四位超前进位加法器资料
cd4008
![cd4008](https://img.taocdn.com/s3/m/050e730616fc700abb68fc3c.png)
Vol 输出低电 平电压(最大) Voh 输出高电 平电压(最小) ViL 输入低电 平电压 最大) Vih 输人高电 平电压(最小)
0.5/4.5 1.0/9.0 1.5/13. 5 4.5/0.5 9.0/1.0 13.5/1. 5 2.5 4.6 9.5 13.5 0.4 0..5 1.5 -
-
ns
CI CO A B F
Tphl 输 出由高 电平到 低电平 传输延 迟时间
CI F A B CI CO CO
5.0 10.0 15.0 CL=50pF RL=200 Tr=20ns Tf=20ns 5.0 10.0 15.0
-
-
ns
Ttlh 输 出 由 低 电 平 到高电平转换时间 Tthl 输出由高电平到 低电平转换时间 Ci 输入电容 输入端 任一
CC4008
四位二进制超前进位全加器
简要说明 CC4008型由具有段间快速超前进位的4个全加器段组成 包含了能提供快速 并行进位的电路 允许使用几个CC4008进行高速运算 CC4008输人包括四组加法位A0-A3和 B0-B3以及来自前级的迸位位 CC4008 输出包括四个总和位F0-F3以及可用于级联CC4008中的高速并行迸位 CC4008提供了14引线多层陶瓷双列直插 D 熔封陶瓷双列直插 J 塑料双列直插 P 和陶瓷片状载体 C 4种封装形式 推荐工作条件: 电源电压范围 3v 输人电压范围 0v 工作温度范围: M类 –55 125 E 类 –40 85 极限值: 18v Vdd
Tplh 输 出由低 电平到 高电平 传输延 迟时间
CI F
A B
CO
CL=50pF RL=200 Tr=20ns Tf=20ns
5.0 10.0 15.0
4bits超前加法进位器的全定制设计_微电子卓越班数字集成电路课程设计报告
![4bits超前加法进位器的全定制设计_微电子卓越班数字集成电路课程设计报告](https://img.taocdn.com/s3/m/300c62e133d4b14e852468bd.png)
数字集成电路课程设计题目:4 bits超前加法进位器地全定制设计姓名:席高照学号: 111000833学院:物理与信息工程学院专业:微电子(卓越班)年级: 2010级指导教师:陈群超(签名)2013 年 6 月 3 日目录第1章概述 01.1课程设计目地.......................................... 错误!未定义书签。
1.2课程设计地主要内容.................................... 错误!未定义书签。
1.2.1设计题目.......................................... 错误!未定义书签。
1.2.2设计内容.......................................... 错误!未定义书签。
第2章功能分析及逻辑分析 (2)2.1功能分析 (2)2.2推荐工作条件 (3)2.3电性能 (7)2.4真值表 ................................................ 错误!未定义书签。
2.5表达式 (6)2.6电路图...................................................................... 错误!未定义书签。
第3章电路设计与器件参数设计83.1性能指标: ............................................ 错误!未定义书签。
3.2模块划分 (7)3.2.1输出级电路设计 (7)3.2.2内部反相器 (9)3.2.3内部电路等效 (8)3.2.4输入级电路 (10)3.2.5输出缓冲级电路 (10)3.2.6输入、输出保护电路 (10)3.3本章小结 (10)第4章电路模拟与仿真................................................................................................... 错误!未定义书签。
BCD-7段译码器、四位超前进位加法器、四位数值比较器
![BCD-7段译码器、四位超前进位加法器、四位数值比较器](https://img.taocdn.com/s3/m/945a6ff1172ded630b1cb6bd.png)
BCD-7段译码器一、电路图a=A0A1'A2'A3'+A0'A1'A2A3'=A1'A3'(A0异或A2) (其中撇号’表示“非”)b=A3'A2A1'A0+A3'A2A1A0'=A3'A2(A1异或A0)c=A3'A2'A1A0'd=A3'A2'A1'A0+A3'A2A1A0+A3'A2A1'A0'e=(A2+A1+A0)(A1'+A0)f=A3'A2'A1'A0+A3'A2A1A0+A3'A2'A1g=A3'A2'A1'+A3'A2A1A0二、实验结果a)仿真结果{A3,A2,A1,A0}取遍0000,0001,0010,0011,0100,0101,0110,0111,1000,1001,结果均符合要求。
b)在实际FPGA中实验结果:符合要求。
三、结果分析a)输入值范围在0000-1001之间时,可以实现BCD码转7段显示码功能。
但在输入值超出范围时将显示乱码。
若不允许乱码出现,可将卡诺图中的不确定性项d全部改为需要的值,以提示输入错误或不显示任何内容。
但这将使电路规模大幅增加。
b)关键路径含3级门。
其中a,b使用了异或门,但异或门的输入均为原变量。
通过异或门的路径最多只需通过2级逻辑门。
若全部改用与门、或门,则必须有反变量输入,使a,b的关键路径仍然含有3级门,因此不能提升速度,但每个函数必需的带宽都将从4增加为8。
