取不起作用约束的相应乘子为零,则最优解的一阶必要条件应把式(2.17)修改为⎪⎪⎪⎩⎪⎪⎪⎨⎧==≥≥=∇-∇∑=.,,,,,,,l i X g X g X g X f i i iil i i i 210)(0)(00)()(****1***λλλ (2.18)式(2.18)为IP 型问题约束最优解的一阶必要条件,它与式(2.17)等价.因为在*X 下,对于起作用约束,必有l i X g i ,,,, 210)(*==使式(2.18)中的第四式成立;对于不起作用约束,虽然0)(*>X g i 而必有0*=i λ,可见式(2.18)与式(2.17)等价.(二)EP 型约束问题的一阶必要条件图2.10所示为具有一个等式约束条件的二维化问题,其数学模型为.,0)(..)(min =X h t s X f在该问题中,等式约束曲线0)(=X h 是它的可行域,而且目标函数等值线C X f =)(与约束曲线0)(=X h 的切点*X 是该约束问题的最优解.图2.10在*X 点处,目标函数的梯度)(*X f ∇与约束函数的梯度)(*X h ∇共线.因此,在最优点*X 处一定存在一个乘子*u ,使得 0)()(***=∇-∇X h u X f成立.对于一般的n 维等式约束优化问题,其数学模型为min ()..()012j f X s t h X j m ==,,,,,.则*X 为其解的一阶必要条件为***1*()()0()012m j j j j f X u h X h X j m =⎧∇-∇=⎪⎨⎪==⎩∑,,,,,.(三)GP 型约束问题解的一阶必要条件由上述不等式约束优化与等式约束优化问题的一阶必要条件,可以推出一般约束优化问题的条件.设n 维一般约束优化问题的数学模型为⎩⎨⎧===≥,,,,,,,,,,,m j X h l i X g t s X f j i 210)(210)(..)(min (2.19)则*X 为其解的一阶必要条件应为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====≥≥=∇-∇-∇∑∑==.,,,,,,,,,,,,m j X h l i X g X g X h u X g X f j i i i i l i m j j j i i 210)(210)(0)(00)()()(*****11*****λλλ (2.20) 函数∑∑==--=l i m j j j i i X h u X g X f u X L 11)()()()(λλ,,称为关于问题(2.19)的广义拉格朗日函数,式中T l ][21λλλλ,,, =,T m u u u u ][21,,, =为拉格朗日乘子.由于引入拉格朗日函数,条件(2.20)中的第一式可写为0)(***=∇u X L X ,,λ.(四)Kuhn —T ucker 条件(简称K —T 条件)在优化实用计算中,常常需要判断某可行迭代点k X 是否可作为约束最优点*X 输出而结束迭代,或者对此输出的可行结果进行检查,观察它是否已满足约束最优解的必要条件,这种判断或检验通常借助于T K -条件进行的.对于IP 型问题,T K -条件可叙述如下:如果*X 是一个局部极小点 ,且各梯度矢量)(*X g i ∇组成线性无关的矢量系,那么必存在一组非负乘子*i λ,使得⎪⎩⎪⎨⎧===∇-∇∑=l i X g X g X f ii l i i i ,,,,,210)(0)()(**1***λλ 成立.必须指出,在一般情形下,T K -条件是判别约束极小点的一阶必要条件,但并非充分条件.只是对于凸规划问题,即对于目标函数)(X f 为凸函数,可行域为凸集的最优化问题,T K -条件才是约束最优化问题的充分条件.而且,在这种情况下的局部最优解也必为全局最优解.应用T K -条件检验某迭代点k X 是否为约束最优点的具体作法可按下述步骤进行:(1)检验k X 是否为可行点.为此需要计算k X 处的诸约束函数值)(k i X g ,若是可行点,则l i X g k i ,,,, 210)(=≥. (2)选出可行点k X 处的起作用约束.前面已求得l 个)(k i X g 值,其中等于零或相当接近零的约束就是起作用约束.把这些起作用约束重新编排成序列I i X g i ,,,, 21)(=.(3)计算k X 点目标函数的梯度)(k X f ∇和I 个起作用约束函数的梯度)(k i X g ∇.(4)按T K -条件,k X 点应满足∑==≥=∇-∇Ii i k i i k I i X g X f 1)21(00)()(,,,, λλ. (2.21)将式(2.21)中的各梯度矢量用其分量表示,则可得到i λ为变量的线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=∂∂-∂∂-∂∂-∂∂=∂∂-∂∂-∂∂-∂∂=∂∂-∂∂-∂∂-∂∂.,,0)()()()(0)()()()(0)()()()(22112222211211221111n k I I n k n k n k k I I k k k k I I k k k x X g x X g x X g x X f x X g x X g x X g x X f x X g x X g x X g x X f λλλλλλλλλ 由于矢量系I i X g k i ,,,, 21)(=∇是线性无关的,所以该方程组存在唯一解.