Raman拉曼光谱知识讲解

合集下载

第八讲分子振动光谱之拉曼Raman.PPT

第八讲分子振动光谱之拉曼Raman.PPT
4)对于极化率很低的硅酸盐矿物,拉曼效应很弱, 因而限制了拉曼光谱在此类矿物上的应用。
(五)拉曼光谱图常规分析方法
➢ 凡不引起分子偶极矩改变的振动是非红外活
性的振动,不能形成振动吸收,使红外光谱 的应用受到一定程度的限制。
➢ 但是这些红外非活性的振动信息可以通过拉
曼光谱来获得。故拉曼光谱常作为红外光谱 分析的补充技术,俗称“姐妹光谱”。
拉曼散射是与入射光电场E所引起的分子极化的
诱导偶极矩有关。
拉曼散射的发生必须在有相应极化率α的变化
时才能实现,这是和红外光谱所不同的。 在红外光谱中检测不出的谱线,可以在拉曼光
谱中得到,使得两种光谱成相互补充的谱线。
在激光拉曼光谱中有一个重要参数即退偏振
比ρ(也可称为去偏振度)。 退偏振比ρ对确定分子的对称性很有用。 退偏振比ρ定义为:
的跃迁能级有关的频率是ν1,那么分子从低能级 跃到高能级从入射光中得到的能量为hν1,而散 射光子的能量要降低到hν0-hν1,频率降低为ν0ν1。
(2)分子处于振动的激发态上,并且在与光
子相碰时可以把hν1的能量传给光子,形成一条能 量为hν0+hν1和频率为ν0+ν1的谱线。
➢通常把低于入射光频的散射线ν0-ν1称为斯托克斯
此外,络合物中金属-配位体键的振动频率一 般都在100~700 cm-1以范围内,用红外光谱研究比 较困难。然而这些键的振动常具有拉曼活性,且在 上述范围内的拉曼谱带易于观测,因此适合于对络 合物的组成、结构和稳定性等方面进行研究。
图 各种碳材料的拉曼光谱
傅里叶变换拉曼光谱是陶瓷工业中快速而有效的 测量技术。陶瓷工业中常用原料如高岭土、多水高岭 土、地开石和珍珠陶土,它们都有各自的特征谱带, 而且拉曼光谱比红外光谱更具特征性。

拉曼光谱-课件分享

拉曼光谱-课件分享
现代材料物理研究方法
拉曼光谱分析
主要内容
红外光谱(IR) 拉曼光谱(Raman)
分子振动光谱
2
激光拉曼光谱基础
1928 C.V.Raman发现拉曼散射效应 1960 随着激光光源建立拉曼光谱分析 拉曼光谱和红外光谱一样,也属于分子振动光谱 生物分子,高聚物,半导体,陶瓷,药物等分析 ,
是否出现拉曼活性主要取决于分子在运动过程时某一 固定方向上的极化率的变化。 对于分子振动和转动来说,拉曼活性都是根据极化率 是否改变来判断的。 对于全对称振动模式的分子,在激发光子的作用下, 肯定会发生分子极化,产生拉曼活性,而且活性很强; 而对于离子键的化合物,由于没有分子变形发生,不 能产生拉曼活性。
Strength enhanced 102~3 more sensitive concentration < 0.1mM similar to UV
preresonance
Resonance enhanced
共振拉曼散射
11
拉曼原理-LRS与IR比较
拉曼光谱是分子对激发光的散射,而红外光谱则是分子对红外光的吸 收,但两者均是研究分子振动的重要手段,同属分子光谱。
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景 薄膜样品的厚度应 >1m 光谱范围:5~4000cm-1
23
分析方法
普通拉曼光谱 一般采用斯托克斯分析
反斯托克斯拉曼光谱 采用反斯托克斯分析
24
Raman光谱可获得的信息
Raman 特征频率
Raman 谱峰的改变
Raman 偏振峰
47
100 Cr
100
depth profile lines

《研究生Raman光谱》课件

《研究生Raman光谱》课件

Raman光谱技术的优势和限制
1 非破坏性分析
Raman光谱不需要处理或破坏样品。
3 样品限制
某些样品可能不适合Raman光谱分析。
2 高灵敏度
能够检测低浓度的化学成分。
总结和展望
Raman光谱是一项有广泛应用前景的分析技术,它在物质结构和化学成分的研究中发挥着重要的作用。未来, 我们可以期待更多的创新和应用。
《研究生Raman光谱》 PPT课件
Raman光谱是一种用于分析物质结构和化学成分的技术。本课件将介绍Raman 光谱的历史、原理、仪器构成与应用领域,并总结其优势和限制。
什么是Raman光谱
Raman光谱是一种通过观察光通过物质后散射方向的改变来分析物质结构和化学成分的技术。它能够提供非破 坏性分析,对样品形态没有要求。
Raman光谱的历史发展
Raman光谱是由印度物理学家拉曼于1928年发现的,他观察到光在透过物质 后经历频率改变的现象。这项发现为分析物质提供了新的方法。
Raman散射原理
Raman散射是一种光的相互作用过程,当光通过物质时,与分子相互作用, 导致光子的频率和能量发生改变,这种改变被称为拉曼效应。
Raman光谱仪器的构成与原理
1
激光源
产生高能光,激发样品。
光学系统
2
将光聚焦到样品上,并收集散射光。
3
光谱仪Leabharlann 通过光的波长变化来分析样品中的化学 成分。
Raman光谱的应用领域
材料科学
研究材料结构和性质,如纳米材料和功能材料。
药物研究
分析药物的组成和鉴定不纯物质。
环境监测
检测水、空气和土壤中的污染物。