如果与门、或门过剩,异或门不足,且带宽不是制造过程中的制约因素,则更适宜使用与门、或门。
由以上可知,使用异或门可以避免反变量输入,节约1级非门的相应时间,节约带宽。
d函数在卡诺图的分布导致其无法很好化简,因此将占用较多带宽。
四位超前进位加法器原理
![四位超前进位加法器原理](https://img.taocdn.com/s3/m/b6be3d2e7f21af45b307e87101f69e314232fa6e.png)
四位超前进位加法器原理1. 输入部分:四位超前进位加法器有两个四位输入数和一个进位输入。
输入数A和B分别代表被加数和加数,每位由低位到高位分别为A0,A1,A2,A3和B0,B1,B2,B3、进位输入Cin表示上一位的进位情况。
2. 输出部分:四位超前进位加法器有一个四位输出数和一个进位输出。
输出数S代表和,每位由低位到高位分别为S0,S1,S2,S3、进位输出Cout表示本位的进位情况。
3. 逻辑运算:每位的和采用异或门(XOR)实现:Si = A ⊕ B ⊕ Cin。
每位的进位采用与门(AND)实现:Ci+1 = (A ⊕ B) ∧ Cin + A∧ B。
4. 进位传递:如果上一位的进位Cin为1,则本位需要传递进位,即Ci+1 = 1、如果上一位的进位Cin为0,则本位不需要传递进位,即Ci+1 = (A ⊕ B) ∧ Cin。
这样可以确保进位在高位传递,实现加法运算的正确性。
5. 进位溢出:最高位的进位输出Cout表示四位相加是否产生进位溢出,即Cout = A3 ∧ B3 ∧ Cin。
如果Cout为1,则表示加法运算的结果超过了四位二进制数的表示范围,发生了进位溢出。
(1)将输入的两个四位二进制数A和B依次与进位输入Cin相异或,得到每位的和Si。
(2)将输入的两个四位二进制数A和B依次与进位输入Cin相与,得到进位传递结果Di。
(3)将邻位的进位传递结果Di与当前位的和Si再次相与,得到进位输出结果Ci+1(4)将当前位的和Si输出为结果的相应位,将进位输出结果Ci+1作为下一位的进位输入。
(5)最高位的进位输出结果Cout表示加法运算是否产生进位溢出。
四位超前进位加法器的优点是速度快,可以实现高速的加法运算。
其核心原理是采用异或门进行和的计算,采用与门进行进位的计算,通过逐位运算,实现了四位二进制数的加法运算,同时处理了进位情况,确保了运算的正确性。
四位加法器
![四位加法器](https://img.taocdn.com/s3/m/3f2e9a2bbcd126fff7050baf.png)
四位加法器一、实验要求掌握组合逻辑电路的基本分析和设计方法;理解半加器和全加器的工作原理,用硬件描述语言实现半加器和全加器的门级设计,并使用自己设计的半加器组件构建全加器;学会利用软件仿真和远程实验系统实现对数字电路的逻辑功能进行验证和分析。
二、实验原理半加器(Half Adder)是不考虑来自低位的进位信号,其输入为 1 bit 的被加数和加数,输出为两位:本位的和以及向高一位的进位。
考虑低位进位的1位二进制加法器称为全加器(Full Adder),其输入为被加数加数以及低一位来的进位,输出为本位的和及向高一位的进位。
一位全加器可以由两个半加器及一个或门连接而成,半加器和全加器逻辑结构分别如图所示。
利用全加器级联可以构成多位二进制加法器,下图所示为四位二进制加法电路,低一位的进位输出作为高一位的进位输入。
这种结构称为逐次进位加法器(Ripple Adder)。
由于逐次进位加法器的进位信号是在各级间逐级传递的,所以高位的输出必须等低位的进位输入稳定后才有效,这就使得逐次进位加法器的延时比较大,速度比较慢。
为了提高加法器的运算速度,需要对加法器的结构进行改进。
引入进位传递信号和进位产生信号的概念,有{P n=A n⊕B n G n=A n B n利用这两个信号,可以把和信号与进位输出信号表示为{S n=P n⊕C n−1 C n=P n C n−1+G n根据上面给出的进位输出表达式,可得C0=G0+ P0C−1C1=G1+ P1C0=G1+ P1G0+P1P0C−1C2=G2+ P2C1=G2+ P2G1+P2P1G0+ P2P1P0C−1C3=G3+ P3C2=G3+ P3G2+P3P2G1+ P3P2P1G0+ P3P2P1P0C−1由于各级的进位传递信号和进位产生信号是同时生成的,所以各级的进位输出信号不再需要等待低一位的进位输入信号,从而大大减小了整个电路的延时,提高的加法器的运算速度。
四位超前进位加法器
![四位超前进位加法器](https://img.taocdn.com/s3/m/438ba7c558f5f61fb7366666.png)
1.课程设计名称四位超前进位加法器2.课程设计内容设计一个四位加法器,要求要有超前进位,减小输出的延迟,采用0.13um工艺设计。
3.课程设计目的训练学生综合运用学过的数字集成电路的基本知识,独立设计相对复杂的数字集成电路的能力。
4.课程设计要求4.1、按设计指导书中要求的格式书写,所有的内容一律打印;4.2、报告内容包括设计过程、仿真的HSPICE网表,软件仿真的结果及分析、延时的手工计算;4.3、要有整体电路原理图,仿真的波形图;4.4、软件仿真必须要有必要的说明;要给出各个输入信号的具体波形和输出信号的测试结果。
4.5、写出对应的HSPICE设计网表,网表仿真结果符合设计要求。
把仿真图形附在报告上。
4.6、设输入端的电容为C,输出端的负载电容为5000C inv,从输入到输出任意找一通inv路,优化通路延时,手工计算确定通路中每个门对应的晶体管的尺寸。
每组三个同学选择不能为同一通路。
此部分的计算参数可采用书中第六章的参数。
4.7、各种器件的具体结构可参考阎石的《数字电子技术基础》一书。
不允许有完全一样的报告,对于报告完全相同者,记为不及格。
5.使用软件软件为HSPICE和COSMOS-SCOPE。