通过解此线性方程组,求得一组乘子I λλλ,,,21,若所有乘子均为非负,即I i i ,,,, 210=≥λ,则k X 即为约束最优解.否则,k X 点就不是约束最优点.例2.9 设约束优化问题⎪⎩⎪⎨⎧≥=≥=≥--=+-=.,,,0)(0)(01)(..)2()(min 132222112221x X g x X g x x X g t s x x X f 它的当前迭代点为T k X ]01[,=,试用T K -条件判别它是否为约束最优点. 解:(1)计算k X 点的诸约束函数值,,,1)(0)(011)(2221===-=k k k X g X g X gk X 是可行点.(2)k X 点起作用约束是222211)(1)(x X g x x X g =--=,.(3)求k X 点梯度.,,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∇⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=∇⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇1010)(1212)(022)2(2)()0,1(2)0,1(11)0,1(21k k k X g x X g x x X f(4)求拉格朗日乘子 按T K -条件应有 .,01012020)()()(212211=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡-=∇-∇-∇λλλλk k k X g X g X f写成线性方程组 ⎩⎨⎧=-=+-.,0022211λλλ 解得010121>=>=λλ,.乘子均为非负,故T k X ]0,1[=满足约束最优解的一阶必要条件.如图2.11所示,k X 点确为该约束优化问题的局部最优解,由于可行域是凸集,所以点k X 也是该问题的全局最优解.图2.11GP 型的约束最优化问题的T K -条件类似于IP 型约束最优化问题的T K -条件: 如果*X 是一个局部极小点 ,且各梯度矢量)(*X g i ∇和)(*X h j ∇组成线性无关的矢量系,那么必存在两组乘子*i λ和*j u ,使得。
第2章 最优化的基本理论和基本方法 最优性条件 22 一般约束优化 库塔定理和库塔条件汇总
第5式称为互补松弛条件,针对不等式约束的(实际 上对等式约束也成立,但把等式情况包括进来是多余的)。
第1式中的和式对应等式约束和不等式约束两部分.
满足库恩-塔克条件的点x*简称为K-T点。
例 求k-T点(p252)
求约束优化问题 min f (x) x12 x2 st c1(x) x12 x22 9 0
问题:min f(x), x∈Rn
(2-1)
st ci(x1, x2, ..., xn) = 0, iE ci(x1, x2, ..., xn) 0, iI
其中E和I分别表示等式和不等式约束的指标集,
E={ 1, 2, ..., l }
I={ l+1, l+2, ..., l+m }
E I = (空集)
考虑问题的局部解。考虑最优性条件。
看两个例子:不等式约束。
例1
min f(x) = x1 + x2
st c1(x) = x12 + x2 2 - 2 ≤ 0
例1
min f(x) = x1 + x2 st c1(x) = x12 + x2 2 - 2 ≤ 0
1. 由图解法, x*为最优解, 当然也是局部解。 2. 局部解x*在D的边界上, 约束C1起作用: c1(x*) = 0。
可知x2= +3或 -3。前者不满足c2约束。故x2=-3. 所以,x=(0,-3))T 为。
f=0 f=-5
对于凸优化问题
定理 如果问题(2-1)为一个凸优化问题(即 可行域D是凸集,目标函数f是D上的凸函数), 又设目标函数f(x)和约束函数ci(x)都存在一阶 连续偏导数,则问题的K-T点是问题的最优解。
3不等式约束最优化问题的最优性条件.
不等式约束最优化问题
min
s.t .
f x
n
ci x 0,
3.3.1
i 1,2, m ,
n
其中f : R R,ci :R R(i 1,2 ,...,m).
不等式约束最优化问题的最优性条件
定 义
闭包:
Closure
设S R n , S的闭包定义为: clS { x | S N ( x ) , 0}. Nhomakorabeax
处的非有效约束或松约束.