Raman光谱学的原理及应用

Raman光谱学的原理及应用

Raman光谱学的原理及应用Raman光谱学是一种分析物质结构、成分和状态的重要手段,广泛应用于化学、物理、材料科学、生物医学等领域。

本文将从Raman光谱学的原理、Raman散射过程、仪器及其应用方面进行介绍。

1. Raman光谱学的原理Raman光谱学是基于原子或分子之间的振动引起的散射光的特性来研究物质结构的一种谱学技术。

Raman效应的发现于1928年由印度物理学家拉曼发现,随后被发现的是第二种非弹性散射,称为Raman散射。

Raman光谱学的原理可以简述为:当物质被入射光(通常是激光)照射后,一部分光会散射,并与原有光线的波长有所不同。

若入射的激光波长为λ0,散射的波长为λ,则能够观测到的散射频率为ν=1/λ0 - 1/λ,这种弱的频率变化即为Raman效应。

Raman散射效应的主要来源是分子的振动,其散射光谱与化学键的种类、长度、角度等有关,是一种非常灵敏的分析手段。

由于散射光谱中只包含两个频率(入射光的频率和散射光的频率),非常容易在光谱中找到散射峰,从而可以快速地对样品进行表征和定量分析。

2. Raman散射过程Raman散射是由物质中分子的振动引起的,而分子的振动则是由分子的化学键振动产生的。

当分子被激光照射时,它会吸收激光能量并以分子振动的方式进行能量转换,从而产生一定频率的散射光。

通常情况下,散射光中的波长比激光的波长长或短的数百倍,散射的光也是非常弱的。

Raman散射可以分成两种基本类型:瑞利散射和非弹性散射。

瑞利散射是一种非常常见的散射现象,指的是激光所产生的散射光与入射光的方向和激光波长相同的现象。

而非弹性散射则指散射光与入射光角度或波长不同的现象,其最显著的代表就是Raman散射。

3. Raman仪器及其应用Raman仪器是一种非常高精度的光谱仪,能够测定物质中分子的振动频率和振动模式,从而进行非常精确的定量分析和表征。

它是由一个激光源、一个样品台、一个光谱仪和一个探测器组成的。

拉曼光谱

拉曼光谱

拉曼光谱(RAMAN SPECTRA)的原理(续)
Mid IR Stokes Raman Rayleigh Anti-Stokes Raman Fluorescence
红外 斯托克斯拉曼
瑞利散射 反斯托克斯拉曼
荧光
Real States 真实能级
Virtual State 虚能级
Vibrational States 振动能级 i
的研究员充满吸引力。
拉曼光谱仪的主要厂商及相关仪器
美国PerkinElmer公司的RamanStation 400系列拉曼光 谱仪
全球唯一的运用中阶梯光栅及二维面阵CCD 检测器组合成的二维色散型拉曼光谱仪,集 中了宽波段,高分辨率及检测速度快等特点, 摒弃了传统的获取高分辨率图谱所惯用的多 次测量不同谱带再进行拼接的方法,可在一 秒钟内获取覆盖整个波段的高分辨率拉曼图 谱。 分光系统采用中阶梯光栅技术,不含任何可 移动元件,保证系统的高度稳定性 高灵敏度二维CCD检测器,使得整个波段的 数据同时获取,避免了光谱失真 采用超稳定785nm的激光光源,减弱了荧光 背景的产生。
拉曼光谱(RAMAN SPECTRA)的原理(续)
设散射物分子原来处于基电子态,振动能级如图所示。 当受到入射光照射时,激发光与此分子的作用引起的 极化可以看作为虚的吸收,表述为电子跃迁到虚态 (Virtual state),虚能级上的电子立即跃迁到下能级而 发光,即为散射光。设仍回到初始的电子态,则有如 图所示的三种情况。因而散射光中既有与入射光频率 相同的谱线,也有与入射光频率不同的谱线,前者称 为瑞利线,后者称为拉曼线。在拉曼线中,又把频率 小于入射光频率的谱线称为斯托克斯线,而把频率大 于入射光频率的谱线称为反斯托克斯线。