6.课程设计原理由全加器的真值表可得S i和C i的逻辑表达式:定义两个中间变量G i和P i:当A i=B i=1时,G i=1,由C i的表达式可得C i=1,即产生进位,所以G i 称为产生量变。
若P i=1,则A i·B i=0,C i=C i-1,即P i=1时,低位的进位能传送到高位的进位输出端,故P i称为传输变量,这两个变量都与进位信号无关。
将G i和P i代入S i和C i得:进而可得各位进位信号的逻辑表达如下:根据逻辑表达式做出电路图(如图):逻辑功能图中有2输入异或门,2输入与门,3输入与门,4输入与门,2输入或门,3输入或门,4输入或门,其转化成CMOS晶体管图如下:7.课程设计网表*xor 2.subckt xor2 a b c d fmxorpa 1 a vdd vdd pmos l=2 w=8 mxorpb f d 1 vdd pmos l=2 w=8 mxorpc 2 b vdd vdd pmos l=2 w=8 mxorpd f c 2 vdd pmos l=2 w=8 mxorna f a 3 0 nmos l=2 w=4 mxornb 3 b 0 0 nmos l=2 w=4 mxornc f c 4 0 nmos l=2 w=4 mxornd 4 d 0 0 nmos l=2 w=4.ends xor2*and2.subckt and2 a b fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4mandna f a 1 0 nmos l=2 w=4 mandnb 1 b 0 0 nmos l=2 w=4.ends and2*and3.subckt and3 a b c fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4 mandpc f c vdd vdd pmos l=2 w=4 mandna f a 1 0 nmos l=2 w=6 mandnb 1 b 2 0 nmos l=2 w=6 mandnc 2 c 0 0 nmos l=2 w=6.ends and3*and4.subckt and4 a b c d fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4 mandpc f c vdd vdd pmos l=2 w=4 mandpd f d vdd vdd pmos l=2 w=4 mandna f a 1 0 nmos l=2 w=8 mandnb 1 b 2 0 nmos l=2 w=8 mandnc 2 c 3 0 nmos l=2 w=8 mandnd 3 d 0 0 nmos l=2 w=8.ends and4*or2.subckt or2 a b fmorpa 1 a vdd vdd pmos l=2 w=8 morpb f b 1 vdd pmos l=2 w=8 mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4.ends or2*or3.subckt or3 a b c fmorpa 1 a vdd vdd pmos l=2 w=12 morpb 2 b 1 vdd pmos l=2 w=12 morpc f c 2 vdd pmos l=2 w=12 mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4mnc f c 0 0 nmos l=2 w=4.ends or3*or4.subckt or4 a b c d fmorpa 1 a vdd vdd pmos l=2 w=16morpb 2 b 1 vdd pmos l=2 w=16morpc 3 c 2 vdd pmos l=2 w=16morpd f d 3 vdd pmos l=2 w=16mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4mnc f c 0 0 nmos l=2 w=4mnd f d 0 0 nmos l=2 w=4.ends or4*not.subckt not a fmnotpa f a vdd vdd pmos l=2 w=4 mnotna f a 0 0 nmos l=2 w=2.ends not *反相器*or21.subckt or21 a b fxor2 a b 1 or2xnot 1 f not.ends or21 *2输入或门*or31.subckt or31 a b c fxor3 a b c 1 or3xnot 1 f not.ends or31 *3输入或门*or41.subckt or41 a b c d fxor4 a b c d 1 or4xnot 1 f not.ends or41 *4输入或门*xor21.subckt xor21 a b fxm a A5 notxn b B5 notxxor a b A5 B5 f xor2.ends xor21 * 2输入异或门*and21.subckt and21 a b fxand2 a b 1 and2xnot 1 f not.ends and21 *2输入与门*and31.subckt and31 a b c fxand3 a b c 1 and3xnot 1 f not.ends and31 *3输入与门*and41.subckt and41 a b c d fxand4 a b c d 1 and4xnot 1 f not.ends and41 *4输入与门xxor211 a1 b1 p1 xor21xxor212 a2 b2 p2 xor21xxor213 a3 b3 p3 xor21xxor214 a4 b4 p4 xor21xand211 a1 b1 g1 and21xand212 a2 b2 g2 and21xand213 a3 b3 g3 and21xand214 p1 c0 m0 and21xor211 