葡萄糖生物传感器的进展过程及研究成果[文献综述]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述
葡萄糖生物传感器的进展过程及研究成果
摘要:总结了葡萄糖生物传感器研究的发展过程;阐述了第一代经典葡萄糖酶电极、第二代传递介体传感器及第三代直接传感器的原理和特性,并介绍了其它类型的葡萄糖传感器技术及产品,部分产品在医学上的应用。最后,总结和展望了葡萄糖生物传感器研究及应用的发展趋势。
关键词:葡萄糖;生物传感器;医学领域;进展
引言:葡萄糖传感器是生物传感器领域研究最多、商品化最早的生物传感器。葡萄糖生物传感器的发展基于两个方面的技术基础:第一,葡萄糖是动物和植物体内碳水化合物的主要组成部分,葡萄糖的定量测定在生物化学、临床化学和食品分析中都占有很重要的位置,其分析方法的研究一直引起人们的关注。特别是临床检验中对血糖分析技术的需求,促进了葡萄糖酶分析方法建立;第二,1954年,Clark建立了氧电极分析方法。1956年又对极谱式氧电极进行了重大改进,使使活体组织氧分压的无损测量成为可能,并首次提出了氧电极与酶的电化学反应理论。根据Clark电极理论,自20世纪60年代开始,各国科学家纷纷开始葡萄糖传感器的研究。经过近半个世纪的努力,葡萄糖传感器的研究和应用已有了很大的发展,在食品分析、发酵控制、临床检验等方面发挥着重要的作用[1]。
1 经典葡萄糖酶电极
1962年,Clark和Lyon发表了第一篇关于酶电极的论文[2]。1967年Updik和Hicks首次研制出以铂电极为基体的葡萄糖氧化酶(GOD)电极。用于定量检测血清中的葡萄糖含量[3]。这标志着第一代生物传感器的诞生。
该方法中葡萄糖氧化酶固定在透析膜和氧穿透膜中间,形成一个“三明治”的结构,
再将此结构附着在铂电极的表面。在施加一定电位的条件下,通过检测氧气的减少量来确定葡萄糖的含量。由于大气中氧气分压的变化,会导致溶液中溶解氧浓度的变化,从而影响测定的准确性[4]。
为了避免氧干扰,1970年,Clark对其设计的装置进行改进后,可以较准确地测定
H 2O
2
的产生量,从而间接测定葡萄糖的含量[5]。此后,许多研究者采用过氧化氢电极作
为基础电极,其优点是,葡萄糖浓度与产生的H
2O
2
有当量关系,不受血液中氧浓度变化
的影响。
早期的H
2O
2
电极属于开放型,即铂电极直接与样品溶液接触,干扰比较大。现在的
商品化都是隔膜型(Clark)型,即通过一层选择性气透膜(聚乙烯膜获tefion膜)将电极与外溶液隔开。这样在用于生物样品测定时,可以阻止抗坏血酸、谷胱甘肽、尿素等许多还原性物质的干扰。同时,葡萄糖氧化酶的固定化技术也逐步发展和完善,这些研究包括聚乙烯碳酸酯膜和多孔膜包埋法、重氮化法、牛血清蛋白(BSA)-多聚甲醛膜法、牛血清白蛋白-戊二醛交联法等。1972年,Guilbault在铂电极上覆盖一层掺有葡萄糖氧化酶的选择性膜,保存10个月后相应电极上响应的稳定电流只减少了0.1%,从而制得具有较高稳定性和测量准确性的葡萄糖生物传感器[6]。这一技术被美国Yellow Spring Instrument(YSI)公司采用,于1975年首次研制出全球第一个商业用途的葡萄糖传感器。