raman光谱原理

raman光谱原理

raman光谱原理
Raman光谱原理是一种非常重要的光谱分析技术,它基于拉曼散射效应,可用于分析和鉴定各种物质。

下面将Raman光谱原理分为三部分进行介绍。

一、拉曼散射效应
拉曼散射效应是指当光线通过物质时,由于分子的振动、转动和晶格结构等原因,光子与物质相互作用,撞击到物质后被散射并且频率发生改变。

当被散射的光子频率发生改变时,我们就称之为拉曼散射。

二、拉曼光谱的生成
当输入光源(如激光)以一个特定频率的光子射到物质上时,部分光子将与分子相互作用并散射。

不同于传统的光谱技术,拉曼光谱测定的是在样品中的原子所吸收的光子的反向散射光,散射光的波长会因分子振动、旋转和晶格结构而发生改变,从而生成一条带有特征峰的拉曼光谱。

这些峰表示分子振动频率的集合,可以用于分析物质的结构和化学组成。

三、拉曼光谱的应用
拉曼光谱是一种高效的非破坏性分析方法。

它可以用于分析和鉴定各种物质,如无机化合物、有机分子、大分子、晶体等。

拉曼光谱在很多领域都有广泛的应用,如药品的质量控制、生物分子分析、环境监测、材料科学等。

总结来说,Raman光谱原理是非常有用的光谱分析技术,基于拉曼散射效应,它可以用于分析和鉴定各种物质。

拉曼光谱在各种领域都有着广泛的应用,是一种非常重要的分析手段。

干货全方位看懂拉曼光谱

干货全方位看懂拉曼光谱

⼲货全⽅位看懂拉曼光谱拉曼光谱(Raman spectra)以印度科学家C.V.拉曼(Raman)命名,是⼀种分⼦结构检测⼿段。

拉曼光谱是散射光谱,通过与⼊射光频率不同的散射光谱进⾏分析以得到分⼦振动、转动⽅⾯信息。

以横坐标表⽰拉曼频移,纵坐标表⽰拉曼光强,与红外光谱互补,可⽤来分析分⼦间键能的相关信息。

图1:印度科学家拉曼⼀、拉曼光谱原理拉曼效应:起源于分⼦振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分⼦振动能级(点阵振动能级)与转动能级结构的知识。

拉曼效应是光⼦与光学⽀声⼦相互作⽤的结果。

光照射到物质上发⽣弹性散射和⾮弹性散射. 弹性散射的散射光是与激发光波长相同的成分,⾮弹性散射的散射光有⽐激发光波长长的和短的成分, 统称为拉曼效应。

图2:拉曼散射⽰意图物质与光的相对作⽤分为三种:反射,散射和透射。

根据这三种情况,衍⽣出相对应的光谱检测⽅法:发射光谱(原⼦发射光谱(AES)、原⼦荧光光谱(AFS)、X射线荧光光谱法(XFS)、分⼦荧光光谱法(MFS)等),吸收光谱(紫外-可见光法(UV-Vis)、原⼦吸收光谱(AAS)、红外观光谱(IR)、核磁共振(NMR)等),联合散射光谱(拉曼散射光谱(Raman))。

拉曼光谱应运⽽⽣。

相对作⽤光谱类型实际应⽤反射发射光谱原⼦发射光谱(AES)、原⼦荧光光谱(AFS)、X射线荧光光谱法(XFS)、分⼦荧光光谱法(MFS)散射吸收光谱紫外-可见光法(UV-Vis)、原⼦吸收光谱(AAS)、红外观光谱(IR)、核磁共振(NMR)透射联合散射光谱拉曼散射光谱(Raman)表1:光谱种类区分表拉曼频移(Raman shift):拉曼光谱的横坐标称作拉曼频移。

拉曼散射分为斯托克斯散射和反斯托克斯散射,通常的拉曼实验检测到的是斯托克斯散射,拉曼散射光和瑞利光的频率之差值称拉曼频移(Raman shift):Δν=| ν 0 – ν s |, 即散射光频率与激发光频之差。

基础表征何时了?Raman知多少——Raman基础知识介绍(一)

基础表征何时了?Raman知多少——Raman基础知识介绍(一)

基础表征何时了?Raman知多少——Raman基础知识介绍(一)1. 什么是拉曼光谱?拉曼光谱是一种散射光谱,它是基于光和材料的相互作用而产生的。

拉曼散射的定义:激光光源的高强度入射光被分子散射时,大多数散射光与入射激光具有相同的波长(颜色),这种散射称为瑞利散射。

然而,还有极小一部分(大约1/10^9)散射光的波长(颜色)与入射光不同,其波长的改变由测试样品(所谓散射物质)的化学结构所决定,这部分散射光称为拉曼散射。

2. 什么是拉曼光谱分析法?拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

3. 拉曼光谱有何显著特点?a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关,而不同物质的拉曼位移是不一样的(这也是用拉曼光谱定性分析样品结构的依据)b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。