m0 g1 c1 or21 *进位C1xand311 p2 p1 c0 m1 and31xand215 p2 g1 m2 and21xor312 g2 m1 m2 c2 or31 *进位C2 xand411 p3 p2 p1 c0 m3 and41xand313 p3 p2 g1 m4 and31xand216 p3 g2 m5 and21xor412 m3 m4 m5 g3 c3 or41 *进位C3 xxor215 p1 c0 s1 xor21 *输出s1xxor216 p2 c1 s2 xor21 *输出s2xxor217 p3 c2 s3 xor21 *输出s3xxor218 p4 c3 s4 xor21 *输出s4.include "c:\lib\130nm_bulk.l"tt.opt scale=0.05u.global vdd gndvdd vdd 0 1.2va1 a1 0 pulse 1.2 1.2 20n 1f 1f 30n 100nva2 a2 0 pulse 0 0 20n 1f 1f 30n 100nva3 a3 0 pulse 0 0 20n 1f 1f 30n 100nva4 a4 0 pulse 0 0 20n 1f 1f 30n 100nvb1 b1 0 pulse 1.2 1.2 20n 1f 1f 30n 100n vb2 b2 0 pulse 1.2 1.2 20 1f 1f 30n 100nvb3 b3 0 pulse 0 0 20n 1f 1f 30n 100nvb4 b4 0 pulse 1.2 1.2 20n 1f 1f 30n 100nvc0 c0 0 pulse 0 0 4n 1f 1f 0n 100n.tran 1n 100n.plot tran v(s1).plot tran v(s2).plot tran v(s3).plot tran v(s4).end8.结果及分析由波形可知:当输入a1=1,b1=1,前一级进位c0=0时,s1=a1+b1+c0=0,下一级进位c1=1.由波形可知:当输入a2=0,b2=1,前一级进位c1=1时,s2=a2+b2+c1=0,下一级进位c2=1.由波形可知:当输入a3=0,b3=0,前一级进位c2=1时,s3=a3+b3+c2=1,下一级进位c3=0.由波形可知:当输入a4=0,b4=1,前一级进位c3=0时,s4=a4+b4+c2=1。
4位超前进位加法器
![4位超前进位加法器](https://img.taocdn.com/s3/m/6e94276f0b1c59eef8c7b4c3.png)
4位超前进位加法器详细设计姓名:魏可望(23)班级:微电子1102指导老师:杜慧敏日期:2014年4月29日1设计目标 (3)1.1功能定义 (3)1.2引脚描述 (3)1.2.1 4位超前进位加法器系统级信号 (3)1.2.2 4位超前进位加法器输入接口定义 (3)1.2.3 4位超前进位加法器的器输出接口定义 (3)2 模块设计 (3)3测试 (4)4设计开发环境 (4)5设计开发计划 (4)1设计目标1.1功能定义本文描述4位超前进位加法器的详细设计方案。
其功能是求出4位超前进位加法器功能,并在FPGA开发板上验证设计的正确性。
1.2引脚描述1.2.1 4位超前进位加法器单元系统级信号1.2.2 4位超前进位加法器输入接口定义1.2.3 4位超前进位加法器输出接口定义2 模块设计本设计按要求,用assign语句设计4位超前进位加法器。
3测试本单元电路控制逻辑采用systemverilog断言描述状态信息测试,数据通路部分用采用sysetemverilog随机验证的方法,并结合覆盖率检测,做到100%验证。
将本设计下载到Sparten 3E开发板上,将计数器的输出连接到LED灯上,以验证设计的正确性。
4设计开发环境语言级设计:Verilog综合工具:xilinx 14.7rFPGA设计和仿真工具:ISE13.2,synopsys VCS布局和布线工具:appllo ,模拟设计和仿真工具: modelsim寄生参数提取和仿真工具: star_sim RC5设计开发计划附录:4位超前进位加法器源代码:module add_ahead4(sum,cout,a,b,cin);input[3:0] a,b;input cin;output[3:0] sum;output cout;wire[3:0] G,P;wire[3:0] C,sum;assign G[0]=a[0]&b[0];assign P[0]=a[0]|b[o];assign C[0]=cin;assign sum[0]=G[0]^P[0]^C[0];assign G[1]=a[1]&b[1];assign P[1]=a[1]|b[1];assign C[1]=G[0]|(P[0]&cin); assign sum[1]=G[1]^P[1]^C[1]; assign G[2]=a[2]&b[2]; assign P[2]=a[2]|b[2];assign C[2]=G[1]|(P[1]&C[1]); ssign sum[2]=G[2]^P[2]^C[2]; assign G[3]=a[3]&b[3]; assign P[3]=a[3]|b[3];assign C[3]=G[2]|(P[2]&C[2]); assign sum[3]=G[3]^P[3]^C[3]; assign cout=G[3]|(P[3]&C[3]); endmodule。
数字集成电路课程设计报告-4bits超前进位加法器
![数字集成电路课程设计报告-4bits超前进位加法器](https://img.taocdn.com/s3/m/096557779a6648d7c1c708a1284ac850ad020499.png)
