中考数学压轴题专题一元二次方程的经典综合题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)
1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.
(1)当a=﹣11时,解这个方程;
(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;
(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.
【答案】(1)123,4x x =-=(2)54a ≤(3)-4
【解析】
分析:(1)根据一元二次方程的解法即可求出答案;
(2)根据判别式即可求出a 的范围;
(3)根据根与系数的关系即可求出答案.
详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;
(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54
a ≤:; (3)∵12x x ,是方程的两个实数根,
222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.
∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把
22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:
a =﹣4,a =2(舍去),所以a 的值为﹣4.
点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.
2.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.
【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.
3.有一个人患了流感,经过两轮传染后共有36人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
【答案】(1)5;(2)180
【解析】
【分析】
(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;
(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.
【详解】
(1)设每轮传染中平均一个人传染了x 个人,根据题意得:
x+1+(x+1)x =36,
解得:x =5或x =﹣7(舍去).
答:每轮传染中平均一个人传染了5个人;
(2)根据题意得:5×36=180(个),
答:第三轮将又有180人被传染.
【点睛】
本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.
4.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.
()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.
【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .
【解析】
【分析】
(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.
【详解】
解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·
(x -8)=0,解得x 1=7,x 2=8.
(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.
【点睛】
本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.
5.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
【答案】(1)两次下降的百分率为10%;
(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5
元.
【解析】
【分析】
(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
【详解】
解:(1)设每次降价的百分率为 x .
40×(1﹣x )2=32.4
x =10%或 190%(190%不符合题意,舍去)
答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得
()4030y (448)5100.5
y --⨯+= 解得:1y =1.5,2y =2.5,
∵有利于减少库存,∴y =2.5.
答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
6.关于x 的一元二次方程ax 2+bx+1=0.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.
【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.
【解析】
【详解】
分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.
(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.
详解:(1)解:由题意:0a ≠.
∵()2
2242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.
(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:
解:令1a =,2b =-,则原方程为2210x x -+=,
解得:121x x ==.
点睛:考查一元二次方程()2
00++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.
当240b ac ∆=-=时,方程有两个相等的实数根.
当240b ac ∆=-<时,方程没有实数根.
7.解方程:(x 2+x )2+(x 2+x )=6.
【答案】x 1=﹣2,x 2=1
【解析】
【分析】
设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.
【详解】
解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,
解得y 1=﹣3,y 2=2.
①当y =2时,x 2+x =2,即x 2+x ﹣2=0,
解得x 1=﹣2,x 2=1;
②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,
∵△=12﹣4×1×3=1﹣12=﹣11<0,
∴此方程无解;
∴原方程的解为x 1=﹣2,x 2=1.
【点睛】
本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.
8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:
∵)
2=a ﹣b ≥0
∴a +b
a =
b 时取等号.
请利用上述结论解决以下问题:
(1)请直接写出答案:当x >0时,x +
1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101
x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.
【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.
【解析】
【分析】
(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1
x
->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101
x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;
(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.
【详解】
(1)当x >0时,x 1x +≥1x x
⋅=2; 当x <0时,﹣x >0,1
x ->0.
∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭
2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +
的最大值为﹣2. 故答案为:2,﹣2.
(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141
x x x ++++=+=(x +1)41x +++()411
x x +⋅+5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =
,∴四边形ABCD 面积=4+9+x 36x +≥36x x
⋅=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.
9.解方程:x 2-2x =2x +1.
【答案】x 1=2,x 2=2
【解析】
试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据
求根公式x =求解即可. 试题解析:方程化为x 2-4x -1=0.
∵b 2-4ac =(-4)2-4×1×(-1)=20,
∴x =4
2
±=, ∴x
1=2,x 2=2
10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.
(1)求甲、乙两种苹果的进价分别是每千克多少元?
(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.
【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.
【解析】
【分析】
(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.
【详解】
(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.
由题得:()()18344282a b a b +=⎧⎨+++=⎩
解之得:108a b =⎧⎨=⎩
答:甲、乙两种苹果的进价分别为10元/千克,8元/千克
(2)由题意得:()()()()410010214010960x x x x +-++-=
解之得:12x =,27x =
经检验,12x =,27x =均符合题意
答:x的值为2或7.
【点睛】
本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。