备注: 实际使用过程中,人们通常以拉曼位移(Δν)为横坐标,拉曼光强为纵坐标。

c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。

这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。

4 拉曼谱图一般由什么构成?有何特征?一张拉曼谱图通常由一定数量的拉曼峰构成,每个拉曼峰代表了相应的拉曼位移和强度。

每个谱峰对应于一种特定的分子键振动,其中既包括单一的化学键,例如C-C,C=C,N-O,C-H等,也包括由数个化学键组成的基团的振动,例如苯环的呼吸振动、多聚物长链的振动以及晶格振动等。

拉曼光谱可以提供样品化学结构、相和形态、结晶度及分子相互作用的详细信息。

备注:后面会通过文献实例进行具体分析5.拉曼光谱是用于定性测试还是定量测试?拉曼光谱通常用于定性测试,在特定条件下也可用于定量。

Raman拉曼光谱分析

Raman拉曼光谱分析
Raman
激光拉曼原理与应用
一、 Raman原理
Rayleigh散射: 弹性碰撞;无 能量交换,仅改变 方向; Raman散射: 非弹性碰撞; 方向改变且有能量 交换;
激发虚态
h(0 - )
E1 + h0
h0 E1 E0
Rayleigh散射
E0 + h0 h0
h0
V=1 V=0
h0 +
S—S,C—C,C=C,N=N等红外较弱的官能团,在
3060cm-1
r-H)
1000cm-1
c-o-c
1600,1587cm-1 c=c)苯环
787 cm-1 环变形
发光(荧光)的抑制和消除
在拉曼光谱测试中,往往会遇到荧光的干扰,由于拉曼散 射光极弱,所以一旦样品或杂质产生荧光,拉曼光谱就会被荧 光所淹没。通常荧光来自样品中的杂质,但有的样品本身也可 发生萤光,常用抑制或消除萤光的方法有以下几种: 纯化样品 强激光长时间照射样品 加荧光淬灭剂 利用脉冲激光光源 改变激发光的波长以避开荧光干扰
Raman散射 h
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态; 获得能量后,跃迁到激发虚态. (1928年印度物理学家Raman C V 发现;1960年快速发展)
基本原理
1. Raman散射
Raman散射的两种 跃迁能量差: h(0 - ) E=h(0 - ) E1 V=1 产生stokes线;强 ;基态分子多; E0 V=0 E=h(0 + ) 产生反stokes线; STOKES 弱; Raman位移: Raman散射光与入 射光频率差; 0 - E1 + h0 E2 + h0

RAMAN拉曼实验讲义

RAMAN拉曼实验讲义

元件的选择







激发波长的选择: 244nm 325nm 1 473nm 2 488nm 3 514nm 4 532nm 633nm 5 785nm 。。。。。。
避开荧光干扰 确定信息来源--拉曼或荧光 不同深度信息研究 避开黑体辐射 共振拉曼
元件的选择-滤光片
1. 干涉滤光片:滤除等离子线 2. 瑞利滤光片: Notch滤光片: 有机材料镀膜 、寿命、 一般2-3年换一套 。可以做斯托克斯和 反斯托克斯 Edge滤光片 : 介电材料制作 、寿命长。 只能测量斯托克斯拉曼信号
拉曼光谱原理
红外光谱的产生伴随着分子偶极矩的变化,而拉曼散射则 伴随着分子极化率的改变,这种极化率的改变是通过分子 内部的运动(例如转动、振动等)来实现的。 当一定频率的激发光照射一分子时,一部分散射光的频率 与入射光的频率相同,这种散射是分子对光子的一种弹性 散射,其碰撞为弹性碰撞,没有能量交换,称为瑞利散射 ,是由英国物理学家瑞利提出而得名。 还有一部分散射光 的频率和激发光的频率不等,这种散射称为拉曼散射。 弹性散射:在散射过程中没有发生能量变化的散射 非弹性散射:在散射过程中发生能量变化的散射
激光共焦显微 拉曼光谱仪
NJUST
教学要求
1、掌握RAMAN光谱仪的基本原理和结构
2、了解RAMAN光谱仪的适用范围及一般应用
3、通过对样品的测试掌握 LabSpec5 软件的
操作过程,学会谱图解析的一般方法
拉曼光谱概述

拉曼效应
1928 年,印度科学家C.V Raman首先在CCl4光谱中发 现了当光与分子相互作用后, 一部分光的波长会发生改变 (颜色发生变化),通过对这 些颜色发生变化的散射光的 研究,可以得到分子结构的 信息,把这种效应命名为 Raman效应。为此拉曼获得 1930年度的诺贝尔物理学奖。 从拉曼光谱的研究可以得到 有关分子振动或转动的信息。