数字集成电路课程设计报告-4bits超前进位加法器福州⼤学⾄诚学院数字集成电路课程设计报告设计题⽬:4bits 超前进位加法器班级:专业:姓名:学号:组名:指导⽼师:教师评分:⽇期:4bits超前进位加法器⽬录第1章概述.................................................................... - 3 -1.1课程设计⽬的 (3)1.2课程设计的主要内容 (3)1.2.1设计题⽬ (3)1.2.2设计内容 (3)第2章功能分析及逻辑分析...................................................... - 3 -2.1功能分析 (3)2.2推荐⼯作条件 (4)2.3电性能 (4)2.4交流(开关)特性 (5)2.5真值表 (6)2.6表达式 (6)2.7电路图 (7)第3章电路设计及器件参数设计.................................................. - 7 -3.1性能指标: (7)3.2模块划分 (7)3.2.1输出级电路设计 (7)3.2.2内部反相器 (8)3.2.3内部电路等效 (8)3.2.4输⼊级电路 (9)3.2.5中间缓冲级电路 (9)3.2.6输出缓冲级电路 (9)3.2.7输⼊、输出保护电路 (10)3.3本章⼩结 (10)第4章功耗估算与延时......................................................... - 10 -4.1电容估算 (10)4.2功耗估算 (11)4.3延时估算 (11)4.4本章⼩结 (12)第5章电路模拟与仿真......................................................... - 12 -5.1电路搭建 (12)5.1.1建⽴新库 (12)5.1.2建⽴SCHEMATIC VIEW (13)5.1.3建⽴SYMBOL (13)5.1.4建⽴总体电路SCHEMATIC VIEW (13)数字集成电路课程设计5.1.5建⽴总体SYMBOL (14)5.1.6测试电路 (14)5.2功能仿真 (15)5.3功耗仿真 (15)5.4仿真结果分析 (16)5.5本章⼩结 (16)第6章版图设计............................................................... - 16 -6.1原理 (16)6.2反相器版图 (17)6.2.1 LAYOUT VIEW的建⽴ (17)6.2.2添加器件 (18)6.2.3互连,实现反相器功能 (18)6.3输⼊级 (19)6.4输出级 (19)6.5输出缓冲 (19)6.6异或门 (20)6.7或⾮门 (20)6.8与门 (20)6.9整体版图 (21)6.10本章⼩结 (21)总体⼼得....................................................................... - 22 -对课程内容的建议................................................... 错误!未定义书签。
数字电路课程设计之超前进位加法器
![数字电路课程设计之超前进位加法器](https://img.taocdn.com/s3/m/b54af170e45c3b3567ec8b5a.png)
reg
Cin;
wire[3:0] S;
wire
Cout;
carry_look_add CAL (.A(A),.B(B),.Cin(Cin),.Cout(Cout),.S(S)); initial begin
#10 A=4'd0;B=4'd0;Cin=0; #10 A=4'd11;B=4'd1;Cin=0; #10 A=4'd10;B=4'd12;Cin=0; #10 A=4'd11;B=4'd4;Cin=0; #100 $stop; end endmodule
Pi=Ai○+ Bi;
可以得到输出与进位表达
Gi=AiBi;
Si=Pi○+ Ci;
Ci+1=Gi+PiCi; Gi 为进位产生,不管输入进位 Ci 为什么,只要 Ai 与 Bi 为 1 时,它将产生进位。Pi 称为进位传输,因为它 与从 Ci 到 Ci+1 的进位传输有关
C0 = 输入进位
C1 = G0 + P0C0
Half_Add H3(.a(A[2]),.b(B[2]),.s(v6),.c(v5));
Half_Add H4(.a(A[3]),.b(B[3]),.s(v8),.c(v7));
carry_look
CL1(.C0(Cin),.P0(v2),.G0(v1),.P1(v4),.G1(v3),.P2(v6),.G2(v5),.P3(v8),.G3(v7),.C1(o1),.C2(o2),.C3(o3),.C4(Cout));
注意 C4 并不需要等待 C3,实际上 C4,C3,C2,C1 同时传输 超前进位产生的电路逻辑图
数字电路课程设计之超前进位加法器
![数字电路课程设计之超前进位加法器](https://img.taocdn.com/s3/m/b54af170e45c3b3567ec8b5a.png)
# MACRO ./mul_run_msim_rtl_verilog.do PAUSED at line 14
通过查阅资料将 Verilog 测试文件
Timsbench 文件没有实例化,修改为
修改后仿真 OK 参考文献: 1.数字设计与 Verilog 实现 M.Morris Mano 著 第五版
Pi=Ai○+ Bi;
可以得到输出与进位表达
Gi=AiBi;
Si=Pi○+ Ci;
Ci+1=Gi+PiCi; Gi 为进位产生,不管输入进位 Ci 为什么,只要 Ai 与 Bi 为 1 时,它将产生进位。Pi 称为进位传输,因为它 与从 Ci 到 Ci+1 的进位传输有关
C0 = 输入进位
C1 = G0 + P0C0
instance name in instantiation of 'carry_look_add'.