在可行点
有效集: I I x i ci x 0
x 处的有效约束的指标集:
不等式约束最优化问题的最优性条件
有效约束与非有效约束---几何解释
g1(x)=0
x
g2(x)=0 (1) 在点 x 处, g1(x)≥0 和 g2 (x)≥0是有效约束; g3(x)≥0是非有效约束.
3 s .t c1 x1 , x 2 x1 x 2 0 c2 x1 , x 2 x 2 0 T * 验证 x 0, 0 处kuhn-Tucker条件是否成立? 解: 对 1 , 2 T , 有
f x
c x c x
不等式约束最优化问题的最优性条件
几何最优性条件—一阶必要条件
仅考虑在某点起作用的约束
定理3.3.2: 在问题(3.3.1)中,假设: (1) x * 为局部最优解且I * i c x * 0,1 i m ; i (2) f x 与ci x i I * 在 x * 点可微; (3) ci x i I \ I * 在 x * 点连续; 则
约束集值优化问题的二阶最优性条件
( oeeo C lg l fMahm ts n ttts hn q g U i rt,C og i 0 3 1 hn ) te ai dSasc,C og i n e i ca ii n v sy hn q g4 13 ,C ia n
nom e p c s r d s a e.
K y e wo d : s c n — r e c n i g n s t a y tt s c n — r e c n i g n d r aie; s t au d rs e o d o d r o t e t e ; s mp oi n c e o d od r o t e t ei t n v v e— le v
第5 0卷
第 2期
吉 林 大 学 学 报 (理 学 版 )
Jun l f in U i ri S i c dt n o r a o l n es y( c n e E i o ) Ji v t e i
Vo. 0 No. 15 2 M a 2 2 r 01
21 0 2年 3月
o tmiai n;o tma i o d to p i z to p i l y c n iin t
目前 , 于集 值优 化 问题 在各 种解 意义 下 的二 阶最优 性 条件 研 究 已取 得 许 多结 果 .通 常 ,约束 集 关 值 优 化 问题 的二 阶最 优性 条件 主要 是 以可行 域 的各 种二 阶相 依集 以及 目标 函数 的各 种 导数 为基 础 , 结
问题 的二 阶充分 最优 性条 件. 关键 词 :二 阶相依 集 ;渐近 二 阶相依 导数 ;集值 优 化 ;最优 性条件
第三章 (1) 约束优化问题的最优性理论
m
iai , i
0, i
1,...,
m
i 1
如果 n 维向量 g C ,则存在一个
法向量为d的超平面分离 g 和 C,
使得 gTd 0
aiT d 0,i 1,..., m
三、一阶最优性条件
Farkas 引理
给定任意 n 维向量 a1, a2,..., am 与 g,则集合
一、一般约束最优化问题
可行域 X x Rn ci x 0,i I , ci x 0,i E .
min f x xRn
s.t. ci x 0,i E 1, , me, ci x 0,i I me 1, , m.
不同时成立!
g* i*ai*
iE
二、约束规范条件
对不等式约束最优化问题
aiT ( x*)d 0,i I ( x*) (线性化可行方向)
g*Td 0
(下降方向)
不同时成立!
g* i*ai*, i* 0,i I * iI *
起作用约束问题
i* 0?
最优解为x (0,0)
F2 : d (d1, 0)T , d1 1
D : d (d1, d2 )T , d2 0 F1 D F2 D
正则性假设成立,KT约 束规范条件不成立。
二、约束规范条件
一阶必要条件(几何特征) 根据可行方向和下降方向定义, 若 x* 为约束问题的局部最优解,则
等式约束问题
不等式约束问题
记 Ax a1(x), , am (x), ai (x) ci x;
一、一般约束最优化问题 约束优化问题的求解困难:目标函数、约束函数共同作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 T c3 ( x ) x1 0 。 令x( , ) , 求 点x 的 积 极 约 束 2 2 指标集 A( x )。
x2
c3 ( x) 0
c2 ( x ) 0 c ( x ) 0 1
x
O
x1
一阶最优性条件
可行域上一个点是否为局部极小点取决于 目标函数在该点以及附近其它可行点上的 值。 可行方向在推导最优性条件起十分重要的 作用。 下面给出各种可行方向的定义。
有效约束),
ci ( x) (i A( x)) 是在 x 点的非积极约束(或
非有效约束)。
假定已知问题在解处的积极约束
A( x ),
*
我们只需求解如下的等式约束优化问题
min
x R n
f ( x ), c i ( x ) 0, i A( x * )
s.t.