拉曼光谱知识讲解

拉曼光谱知识讲解
➢ 滤 光 : 抑制杂散光以提高拉曼散射的信 噪比,常用前置单色器或干涉滤光片。可 以滤去不需要的瑞利线的一大部分能量, 提高拉曼散射相对强度。
➢ 偏 振 : 在光谱仪入射狭缝前加入检偏器, 可以改变进入光谱仪的散射光的偏振;在 检偏器后设置偏振扰乱器,可以消除光谱 仪的退偏干扰。
15
二、拉曼光谱仪的组成
计算机
光源
13
样品池
外光路系统
➢ 外光路部分包括聚光、集光、样品架、滤 光和偏振等部件
➢ 聚光:在激光器之后,用一块或二块 会聚透镜,使激光整流准确地聚集在 样品上,照射到样品上的功率提高约 一千倍
14
外光路系统
➢ 集光:常用透镜组或反射凹面镜作散 射光的收集镜。通常是由相对孔径数 值在1左右的透镜组成。
3、拉曼光谱的特征量
斯托克斯强度较反斯托克斯强, 多以其为信号光,定量分析等
分子结构和定性分析
的重要表征参量
拉曼位移
拉曼散射 强度
激光与分子作用,散 射光的偏振方向发生 变化,提供分子内部 结构及对称性信息
退偏比
拉漫光谱特征量
8
4、拉曼光谱的发展历史
19世纪30年代19世源自60年代19世纪80年代以来
20
3、激光共振拉曼光谱技术
激光共振拉曼光谱技术
当待测采分用子共的振某拉个曼电偏子振吸测收量峰技与术, 激不光加频任率何相处接理近就或可重以合得时到,到这人一体分 子体的液某的个拉或曼几谱个图特,征许拉多曼生谱物的分强子 度的可电达子到吸正收常带拉位曼于谱紫强外度区的,Wen 1等0在4~生1物06样倍品, 产的生紫了外强共度振可拉与曼基光 频谱相方比面拟进的行泛了音研和究组,合利振用动紫光外谱共, 即振激拉光曼共技振术拉先曼后光研谱究(了R蛋RS白)。质其、 灵核敏酸度、高DN,可A、用丝于状低病浓毒度粒和子微、量牛样 品细的胞检色测素,氧特化别酶适等用,于并生获物得大了分许子多 样关品于的生检物测大。分子结构方面的信息

拉曼光谱

拉曼光谱
弹性散射的散射光是与激发光波长相同的成 分,非弹性散射的散射光有比激发光波长长的 和短的成分, 统称为拉曼光谱(Raman spectra) 。 故拉曼光谱又称拉曼散射光谱。
拉曼光谱(RAMAN SPECTRA)的原理
拉曼效应起源于分子振动(和点阵振动)与转动,因此 从拉曼光谱中可以得到分子振动能级(点阵振动能级) 与转动能级结构的知识。用能级概念可以说明了拉曼 效应:
1960年以后,激发技术的发展使拉曼技术得以复兴。由于 激光束的高亮度、方向性和偏振性等优点,成为拉曼光谱 的理想光源。随探测技术的改进和对被测样品要求的降低, 目前在物理、化学、医药、工业等各个领域拉曼光谱得到 了广泛的应用,越来越受研究者的重视。
拉曼光谱与红外光谱的比较
相同点
产生机理
入射光 检测光 谱带范围
拉曼光谱 RAMAN SPECTRA
提纲
定义 原理 应用 拉曼光谱与红外光谱的比较 拉曼光谱的优、缺点 拉曼光谱仪结构 拉曼光谱仪主要厂商其相关仪器 拉曼光谱仪的基本参数 表面增强共振拉曼光谱 傅里叶变换技术
拉曼光谱(RAMAN SPECTRA)的定义
拉曼光谱(Raman spectra),是一种散射光谱。 光照射到物质上发生弹性散射和非弹性散射,
水 样品测试装置
制样 相互关系
解析要素
信号
检测定位
拉曼光谱
红外光谱
给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都 反映分子的结构信息。
电子云分布瞬间极化产生诱导偶极
振动引起偶极矩或电荷分布 变化
可见光
红外光
可见光的散射
红外光的吸收
40-4000cm-1 可做溶剂
400-4000cm-1 不能作为溶剂

Raman(拉曼)光谱原理和图解

Raman(拉曼)光谱原理和图解
指纹性振动谱
Information obtained from Raman spectroscopy
characteristic Raman frequencies
拉曼频率的确认
拉曼光谱的信息
composition of material
物质的组成
e.g. MoS2, MoO3
changes in frequency of Raman peak
200
0 15000 14800 14600 14400 14200 14000
Wavenum ber (cm -1)
光栅转动重复性实验
高重复性、高稳定性
.05 0 -.05 0 50 100 150 200 250 Minutes 300 350 400 450
光栅转动重复性实验
Arbitrary Y
同步连续扫描技术专利技术
同步连续扫描专利技术 特别注意
连续扫描的光谱收集方式应该是能常规使用,即有实用性,才有意义。 Renishaw公司的拉曼系统的连续扫描功能是在实验中最常用的光谱收 集方式。因有专利保护,现其它厂家无法使用。
如果有其它也称之为“连续扫描”光谱收集方式,但须用巨量时间,则 无实用意义。
14220 cm-1 14430 cm-1
Frequency cm-1
14885 cm-1 14971 cm-1
This error plot show that during normal working day all the errors track and the typical errors are less than 0.05 cm-1
数字化显微共焦系统专利技术 共焦应用 - 石英内的气、液包裹体