#
#
Region: /carry_look_add_tb
# Error loading design
# Error: Error loading design
#
Pausing macro execution
基于 Verilog 的四位超前进位加法器设计
使用 Verilog 语言实现四位超前进位加法器设计,并使用 Quartes 编写程序,使用 modelsin 进行仿真
验证设计
二、原理介绍
超前进位加法器(图为全加器)
Ai
1
3
Pi
Bi
2
1
3
Si
2
1 3 Gi
2
Ci
1
3
计算机组成原理课程设计—超前进位加法器的设计资料
![计算机组成原理课程设计—超前进位加法器的设计资料](https://img.taocdn.com/s3/m/f61b662376c66137ef061911.png)
沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:超前进位加法器的设计院(系):计算机学院专业:班级:学号:姓名:指导教师:完成日期:沈阳航空航天大学课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (2)1.3设计环境 (3)第2章详细设计方案 (4)2.1顶层方案图的设计与实现 (4)2.1.1创建顶层图形设计文件 (4)2.1.2器件的选择与引脚锁定 (5)2.1.3编译、综合、适配 (7)2.2功能模块的设计与实现 (7)2.2四位超前进位加法器模块的设计与实现 (7)2.3仿真调试 (9)第3章编程下载与硬件测试 (11)3.1编程下载 (11)3.2硬件测试及结果分析 (11)参考文献 (13)附录(程序清单或电路原理图) (14)第1章总体设计方案1.1设计原理八位超前进位加法器,可以由2个四位超前进位加法器构成。
由第一个四位超前进位加法器的进位输出作为第二个超前进位加法器的进位输入即可实现八位超前进位加法器的设计。
超前进位产生电路是根据各位进位的形成条件来实现的。
只要满足下述条件,就可形成进位C1、C2、C3、C4。
所以:第一位的进位C1=X1*Y1+(X1+Y1)*C0第二位的进位C2=X2*Y2+(X2+Y2)*X1*Y1+(X2+Y2)(X1+Y1)C0第三位的进位C3=X3*Y3+(X3+Y3)X2*Y2+(X3+Y3)*(X2+Y2)*X1*Y1+(X3+Y3)(X2+Y2)(X1+Y1)*C0第四位的进位C4=X4*Y4+(X4+Y4)*X3*Y3+(X4+Y4)*(X3+Y3) * X2*Y2+(X4+Y4)(X3+Y3)(X2+Y2)*X1*Y1+(X4+Y4)(X3+Y3)(X2+Y2)(X1+Y1)*C0 下面引入进位传递函数Pi和进位产生函数Gi的概念。
它们定义为:Pi=Xi+YiGi=Xi*YiP1的意义是:当X1和Y1中有一个为1时,若有进位输入,则本位向高位传递此进位。
四位超前进位加法器原理
![四位超前进位加法器原理](https://img.taocdn.com/s3/m/706de14676eeaeaad0f33020.png)
超前进位加法器原理74283为4位超前进位加法器,不同于普通串行进位加法器由低到高逐级进位,超前进位加法器所有位数的进位大多数情况下同时产生,运算速度快,电路结构复杂。
其管脚如图1所示:图1 74283管脚图其真值表如下所示:表1 4位超前进位加法器真值表由全加器的真值表可得Si 和Ci的逻辑表达式:定义两个中间变量Gi 和Pi:当Ai =Bi=1时,Gi=1,由Ci的表达式可得Ci=1,即产生进位,所以Gi称为产生量变。
若Pi =1,则Ai·Bi=0,Ci=Ci-1,即Pi=1时,低位的进位能传送到高位的进位输出端,故Pi称为传输变量,这两个变量都与进位信号无关。
将Gi 和Pi代入Si和Ci得:进而可得各位进位信号的逻辑表达如下:根据逻辑表达式做出电路图如下:逻辑功能图中有2输入异或门,2输入与门,3输入与门,4输入与门,2输入或门,3输入或门,4输入或门,其转化成CMOS晶体管图如下:电路网表如下:*xor 2.subckt xor2 a b c d fmxorpa 1 a vdd vdd pmos l=2 w=8 mxorpb f d 1 vdd pmos l=2 w=8 mxorpc 2 b vdd vdd pmos l=2 w=8 mxorpd f c 2 vdd pmos l=2 w=8 mxorna f a 3 0 nmos l=2 w=4 mxornb 3 b 0 0 nmos l=2 w=4 mxornc f c 4 0 nmos l=2 w=4 mxornd 4 d 0 0 nmos l=2 w=4.ends xor2*and2.subckt and2 a b fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4 mandna f a 1 0 nmos l=2 w=4 mandnb 1 b 0 0 nmos l=2 w=4.ends and2*and3.subckt and3 a b c fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4 mandpc f c vdd vdd pmos l=2 w=4 mandna f a 1 0 nmos l=2 w=6 mandnb 1 b 2 0 nmos l=2 w=6 mandnc 2 c 0 0 nmos l=2 w=6.ends and3*and4.subckt and4 a b c d fmandpa f a vdd vdd pmos l=2 w=4 mandpb f b vdd vdd pmos l=2 w=4 mandpc f c vdd vdd pmos l=2 w=4 mandpd f d vdd vdd pmos l=2 w=4 mandna f a 1 0 nmos l=2 w=8 mandnb 1 b 2 0 nmos l=2 w=8 mandnc 2 c 3 0 nmos l=2 w=8 mandnd 3 d 0 0 nmos l=2 w=8.ends and4*or2.subckt or2 a b fmorpa 1 a vdd vdd pmos l=2 w=8 morpb f b 1 vdd pmos l=2 w=8mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4.ends or2*or3.subckt or3 a b c fmorpa 1 a vdd vdd pmos l=2 w=12 morpb 2 b 1 vdd pmos l=2 w=12 morpc f c 2 vdd pmos l=2 w=12mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4mnc f c 0 0 nmos l=2 w=4.ends or3*or4.subckt or4 a b c d fmorpa 1 a vdd vdd pmos l=2 w=16 morpb 2 