2 2 2 例 设 c1 ( x ) 2 x1 x 2 x 2 0 , c2 ( x ) x1 x2 1 0,
X 在 x * 处的所有序列可行方向的集合记为
SFD( x , X ).
*
引理1 设 x* X , 如果所有的约束函数都在 x * 处可微,则有
FD( x* , X ) SFD( x* , X ) LFD( x* , X ). 证明 d FD( x * , X ), 0使得x * td X k 令 d d , / 2 ( k 1,2,...),则 (t [0, ]). k k
可 行 下 降 方 向设 :点 x X , 给定向量 d , 如 果d 既 是 点x 处 的 可 行 方 向 , 又 是 该的 点下 降 方 向 , 则 称 d 为 点x 处 的 可 行下降方向。
定 理 2 给 定 点x X , 记 点 x 的 积 极 约 束 指 标 集 为 I ( x )。 给 定 向 量d , 如 果d 满 足 ci ( x )T d 0 T f ( x ) d0 i I ( x)
则 向 量d 是 点 x 处 的 可 行 下 降 方 向 。
极值点的必要条件:
定 理 3 设 x* X , I ( x*)是 其 积 极 约 束 指 标 集f。 ( x ) 和 ci ( x ) ( i I ( x*) ) 在 点 x * 处 可 微 , ci ( x ) ( i I ( x*) ) 在 点 x * 处 连 续 。 如 果x * 是 约 束 极 值 问 题 的 局 极 部小 点 , 则 在 点 x*处没有可行下降方向。
定义1 可行点, 可行域 X
约束条件
定义2 全局(总体)极小点,全局严格极小点
定义3 局部极小点,局部严格极小点
假设 x * 是一个局部极小点,如果有
i0 [me 1, m] 使得 ci0 ( x ) 0, * 则我们可将第 i 0 个约束条件去掉,且 x 仍是去掉第 i 0 个约束条件所得到的问题的 局部极小点。我们称第 i 0 个约束在 x *
定义1 设 x X , 0 d R ,
* n
如果存在 0
使得
x td X , t [0, ],
*
则称 d
是 X 在 x * 处的可行方向。
X 在 x * 处的所有可行方向的集合记为
FD( x , X ).
*
c1 ( x ) 0
x1 d 1 d2
x0 d2
d1
c2 ( x ) 0
定义2 设
x X, d R ,
* n
如果
d T c i ( x * ) 0, i E ; d c i ( x ) 0, i I ( x ),
T * *
则称
d
是 X 在 x * 处的线性化可行方向。
X 在 x * 处的所有线性化可行方向的集合记为
T 0 ci ( x * k d k ) k d k ci ( x * ) o( k d k ), i I ( x * ), 两端 k , k , 得到d LFD( x* , X ), 故...
现在考虑如下只有不等式约束情形:
min f ( x ) s.t . c( x ) 0 . 其 中c( x ) (c1 ( x ), c2 ( x ), cl ( x ))T
LFD( x , X ).
*
定义3 设
x X, d R ,
* n
如果存在序列
d k (k 1,2,...) 和 k 0(k 1,2,...) 使得
x* k d k X , k ,
则称
且有 d k d 和 k 0,
d
是 X 在 x * 处的序列可行方向。
x k d k X (k )且d k d , k 0 , X ).故FD( x , X ) SFD( x , X ). d SFD( x * , X ), 不妨设d 0,由定义d k 和 k 0
*
( k 1,2,...)使得x k d k X (k )且d k d , k 0. * T * 0 ci ( x k d k ) k d k ci ( x ) o( k d k ), i E;
*
处是非积极的。
E {1,2,...,me }, I {me 1,...,m}, I ( x ) {i | ci ( x ) 0, i I }.
•定义4 对任何 x Rn , 称集合 ( x ) E I ( x ) 是在
x
点的积极集合(或有效集合),
ci ( x) (i A( x)) 是在 x 点的积极约束(或
第八章 约束优化最优性条件
• 约束优化问题 • 一阶最优性条件
• 二阶最优性条件
约束优化问题
约束非线性优化问题:
m in f ( x) n
xR
s.t. ci ( x ) 0, i 1,...,me ; ci ( x ) 0, i me 1,...,m .
(p)
目标函数,约束函数,等式约束优化问题,线 性约束优化问题,二次规划…