拉曼光谱介绍

拉曼光谱介绍

拉曼光谱与红外光谱的比较
相同点
产生机理
入射光 检测光 谱带范围
水 样品测试装置
制样 相互关系
解析要素
信号
检测定位
拉曼光谱
红外光谱
给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都 反映分子的结构信息。
电子云分布瞬间极化产生诱导偶极
振动引起偶极矩或电荷分布 变化
可见光
红外光
可见光的散射
红外光的吸收
弹性散射的散射光是与激发光波长相同的成 分,非弹性散射的散射光有比激发光波长长的 和短的成分, 统称为拉曼光谱(Raman spectra) 。 • 故拉曼光谱又称拉曼散射光谱。
拉曼光谱(Raman spectra)的原理
• 拉曼效应起源于分子振动(和点阵振动) 与转动,因此从拉曼光谱中可以得到分 子振动能级(点阵振动能级)与转动能级 结构的知识。用能级概念可以说明了拉 曼效应:
因此可以通过光谱进行定性分析。 定量分析
拉曼光谱定量分析依据为:
(I光学系统所收集到的样品表面拉曼信 号强度,K分子的拉曼散射截面积,Φ 样品表面的激光入射功率,k、k’分别是 入射光和散射光的吸收系数,Z入射光 和散射光通过的距离,h(z)光学系统
拉曼光谱的应用(续)
• 应用技术 通常的拉曼光谱可以进行半导体、
拉曼光谱(Raman spectra)的原理
(续)
Mid IR Stokes Raman Rayleigh Anti-Stokes Raman Fluorescence
红外 斯托克斯拉曼
瑞利散射 反斯托克斯拉曼
荧光
Real States 真实能级
Virtual State 虚能级
Vibrational States 振动能级 i

拉曼(Raman)光谱2000讲解

拉曼(Raman)光谱2000讲解
P Ei P Ei

(1)
其中是分子极化率, Ei为入射光波的电场, 可表示为: (2) Ei E0i exp[ i(2 i t ki r )] 分子振动时,原子核位置的移动改变了核对电子的吸引力,使得 分子的电荷分布即电子云发生形变,这意味着极化率受到分子振 动的调制, 将极化率按原子核位移的简正坐标Q 展开,即:
瑞利散射 反stokes散射
不同的化学键或基团有不同的振动形式和能级结构,因此 Raman位移是分子结构的特征参数------定性分析的理论依据 Raman谱线的强度与入射光的强度及样品分子的浓度成正比 ----定量分析依据
4. Raman散射的经典解释和Raman活性的判据
分子在光波交变电磁场作用下发生极化, 产生诱导偶极矩:
分析测试设备系列讲座
拉曼(Raman)光谱法
主要内容
一 、引言
二、Raman光谱法的基本原理 三、Raman光谱仪的结构
1. 色散型激光Raman光谱仪 2. 傅立叶变换激光Raman光谱仪
四、Renishaw2000显微Raman光谱仪 五、Raman光谱的特点与应用
一、引 言 1. 光谱分析方法简介
近年来,各种新的Raman技术不断涌现
Raman光谱属于分子振动光谱,主要用于分子结构分析.
二、基本原理
1. Raman效应
样 品 池