b 1 vdd pmos l=2 w=16 morpc 3 c 2 vdd pmos l=2 w=16 morpd f d 3 vdd pmos l=2 w=16mna f a 0 0 nmos l=2 w=4mnb f b 0 0 nmos l=2 w=4mnc f c 0 0 nmos l=2 w=4mnd f d 0 0 nmos l=2 w=4.ends or4*not.subckt not a fmnotpa f a vdd vdd pmos l=2 w=4 mnotna f a 0 0 nmos l=2 w=2.ends not *反相器*or21.subckt or21 a b fxor2 a b 1 or2xnot 1 f not.ends or21 *2输入或门*or31.subckt or31 a b c fxor3 a b c 1 or3xnot 1 f not.ends or31 *3输入或门*or41.subckt or41 a b c d fxor4 a b c d 1 or4xnot 1 f not.ends or41 *4输入或门*xor21.subckt xor21 a b fxm a A5 notxn b B5 notxxor a b A5 B5 f xor2.ends xor21 * 2输入异或门*and21.subckt and21 a b fxand2 a b 1 and2xnot 1 f not.ends and21 *2输入与门*and31.subckt and31 a b c fxand3 a b c 1 and3xnot 1 f not.ends and31 *3输入与门*and41.subckt and41 a b c d fxand4 a b c d 1 and4xnot 1 f not.ends and41 *4输入与门xxor211 a1 b1 p1 xor21xxor212 a2 b2 p2 xor21xxor213 a3 b3 p3 xor21xxor214 a4 b4 p4 xor21xand211 a1 b1 g1 and21xand212 a2 b2 g2 and21xand213 a3 b3 g3 and21xand214 p1 c0 m0 and21xor211 m0 g1 c1 or21 *进位C1xand311 p2 p1 c0 m1 and31xand215 p2 g1 m2 and21xor312 g2 m1 m2 c2 or31 *进位C2xand411 p3 p2 p1 c0 m3 and41xand313 p3 p2 g1 m4 and31xand216 p3 g2 m5 and21xor412 m3 m4 m5 g3 c3 or41 *进位C3xxor215 p1 c0 s1 xor21 *输出s1xxor216 p2 c1 s2 xor21 *输出s2xxor217 p3 c2 s3 xor21 *输出s3xxor218 p4 c3 s4 xor21 *输出s4.include "c:\lib\130nm_bulk.l"tt.opt scale=0.05u.global vdd gndvdd vdd 0 1.2va1 a1 0 pulse 1.2 1.2 20n 1f 1f 30n 100nva2 a2 0 pulse 0 0 20n 1f 1f 30n 100nva3 a3 0 pulse 0 0 20n 1f 1f 30n 100nva4 a4 0 pulse 0 0 20n 1f 1f 30n 100nvb1 b1 0 pulse 1.2 1.2 20n 1f 1f 30n 100n vb2 b2 0 pulse 1.2 1.2 20 1f 1f 30n 100nvb3 b3 0 pulse 0 0 20n 1f 1f 30n 100nvb4 b4 0 pulse 1.2 1.2 20n 1f 1f 30n 100nvc0 c0 0 pulse 0 0 4n 1f 1f 0n 100n.tran 1n 100n.plot tran v(s1).plot tran v(s2).plot tran v(s3).plot tran v(s4).end。
4bits超前进位加法器
![4bits超前进位加法器](https://img.taocdn.com/s3/m/acd46f8ce53a580216fcfed2.png)
福州大学至诚学院数字集成电路课程设计报告设计题目:4bits 超前进位加法器全定制设计班级:(1)班专业:微电子学姓名:陈长毅学号:210991804组名:林志龙指导老师:王仁平教师评分:日期:4bits超前进位加法器目录第1章概述.................................................................... - 3 -1.1课程设计目的 (3)1.2课程设计的主要内容 (3)1.2.1设计题目 (3)1.2.2设计要求 ....................................................................1.2.3设计内容 (3)第2章功能分析及逻辑分析...................................................... - 4 -2.1功能分析 (4)2.2推荐工作条件 (4)2.3直流特性....................................................... 错误!未定义书签。
2.4交流(开关)特性 (5)2.5真值表 (6)2.6表达式 (7)2.7电路原理图 (7)2.7.1 4位超前进位加法器镜像实现的电路图2.7.2传输门实现XOR电路第3章功耗估算与延时......................................................... - 10 -3.1电容估算 (10)3.2功耗估算 (11)3.3延时估算 (11)第4章电路原理图设计与仿真................................................... - 12 -4.1原理图和符号图的建立 (12)4.1.1建立新库 (12)4.1.2建立SYMBOL (14)4.2各模块原理图设计与仿真4.2.1反相器的原理图与仿真 (13)4.2.2与门的原理图和仿真......................................... 错误!未定义书签。
[转]4位超前进位加法器代码及原理
![[转]4位超前进位加法器代码及原理](https://img.taocdn.com/s3/m/762c354832687e21af45b307e87101f69e31fb22.png)