目前,葡萄糖酶电极测定仪已经有各种型号商品,并在许多国家普遍应用。我国第一台葡萄糖生物传感器于1986年研制成功,商品化产品主要有SBA葡萄糖生物传感器[7]。该传感器选用固定化葡萄糖氧化酶与过氧化氢电极构成酶电极葡萄糖生物传感分析仪,每次进样两25uL,进样后20s可测出样品中葡萄糖含量,在10~1000mg/L范围内具良好的线性关系,连续测定20次的变异系数小于2%。
2 介体葡萄糖酶电极
在葡萄糖氧化酶电极中引入化学介体(chemical mediator)取代O
2/H
2
O
2
,作用是把
葡萄糖氧化酶氧化,使之再生后循环使用,而电子传递介体本身被还原,又在电极上被
氧化。利用电子传递介体后,既不涉及O
2,也不涉及H
2
O
2
,而是利用具有较低氧化电位的
传递介体在电极上产生的氧化电流,在测定葡萄糖时,可以避免其他电活性物质的干扰,提高了测定的灵敏度和准确性。
Cass等[8]将GOD固定在石墨电极(graphite electrode)上,以水不溶性二茂铁
单竣酸为介体。在电极对葡萄糖的响应过程中,二茂铁离子作为GOD的氧化剂,并在酶反应与电极过程之间迅速传递电子。将二茂铁修饰硅氧烷聚合物与葡萄糖氧化酶混合,由此制成的传感器性能更稳定、电子传递速率较高[9]。
常用的电子媒介体包括二茂铁及其衍生物、有机染料、醌及其衍生物、四硫富瓦烯(TIF)、四氰基奎诺二甲烷(TCNQ)、富勒烯和导电有机盐等[10]。但这些有机低分子媒介体化合物容易从酶层中扩散出来进入底物溶液中,造成传感器的稳定性较差,从而限制了生物传感器的使用范围。解决这个问题的方法之一是使用高分子媒介体化合物,如变价过渡金属离子型和有机氧化还原型等氧化还原聚合物[11]。
Paul等将二茂铁及1,1ˊ-二甲基二茂铁通过化学键连接到不溶性的硅氧烷聚合物的主链上,用作葡萄糖酶传感器的电子媒介体。这种高分子媒介体能够有效地降低传感器的工作电位,并且能够消除来自其他电活性物质的干扰。制成的传感器的突出优点是响应速度快,电流达到稳态值的时间不足10s。
朱邦尚等选用B-环糊精与戊二醛缩合成的B-环糊精聚合物(B-CDP)为主体,电媒介体,1’2-二甲基二茂铁为客体,形成稳定的主客体包络物。用牛血清白蛋白/戊二醛交联法,把葡萄糖氧化酶和主客体包络物固定到电极上,传感器的稳定性和使用寿命显著提高。采用铂丝电极经铂化处理制备的杂聚吡咯/GOD膜,葡萄糖酶电极稳定性良好,间断测定3 个月,灵敏度仍达原来的70%左右[12]。
3 直接葡萄糖酶电极
第三代生物传感器就是在无媒介体存在下,利用酶与电极间的直接电子传递设计制作葡萄糖传感器。与经典酶电极和介体酶电极相比,既不需要氧分子,也不需要化学介体分子作为电机受体,通常也不需要固定化载体,而是将酶共价键合到化学修饰电极上,或将酶固定到多孔电聚合物修饰电极上,使酶氧化还原活性中心与电极接近,直接电子传递就能够相对容易地进行,从而使电极的响应速度更快、灵敏度更高,真正实现酶的专一和高效催化。通常采用的固定化酶材料有有机导电聚合物膜、有机导电复合材料膜、金属纳米颗粒或金属和非金属纳米颗粒等[13]。
1992年,koopal等将聚吡咯(PPY)微管用于固定化GOD。其方法是通过模板合成法,将吡咯聚合在金属电极刻蚀膜上,接着,让GOD牢固地吸附在聚吡咯微管内构成GOD/PPY 传感器。所用的径迹刻蚀膜通常由聚酯和聚碳酸酯构成,GOD在微管内保持生物活性。由于聚吡咯、聚噻吩等共轭的聚合导电物质能在径迹刻蚀膜孔中形成微管,有人认为这