当一束激发光的光子与作为散射中心的分子发生相互作用时, 大部分光子仅是改变了方向,而光的频率保持不变 (s
=
i) ,这种散射称为瑞利散射。

但也存在很微量的光子(约占10-6~10-10)不仅改变了光的传
ki
P E0i exp[i(2 i t ki r )] Q

Raman拉曼光谱

Raman拉曼光谱

于瑞利线旳位移表达旳拉曼光谱
h0
波数与红外光谱旳波数相一致。
入射
散射
h
h
E1
红外吸收 拉曼散射
E0
拉曼光谱与红外光谱

同属分子振(转)动光谱
异红:外红:外合用于分研子究对不同红原外子光旳旳极性吸键收振动 -O强H,度-由C分=子O,偶-极C距-决X定
拉异曼::拉合曼用于分研子究同对原激子光旳非旳极散性射键振动 -N-强N度-由, -分C子-C极-化,率C决=定C
瑞利散射: 弹性碰撞;无能量互换,仅变化方向;频率不发生变化 旳辐射散射(u=u0);强度与l0旳四次方成反比
拉曼散射:非弹性碰撞;方向变化且有能量互换; 频率发生变化旳辐射散射(u=u0△u)
光旳 散射
光旳散射
样 透过光λ不变
品 池
拉曼散射λ变
λ减小 λ增大
瑞利散射λ不变
二、拉曼散射旳产生
样品分子中旳电子首先被一
激光器示意图
工作2物质
产生激光振荡旳一种主 要条件:两个反射镜之间旳 光必须是驻波,波节在两个 反射镜处。
全反1 射镜
部分4反射镜
激光器旳选频作用
鼓励3 能源
激光旳特征: 单色性好,相位一致,方向性好,亮度高
第三节 激光拉曼光谱原理
一、光旳散射
光散射是自然界常见旳现象.当一束光照射介质时,除被吸收之外, 大部分被反射或透过,另一部分光被介质向四面八方散射.在散射光 中,大部分是瑞利散射,小部分是拉曼散射.
110 ℃干燥
500 ℃焙烧
Mo/Al2O3旳拉曼光谱
成果表白,在低负载 量时即有汇集态Mo物种 存在。随负载量提升,其 汇集度逐渐增大。
Mo/Al2O3催化剂旳Raman表征

Raman 拉曼光谱原理及应用

Raman 拉曼光谱原理及应用
500 1000 Wavenumber (cm-1) 1500 2000
Raman mapped images
8000
6000
Single spectrum Component 2
Because of confocality the Raman map can show very exactly the localization of comp. 1 and 2 (spatial resolution at λex = 633 nm 0.8 µm lateral and 1.2 µm axial)
CH3 and CH2 Bending Modes
OH stretching
00 500
500
1000
1000
1500
1500
2000
2000
2500
2500
3000
3000
3500
3500
νi = νo-ν (cm-1)
拉曼光谱给出的信息?
定性的信息 : 拉曼光谱是物质结构的指纹光谱 定量的信息:可以通过光谱校正,得到准确的应力大小和浓度分布
25000
20000
Intensity (a.u.)
15000
785 nm
10000
5000
0 500 1000 1500 2000 Wavenumber (cm-1) 2500 3000
2-拉曼光谱仪的工作原理
拉曼光谱测量原理:
•光源-(太阳光-Hg灯-激光)
探测器
•耦合光路-光照射到样品,收集散 射光 (大光路和显微光路)
1-聚合物,高分子
拉曼光谱应用-鉴定不同材料
在纤维材料中通常使用的材料的拉曼光谱
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 瑞利线强度最大,△ = 0
• 斯托克斯线和反斯托克斯线对 应,完全对称地分布于瑞利线 两侧。
• 反斯托克斯线比斯托克斯线弱 得多,一般记录的拉曼光谱只取 斯托克斯线,且略去负号.
四氯化碳的部分拉曼光谱图 激光器辐射波长l0 = 488 nm
拉曼位移 (Raman shift)
散射光频率与激发光频率之差: = |0 – s|
样品分子中的电子首先被一
个频率为0的光子激发至受
激虚态(准激发态,不稳定), 当电子从虚态跃迁回基态时
,将发射频率为的光子.
分子的散射能级图
h0
h0
受激 虚态
h(0-△) h(0+△)
瑞利散射:
h0
光子与分子间无能量交换
瑞利线 = 0
h0
h0
拉曼散射: ●分子由基态跃迁到激发态
Stokes线
斯托克斯线 = 0-△
于瑞利线的位移表示的拉曼光谱
h0
波数与红外光谱的波数相一致。
入射
散射
h
h
E1
红外吸收 拉曼散射
E0
拉曼光谱与红外光谱

同属分子振(转)动光谱
异红:外红:外适用于分研子究对不同红原外子光的的极性吸键收振动 -O强H,度-由C分=子O,偶-极C距-决X定
拉异曼::拉适曼用于分研子究同对原激子光的非的极散性射键振动 -N-强N度-由, -分C子-C极-化,率C决=定C
■ 是衡量分子在电场作用下发生极化的难易程度 ■ 分子中两原子距离最大时, 也最大 ■ 只有引起极化率变化的分子振动才产生拉曼散射(光谱选律) ■ 拉曼散射强度与极化率成正比例关系
三、拉曼光谱图与拉曼位移
拉曼光谱图以散射强度为纵
标,拉曼位移为横标,瑞利线 位置为零点。一幅完整的拉曼 光谱包括瑞利线,斯托克斯线 ,反斯托克斯线。
瑞利散射: 弹性碰撞;无能量交换,仅改变方向;频率不发生改变 的辐射散射(u=u0);强度与l0的四次方成反比
拉曼散射:非弹性碰撞;方向改变且有能量交换; 频率发生改变的辐射散射(u=u0△u)
光的 散射
光的散射
λ


பைடு நூலகம்
λ
增 大
减 小
λ
散 射

样 透过光λ不变






λ
不 变
二、拉曼散射的产生
互补
拉曼光谱与红外光谱
● 红外活性振动:伴有偶极矩变化的振动 ● 拉曼活性振动:伴随有极化率变化的振动
对称分子: 对称振动→拉曼活性。 不对称振动→红外活性
互排法则:有对称中心的分子其分子振动对
红外和拉曼之一有活性,则另一非活性
互允法则:无对称中心的分子其分子振动对
Raman拉曼光谱
● 拉曼光谱的发展
1928年,印度物理学家Raman首次发现Raman散射效应,1930年获诺 贝尔奖. 但由于拉曼散射光仅为入射光强的10-10, 当时所用光源 强度不高,产生的拉曼效应太弱,故很快被红外光谱所取代.
20世纪60年代起,随着激光技术的飞速发展,引 入新型激光作为激发光源,使得拉曼光谱技术
拉曼光谱与红外光谱均起源于分子的振动和转动。但产生两种 光谱的机理有本质的区别。红外光谱是分子对红外光源的吸收 所产生的光谱,拉曼光谱是分子对可见光(在FT-Raman中可 选用近红外光)的散射所产生的光谱。
同一振动模的拉曼位移和红外吸 收光谱的频率是一致的。用相对
受激虚态
h(0 - ) h(0 + )
自发辐射跃迁 E2
hu E1
由于许多原子各自地进行自发辐射,所以发出的光,方向不 同,初相位也不相同,相干性差。
受激辐射
E2
E1
当一个具有hu21能量的光子照射到处于激发态E2的原子 上, 它就诱使(带动)原子从E2跃迁到E1,同时辐射出一个 与入射光子频率、位相、传播方向完全一致的光子。 ●原子系统中各发光中心是相互关联的,相干性 ●发生1次受激辐射,光子数目增加1倍,受激放大
激光器示意图
工作2物质
产生激光振荡的一个重 要条件:两个反射镜之间的 光必须是驻波,波节在两个 反射镜处。
全反1 射镜
部分4反射镜
激光器的选频作用
激励3 能源
激光的特性: 单色性好,相位一致,方向性好,亮度高
第三节 激光拉曼光谱原理
一、光的散射
光散射是自然界常见的现象.当一束光照射介质时,除被吸收之外, 大部分被反射或透过,另一部分光被介质向四面八方散射.在散射光 中,大部分是瑞利散射,小部分是拉曼散射.
粒子数反转
激发态原子数大于基态原子数的现象,称为粒子数 反转分布。
处于粒子数反转分布的工作物质称为增益介质。当光通过
增益介质时,光就被放大。
I=I0exp(GL)
I和I0-分别为初始和增益后的光强 G-增益系数; L-工作物质长度
激光振荡与激光器
光在工作物质两端的反 射镜间来回反射,光程增长, 受激发射光强增大,产生雪 崩式的光放大作用。
获得迅速发展(激光拉曼光谱).
相继出现了一些新的拉曼光谱技术,如共振拉 曼光谱法,表面增强拉曼光谱法,非线性拉曼 光谱法,快速扫描拉曼光谱法等.目前拉曼光 谱技术已在化学化工,半导体电子,聚合物,生 物医学,环境科学等各领域得到广泛应用.
C.V.Raman
第二节 激光基础知识(了解)
自发辐射
光的吸收
■全对称振动(各向同性): p ~ 0 ■非对称振动(各向异性): p介于0到3/4之间 ■ p值越小,分子振动对称性越高
例:四氯化碳的拉曼偏振光谱
■ 459 cm-1所对应的振 动,ρp ~0,各向同性 ■ 314和218 cm-1所对 应的振动,ρp 较大,为 各向异性
CCl4的拉曼偏振光谱
第四节 拉曼光谱与红外光谱的比较
● 表征分子振-转能级的特征物理量 ● 对不同物质: 不同 ● 对同一物质: 与入射光频率无关
拉曼位移是拉 曼光谱法进行 结构与定性分
析的依据
h0
h0
h0
h0
h0
h0
h(0-△) h(0+△)
受激 虚态
振动 激发态 h△ 基态
四、退偏度
在入射激光的垂直与平行方向置偏振器,分别测得散
射光强,则退偏度: p =I⊥/I‖
●分子由激发态跃迁到基态
反斯托克斯线 =0+△
△-拉曼位移
0-
Rayleigh线
0
h0
振动
激发态
h△ 基态
Anti-stokes线
0+
从光的波动性分析拉曼散射的产生:
分子在光电场E中, 产生诱导偶极矩即感应偶极矩
= E 为极化率
在分子振动过程中, 若其诱导偶极矩发生变化, 则分子会 与入射光子进行能量交换, 产生拉曼光谱。 拉曼光谱的产生源于分子振动过程中诱导偶极矩的变化
相关文档
最新文档