[转]4位超前进位加法器代码及原理超前进位加法器module add4_head ( a, b, ci, s, pp, gg);input[3:0] a;input[3:0] b;input ci;output[3:0] s;output pp;output gg;wire[3:0] p;wire[3:0] g;wire[2:0] c;assign p[0] = a[0] ^ b[0];assign p[1] = a[1] ^ b[1];assign p[2] = a[2] ^ b[2];assign p[3] = a[3] ^ b[3];assign g[0] = a[0] & b[0];assign g[1] = a[1] & b[1];assign g[2] = a[2] & b[2];assign g[3] = a[3] & b[3];assign c[0] = (p[0] & ci) | g[0];assign c[1] = (p[1] & c[0]) | g[1];assign c[2] = (p[2] & c[1]) | g[2];assign pp = p[3] & p[2] & p[1] & p[0];assign gg = g[3] | (p[3] & (g[2] | p[2] & (g[1] | p[1] & g[0])));assign s[0] = p[0] ^ ci;assign s[1] = p[1] ^ c[0];assign s[2] = p[2] ^ c[1];assign s[3] = p[3] ^ c[2];endmodule⾸先要明确⼏个概念:p表⽰进位否决信号(pass),如果p为0就否决调前⼀级的进位输⼊。
否决的意思就是即使前⼀级有进位,本级也不会向后⼀级产⽣进位输出。
四位加法器的电路图
![四位加法器的电路图](https://img.taocdn.com/s3/m/fe275c0ec381e53a580216fc700abb68a982addb.png)
四位加法器的电路图
武汉⼤学教学实验报告
信息管理学院信息管理与信息系统专业2015年9⽉14 ⽇
⼆、实验操作部分
1. 实验数据、表格及数据处理
2. 实验操作过程(可⽤图表⽰)
3. 结论
⼀、半加器
两个⼀位⼆进制数相加,叫做半加,实现半加操作的电路,称为半加器。
所谓“半加”,就是只考虑两个加数本⾝的求和,⽽没
有考虑地位来的进位数。
半加器逻辑图及符号
⼆、全加器
全加器可⽤两个半加器和⼀个或门组成,如图所⽰。
A i和B i在第⼀个半加器中相加,得出的和再跟C i-1在第⼆个半加器中相加,即得出全加和S i。
两个半加器的进位数通过或门输出作为本位的进位数C i。
全加器逻辑图及符号
三、74238
74283为4位超前进位加法器,不同于普通串⾏进位加法器由低到⾼逐级进位,超前进位加法器所有位数的进位⼤多数情况下同时产⽣,运算速度快,电路结构复杂。
四位超前进位加法器真值表:
进⽽可得各位进位信号的逻辑表达如下:(来⾃参考资料)
电路图如下(来⾃参考资料)
四、四位⼆进制串⾏进位加法器逻辑图
三、实验效果分析(包括仪器设备等使⽤效果)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
and(k[1],p[1],g[0]); and(k[2],k[1],c_in); or(c[1],g[1],k[1],k[2]); and(k[3],p[2],g[1]); and(k[4],k[3],g[0]); and(k[5],k[4],c_in); or(c[2],g[2],k[3],k[4],k[5]); and(k[6],p[3],g[2]); and(k[7],k[6],g[1]); and(k[8],k[7],g[0]); and(k[9],k[8],c_in); or(c_out,g[3],k[6],k[7],k[8],k[9]); xor(sum[0],p[0],c_in); xor(sum[1],p[1],c[0]); xor(sum[2],p[2],c[1]); xor(sum[3],p[3],c[2]); endmodule 测试程序: module adder_th; reg [3:0] a,b; reg c_in; wire [3:0] sum;
3.1 实验内容 编写四位超前进位加法器程序及测试程序 3.2 本次所实现的功能描述 输入两个四位二进制数和一个二进制数进位输入,输出一个二进 制结果和一个二进制数进位输出 3.3 具体步骤如下: 1.打开 Modelsim 软件,建立工程,键入工程名后,再在下面路 径添加一个自己的文件夹。 在工程下建立两个文件分别为功能模块文 件和测试激励模块文件。
2.双击模块文件进入文件后编写代码。 3.保存文件,编译,如果程序出错对程序则进行修改。然后再编 译,编译成功后进行仿真。
4.单击运行并添加波形,观察仿真结果是否符合事先的设计。若 不符合,则继续修改代码直至符合事先的设计要求。
源程序: module add_4(a,b,c_in,c_out,sum); input [3:0] a,b; input c_in; output [3:0] sum; output c_out; wire [2:0] c; wire [3:0] p; wire [3:0] g; wire [9:0] k; xor(p[0],a[0],b[0]); xo xor(p[3],a[3],b[3]); and(g[0],a[0],b[0]); and(g[1],a[1],b[1]); and(g[2],a[2],b[2]); and(g[3],a[3],b[3]); and(k[0],p[0],c_in); or(c[0],k[0],g[0]);
wire c_out; integer i,j; add_4 f0(.a(a),.b(b),.c_in(c_in),.sum(sum),.c_out(c_out)); always #5 c_in=~c_in; initial begin
a=4'b0; b=4'b0; c_in=1'b0; i=0; j=0; end initial begin for(i=0;i<16;i=i+1)
四位超前进位加法器
1. 实验目的
练习在 Modesim 下编写 Verilog 程序,熟悉 Modelsim 运行过程, 并学会用 Verilog 语言编写一个四位超前进位加法器。
2. 实验要求
编写一个四位的具有超前进位功能的程序实现超前进位加法;并 且编写一测试程序来测试该模块。
3. 实验内容及步骤
_
_
_
4. 实验总结
这是第二次用 Verilog 做实验,在使用 Modesim 方面还不熟练,在经过一 定的练习之后终于可以简单的使用它了。这个程序对于我来说有一定的难度, 虽然数字电路这门课学过超前进位加法器的原理, 但要真正的用 Verilog 语言 实现还是不简单的,我也是通过查找资料才实现的。注意测试激励的输出申 明成了 reg 类型的就不行,后来改成了 wire 类型才对!还要注意激励模块与 测试模块的连接顺序,使用命名方式连接。
for(j=0;j<16;j=j+1) begin #5 a=i; b=j; end
end initial
begin $monitor($time,"a=%d,b=%d,c_in=%b
sum=%d,c_out=%b",a,b,c_in,sum,c_out); end endmodule 测试输出结果: 测试波形: